首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Understanding mechanisms of cellular uptake and intracellular release would enable better design of nanocarriers for delivery of nucleic acids such as siRNA and microRNA (miRNA).

Method

In this study, we investigated cellular pharmacokinetics of siRNA by co-encapsulating fluorescently labeled siRNA and molecular beacon (MB) in four different formulations of cationic lipid nanoparticles (LNPs). A miRNA mimic was also used as a probe for investigating cellular pharmacokinetics, which correlated well with RNAi activities.

Results

We tried to find the best LNP formulation based on the combination of DOTMA and DODMA. When the DOTMA/DODMA ratio was at 5/40, the LNP containing a luciferase siRNA produced the highest gene silencing activity. The superior potency of DOTMA/DODMA could be attributed to higher uptake and improved ability to facilitate siRNA release from endosomes subsequent to uptake.

Conclusions

Our findings may provide new insights into RNAi transfection pathways and have implications on cationic LNP design.  相似文献   

2.

Purpose

To develop a tool based on siRNA-mediated knockdown of hepatic P450 oxidoreductase (POR) to decrease the CYP-mediated metabolism of small molecule drugs that suffer from rapid metabolism in vivo, with the aim of improving plasma exposure of these drugs.

Methods

siRNA against the POR gene was delivered using lipid nanoparticles (LNPs) into rats. The time course of POR mRNA knockdown, POR protein knockdown, and loss of POR enzyme activity was monitored. The rat livers were harvested to produce microsomes to determine the impact of POR knockdown on the metabolism of several probe substrates. Midazolam (a CYP3A substrate with high intrinsic clearance) was administered into LNP-treated rats to determine the impact of POR knockdown on midazolam pharmacokinetics.

Results

Hepatic POR mRNA and protein levels were significantly reduced by administering siRNA and the maximum POR enzyme activity reduction (~85%) occurred 2 weeks post-dose. In vitro analysis showed significant reductions in metabolism of probe substrates due to POR knockdown in liver, and in vivo POR knockdown resulted in greater than 10-fold increases in midazolam plasma concentrations following oral dosing.

Conclusions

Anti-POR siRNA can be used to significantly reduce hepatic metabolism by various CYPs as well as greatly increase the bioavailability of high clearance compounds following an oral dose, thus enabling it to be used as a tool to increase drug exposure in vivo.  相似文献   

3.
4.

Purpose

Polyethylenimine (PEI), a cationic polymer, has been shown to aggregate plasmid DNA and facilitate its internalization. It has also been shown that combining ultrasound (US) with PEI could enhance and prolong in vitro and in vivo transgene expression. However, the role US in the enhancement of PEI uptake is poorly understood. This study investigates the impact of US on PEI-mediated gene transfection.

Methods

Specific endocytosis pathway siRNA, including clathrin HC siRNA, caveolin-1 siRNA and protein kinase C-delta (PKC-δ) siRNA, are used to block the corresponding endocytosis pathways prior to the transfection of luciferase DNA/PEI polyplexes to cultured cells by 1-MHz pulsed US with ultrasound contrast agent SonoVue®.

Results

Transgene expression was found not to be enhanced by US treatment in the presence of the PKC-δ siRNA. We further demonstrated that PKC-δ protein could be enhanced at 6 h after US exposure. Moreover, intracellular calcium levels were found to be significantly increased at 3 h after US exposure, while transgene expressions were significantly reduced in the presence of calcium channel blockers both in vitro and in vivo.

Conclusions

Our results suggest that US enhanced PEI-mediated gene transfection specifically by increasing PKC-δ related fluid phase endocytosis, which was induced by increasing the intracellular calcium levels.  相似文献   

5.
Ecstasy is the popular name of the abuse drug 3,4-methylenedioxymethamphetamine (MDMA) that decreases immunity in animals. The mechanisms that generate such alterations are still controversial. Seven independent pharmacological approaches were performed in mice to identify the possible mechanisms underlying the decrease of neutrophil activity induced by MDMA and the possible effects of MDMA on host resistance to Listeria monocytogenes. Our data showed that MDMA (10 mg kg?1) administration decreases NFκB expression in circulating neutrophils. Metyrapone or RU-486 administration prior to MDMA treatment abrogated MDMA effects on neutrophil activity and NFκB expression, while 6-OHDA or ICI-118,551 administration did not. As MDMA treatment increased the plasmatic levels of adrenaline and noradrenaline, propranolol pre-treatment effects were also evaluated. Propranolol suppressed both MDMA-induced increase in corticosterone serum levels and its effects on neutrophil activity. In a L. monocytogenes experimental infection context, we showed that MDMA: induced myelosuppression by decreasing granulocyte-macrophage hematopoietic progenitors (CFU-GM) in the bone marrow but increased CFU-GM in the spleen; decreased circulating leukocytes and bone marrow cellularity and increased spleen cellularity; decreased pro-inflammatory cytokine (IL-12p70, TNF, IFN-γ, IL-6) and chemokine (MCP-1) production 24 h after the infection; increased the production of pro-inflammatory cytokines and chemokines 72 h after infection and decreased IL-10 levels at all time points analyzed. It was proposed that MDMA immunosuppressive effects on neutrophil activity and host resistance to L monocytogenes rely on NFκB signaling, being mediated by HPA axis activity and corticosterone.  相似文献   

6.
HIV-1 associated neurocognitive deficits are increasing in prevalence, although the neuronal basis for these deficits is unclear. HIV-1 Tg rats constitutively express 7 of 9 HIV-associated proteins, and may be useful for studying the neuropathological substrates of HIV-1 associated neurocognitive disorders (HAND). In this study, adult female HIV-1 Tg rats and F344 control rats had similar growth rates, estrous cyclicity and startle reflex inhibition to a visual prepulse stimulus. Medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) were ballistically-labeled utilizing the indocarbocyanine dye DiI. The branching complexity of MSNs in the NAcc was significantly decreased in HIV-1 Tg rats, relative to controls; moreover, the shorter length and decreased volume of dendritic spines, but unchanged head diameter, in HIV-1 Tg rats suggested a reduction of longer spines and an increase in shorter, less projected spines, indicating a population shift to a more immature spine phenotype. Collectively, these results from HIV-1 Tg female rats indicated significant synaptodendritic alterations of MSNs in the NAcc occur as a consequence of chronic, low-level, exposure to HIV-1 associated proteins.  相似文献   

7.
Compound K (CK) is a major metabolite of ginsenosides that is absorbed. CK has antidiabetic effects, although the mechanisms underlying the effects of CK have not fully been known. To elucidate the mechanisms underlying the antidiabetic effects of CK, we studied the effects of CK on GLP-1 secretion from NCI-H716 cells, and explored the mechanisms underlying CK-induced GLP-1 secretion. Treatment of NCI-H716 cells with 10, 50, and 100 μM CK significantly increased GLP-1 secretion, and intracellular Ca2+ and cAMP levels in a dose-dependent manner. Transfection of NCI-H716 cells with siRNA specific to α-gustducin and siRNA specific to TAS1R3 had no effect on CK-induced GLP-1 secretion and Ca2+ increase. However, transfection of NCI-H716 cells with TGR5-specific siRNA significantly inhibited CK-induced GLP-1 secretion and the increase in Ca2+ and cAMP levels. Moreover, CK showed human TGR5 agonist activity in CHO-K1 cells transiently transfected with human TGR5. Our data provide a novel mechanism of CK for antidiabetic effects. Moreover, the findings might suggest that CK is a potential agent that has multiple biological functions in the body via GLP-1 secretion and TGR5 activation.  相似文献   

8.

Purpose

For building functional vasculature, controlled delivery of fibroblast growth factor-9 (FGF9) from electrospun fibers is an appealing strategy to overcome challenges associated with its short half-life. FGF9 sustained delivery could potentially drive muscularization of angiogenic sprouts and help regenerate stable functional neovasculature in ischemic vascular disease patients.

Methods

Electrospinning parameters of FGF9-loaded poly(ester amide) (PEA) fibers have been optimized, using blend and emulsion electrospinning techniques. In vitro PEA matrix degradation, biocompatibility, FGF9 release kinetics, and bioactivity of the released FGF9 were evaluated. qPCR was employed to evaluate platelet-derived growth factor receptor-β (PDGFRβ) gene expression in NIH-3T3 fibroblasts, 10T1/2 cells, and human coronary artery smooth muscle cells cultured on PEA fibers at different FGF9 concentrations.

Results

Loaded PEA fibers exhibited controlled release of FGF9 over 28 days with limited burst effect while preserving FGF9 bioactivity. FGF9-loaded and unloaded electrospun fibers were found to support the proliferation of fibroblasts for five days even in serum-depleted conditions. Cells cultured on FGF9-supplemented PEA mats resulted in upregulation of PDGFRβ in concentration and cell type-dependent manner.

Conclusion

This study supports the premise of controlled delivery of FGF9 from PEA electrospun fibers for potential therapeutic angiogenesis applications.  相似文献   

9.

Rationale

N-Methyl-d-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood.

Objective

This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA).

Methods

Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings.

Results

We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism.

Conclusions

These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.  相似文献   

10.
The role played by overexpression of tyrosine kinase epidermal growth factor receptor (EGFR), the transmembrane receptor central to numerous cellular processes comprising cell migration, adhesion, apoptosis, and cell proliferation, has been highlighted in various cancers such as prostate, breast, lung, and ovarian cancers as well as in mutations in the EGFR kinase domain. Although many therapeutic approaches have targetted EGFR, the mutations occurring in the EGFR kinase domain including L858 EGFR and T790/L858R had led to the amplification of EGFR signals, consequently leading to increased cell proliferation and cell growth. The strategies involving the inhibition of EGFR L858 and T790M have been accredited with limited achievement in addition to being associated with unwanted adverse effects as a result of crosstalk of wild-type EGFR. All current EGFR tyrosine kinase inhibitors have been identified as ATP competitive inhibitors of wild-type EGFR possessing aniline and quinazoline moiety on the ligands skeleton. Our results obtained by performing molecular docking study on Maestro 9.3 molecular docking suite indicated that CID5280343 possesses better energy conformation against wild-type EGFR as well as two mutated EGFR. Moreover, it was discovered in this study that the natural compounds CID72276, CID5280445, CID441794, and CID72277 and InterBioScreen’s library STOCK1N-78657, STOCK1N-78976, and STOCK1N-78847 have better binding conformation against gatekeeper T790M mutated EGFR concluded to be brought about by means of flexible ligands/receptor-based molecular docking protocol. Miraculous features of these compounds are their various pharmacokinetic and pharmacodynamic parameters which were found to be satisfactory as drug-like molecules. This molecular docking study also summarizes docking free energy, protein–ligands interaction profile, and pharmacokinetic and pharmacodynamic parameter of lead molecules which were tremendously helpful in enhancing the activity of these natural compounds against EGFR.  相似文献   

11.
12.

Purpose

Neutropenia is a severe adverse-event of chemotherapeutics. Neutrophils (ANC) are mainly regulated by granulocyte colony stimulating factor (G-CSF). The aim was to characterize the dynamics between endogenous G-CSF and ANC over time following chemotherapy.

Methods

Endogenous G-CSF and ANC were monitored in forty-nine breast cancer patients treated with sequential adjuvant 5-fluorouracil–epirubicin–cyclophosphamide and docetaxel.

Results

During treatment courses ANC was transiently decreased and was reflected in an endogenous G-CSF increase, which was well described by a semi-mechanistic model including control mechanisms; when G-CSF concentrations increased the proliferation rate increased and the bone maturation time reduced for ANC. Subsequently, ANC in the circulation increased leading to increased elimination of G-CSF. Additionally, a non-specific elimination for G-CSF was quantified. The ANC-dependent elimination contributed to 97% at baseline and 49% at an ANC of 0.1?·?109/L to the total G-CSF elimination.

Conclusion

The integrated G-CSF–myelosuppression model captured the initial rise in endogenous G-CSF following chemotherapy-induced neutropenia and the return to baseline of G-CSF and ANC. The model supported the self-regulatory properties of the system and may be a useful tool for further characterization of the biological system and in optimization of chemotherapy treatment.  相似文献   

13.
The well known fact that the activity of δ-aminolevulinic acid dehydratase (ALAD: EC 4.2.1.24) is reduced in red cells of animals with lead poisoning was found to be upset, by using a modified method of Gibson's original procedure, for determination of activated ALAD activity. The modified method involves addition of 0.2 mM Zn2+ and then preheating the enzyme solution at 60° C for 5 min before following Gibson's original procedure. With this methodological modification, the ALAD activity of erythrocytes of rats poisoned with lead was found increased. Furthermore, the enzyme was purified from the peripheral blood of lead-poisoned rats. ALAD protein in peripheral blood was also determined by single radial immuno diffusion using rabbit anti-serum raised against rat liver ALAD. As the result, the ALAD activity obtained from the modified method was found to be directly proportional to the absolute amount of enzyme proteins determined both by chemically and immunochemically. The modified method for measuring true ALAD content in blood cells in lead poisoning is more reliable than previous ones.  相似文献   

14.

Purpose

The objective of this study was to develop a custom-tailored polymeric drug delivery system for paclitaxel, employing a novel biodegradable block co-polymer (P), intended to be intravenously administered, capable of improving therapeutic index of the drug and devoid of the adverse effect of an uncontrolled release.

Methods

Paclitaxel loaded nanoparticles (PTX-NPs) were prepared by a modified nanoprecipitation method and emulsification-solvent evaporation method. Our approach involves a focusing on the formulation parameters that can be modified in order to obtain completely customized NPs in terms of size, zeta-potential, drug content and release profile. The biocompatibility and anti-proliferative efficiency of PTX-NPs against glioblastoma cell line were evaluated in vitro by MTS.

Results

All formulations showed spherical nanometric (<200 nm), monodisperse (~0.1), Poly (Ethylene Glycol) (PEG)-coated and negatively charged particles. Selected NPs revealed higher PTX content (up to 24%) in comparison with polyester-based NPs. The release behaviour of PTX from the developed NPs exhibited an approximately first-order profile, without initial burst and characterized by a slow and constant release. Hydrophobic character of the NPs can be set in order to achieve a slower and more controlled release for a prolonged period of time. PTX-NPs were hemocompatible and had significant in vitro anti-tumoral activity against human primary glioblastoma cell line (U-87 MG); cytotoxicity was in time- and drug concentration- dependent manner.

Conclusions

The developed drug delivery system proved to be suitable for intravenous administration. NPs characteristics can be customized to obtain high PTX loaded NPs that can improve therapeutic index and avoid an uncontrolled release.  相似文献   

15.

Rationale

We have recently shown that chronic exposure to 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) of adolescent mice exacerbates dopamine neurotoxicity and neuroinflammatory effects elicited by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the substantia nigra and striatum at adulthood.

Objectives

The present study investigated whether the amplification of MPTP effects by previous treatment with MDMA extends to the limbic and cortical regions and consequently affects cognitive performance.

Methods

Mice received MDMA (10 mg/kg, twice a day/twice a week) for 9 weeks, followed by MPTP (20 mg/kg?×?4 administrations), starting 2 weeks after MDMA discontinuation. Complement type 3 receptor (CD11b) and glial fibrillary acidic protein (GFAP) were evaluated by immunohistochemistry in both the hippocampus and the medial prefrontal cortex (mPFC) to measure microglia and astroglia activation. These neurochemical evaluations were paired with an assessment of cognitive performance by means of the novel object recognition (NOR) and spontaneous alternation tasks.

Results

MPTP administration to MDMA-pretreated mice elicited a stronger activation of CD11b and GFAP in both the hippocampus and the mPFC compared with either substance administered alone. Furthermore, NOR performance was lower in MDMA-pretreated mice administered MPTP compared with mice that received either substance alone.

Conclusions

These results demonstrate that MDMAMPTP negative interactions extend to the limbic and cortical regions and may result in cognitive impairment, providing further evidence that exposure to MDMA may amplify the effects of later neurotoxic insults.  相似文献   

16.
31 topsoil samples were collected by grid method in Xiaodian sewage irrigation area, Taiyuan City, North of China. The concentrations of 16 kinds of polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatograph coupled with mass spectrum. Generally speaking, the distribution order of PAHs in the area is: those with five and six rings > those with four rings > those with two and three rings. Source apportionment shows a significant zonation of the source of PAHs: the civil coal pollution occurred in the north part, the local and far factory pollution happened in the middle area and the mixed pollution sources from coal and wood combustion, automotive emission, presented in the south area. The distribution of PAHs has a definite relationship with the sewage water flow and soil adsorption. The related coefficient between PAHs and physicochemical property showed there was a negative correlation between pH, silt, clay and PAHs while there was a positive correlation between total organic carbon, sand and PAHs.  相似文献   

17.
In this study, we evaluated the effects of Di-(2-ethyhexyl) phthalates (DEHP) on cell cycle. We cultured human endometiral cancer cell lines (ECC-1) and then incubated them for 48 h with 50 μM of DEHP. We perfomed the microarray, the quantitative real-time polymerase chain reaction (qRT-PCR) and the FACS analysis. On microarray results, genes associated with functional classification of cell cycle, oocyst meiosis and progesterone mediated oocyte maturation showed significant changes. Among those changed genes, CCNB1 and CCNB2 are involved in the progesterone-mediated oocyte maturation, and CDC2 (CDK1) involved in the oocyte meiosis. The apoptosis and necrosis were both increased at a concentration of DEHP of < 50 μM, but the apoptosis was decreased at a concentration of DEHP of >100 μM. In conclusion, our results indicate that endometriosis and endometrial cancer, abnormal ovulation might occur after DEHP exposure.  相似文献   

18.

Rationale

Operant self-administration (SA) is an important model of motivation to consume ethanol (EtOH), but low rates of voluntary consumption in rats are thought to necessitate water deprivation and saccharin/sucrose fading for acquisition of responding.

Objectives

Here, we sought to devise an effective model of SA that does not use water deprivation or saccharin/sucrose fading.

Methods

First, we tested if Wistar rats would acquire and maintain SA behavior of 20 % EtOH under two conditions, water deprivation (WD) and non-water deprivation (NWD). Second, we tested the efficacy of our SA procedure by confirming a prior study which found that the NK1 antagonist L822429 specifically blocked stress-induced reinstatement of EtOH seeking but not SA. Finally, we assessed the effect of naltrexone, an FDA-approved medication for alcohol dependence that has been shown to suppress EtOH SA in rodents.

Results

Lever presses (LPs) and rewards were consistent with previous reports that utilized WD and saccharin/sucrose fading. Similar to previous findings, we found that L822429 blocked stress-induced reinstatement but not baseline SA of 20 % EtOH. Moreover, naltrexone dose-dependently decreased alcohol intake and motivation to consume alcohol for rats that are self-administering 20 % EtOH.

Conclusions

Our findings provide a method for voluntary oral EtOH SA in rats that is convenient for experimenters and eliminates the potential confound of sweeteners in EtOH-operant SA studies. Unlike models that use intermittent access to 20 % EtOH, this method does not induce escalation, and based on pharmacological experiments, it appears to be driven by the positive reinforcing effects of EtOH.  相似文献   

19.

Background

Alpha7 and α4β2 nicotinic acetylcholine receptor (nAChR) agonists have been shown to improve cognition in various animal models of cognitive impairment and are of interest as treatments for schizophrenia, Alzheimer’s disease, and other cognitive disorders. Increased release of dopamine (DA), acetylcholine (ACh), glutamate (Glu), and γ-aminobutyric acid (GABA) in cerebral cortex, hippocampus, and nucleus accumbens (NAC) has been suggested to contribute to their beneficial effects on cognition.

Results

Using in vivo microdialysis, we found that EVP-6124 [(R)-7-chloro-N-quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide], a high-affinity α7 nAChR partial agonist, at 0.1 mg/kg, s.c., increased DA efflux in the medial prefrontal cortex (mPFC) and NAC. EVP-6124, 0.1 and 0.3 mg/kg, also increased efflux of ACh in the mPFC but not in the NAC. Similarly, EVP-6124, 0.1 mg/kg, but not 0.03 and 0.3 mg/kg, significantly increased mPFC Glu efflux. Thus, EVP-6124 produced an inverted U-shaped curve for DA and Glu release, as previously reported for other α7 nAChR agonists. The three doses of EVP-6124 did not produce a significant effect on GABA efflux in either region. Pretreatment with the selective α7 nAChR antagonist, methyllycaconitine (MLA, 1.0 mg/kg), significantly blocked cortical DA and Glu efflux induced by EVP-6124 (0.1 mg/kg), suggesting that the effects of EVP-6124 on these neurotransmitters were due to α7 nAChR agonism. MLA only partially blocked the effects of EVP-6124 on ACh efflux in the mPFC.

Conclusion

These results suggest increased cortical DA, ACh, and Glu release, which may contribute to the ability of the α7 nAChR agonist, EVP-6124, to treat cognitive impairment and possibly other dimensions of psychopathology.  相似文献   

20.
Drug design is a process which is driven by technological breakthroughs implying advanced experimental and computational methods. Nowadays, the techniques or the drug design methods are of paramount importance for prediction of biological profile, identification of hits, generation of leads, and moreover to accelerate the optimization of leads into drug candidates. Quantitative structure–activity relationship (QSAR) has served as a valuable predictive tool in the design of pharmaceuticals and agrochemicals. From decades to recent research, QSAR methods have been applied in the development of relationship between properties of chemical substances and their biological activities to obtain a reliable statistical model for prediction of the activities of new chemical entities. Classical QSAR studies include ligands with their binding sites, inhibition constants, rate constants, and other biological end points, in addition molecular to properties such as lipophilicity, polarizability, electronic, and steric properties or with certain structural features. 3D-QSAR has emerged as a natural extension to the classical Hansch and Free–Wilson approaches, which exploit the three-dimensional properties of the ligands to predict their biological activities using robust chemometric techniques such as PLS, G/PLS, and ANN. This paper provides an overview of 1-6 dimension-based developed QSAR methods and their approaches. In particular, we present various dimensional QSAR approaches, such as comparative molecular field analysis (CoMFA), comparative molecular similarity analysis, Topomer CoMFA, self-organizing molecular field analysis, comparative molecule/pseudo receptor interaction analysis, comparative molecular active site analysis, and FLUFF-BALL, 4D-QSAR, and G-QSAR approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号