首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Ojima 《Industrial health》2012,50(3):236-238
Conventionally, the "breathing zone" is defined as the zone within a 0.3 m (or 10 inches) radius of a worker's nose and mouth, and it has been generally assumed that a contaminant in the breathing zone is homogeneous and its concentration is equivalent to the concentration inhaled by the worker. However, several studies have mentioned that the concentration is not uniform in the breathing zone when a worker is close to the contaminant source. In order to examine the spatial variability of contaminant concentrations in a worker's breathing zone, comparative measurements of personal exposure were carried out in a laboratory. In experiment, ethanol vapor was released in front of a model worker (human subject and mockup mannequin) and the vapor concentrations were measured at two different sampling points, at the nose and at the chest, in the breathing zone. Then, the effects of the sampling location and the body temperature on the exposure were observed. The ratios of nose concentration to chest concentration for the human subject and the mannequin were 0-0.2 and 0.12, respectively. The exposure level of the mannequin was about 5.5-9.3 times higher than that of the human subject.  相似文献   

2.
Several factors affecting breathing zone concentration were examined in a paint spray booth by using a tracer gas method. The variables in the study include contaminant momentum, the presence of a flat plate downstream of the worker, the distance between the contaminant source and the body, and the worker's motion. A dramatic reduction in breathing zone concentration was observed when the spray gun emitted contaminants with high momentum. Reductions of 30-50% were observed because of the other variables. The source momentum effect was studied, subsequently, in a wind tunnel by measuring the breathing zone concentration of a mannequin with various flows through jets of different diameter, at varying freestream velocities. A functional relationship was determined between nondimensional breathing zone concentration and contaminant source momentum. This relationship is supported by numerical simulations. The effect of contaminant momentum on the near-wake flow field is discussed in conjunction with results from the numerical simulations.  相似文献   

3.
The presence of airborne pollutants in indoor environments has been associated with occupants' discomfort and/or adverse health effects. This study investigates occupational exposure in relation to indoor air mixing and source location relative to a human body. Experimental and computational methods were used to provide information about the pollutant distribution in the vicinity of the human body for different levels of room air mixing. Study results show that the often used assumption of uniform pollutant distribution in an occupied space is not always appropriate for estimation of inhalation exposure. Results also indicate that an occupant may experience very high acute exposure to airborne pollutants when little air mixing exists in a space and the pollutant source is in the vicinity of the occupant. The buoyancy-driven flow induced by the convective heat transfer from an occupant's body can transport pollutants in the occupant's vicinity to the breathing zone. Specific study results reveal that a source located in the occupant's front chest region makes a relatively large contribution to the breathing zone concentration compared with the other sources in the vicinity of the human body. With the source position in this region, exposure can be nine times greater than that calculated with the uniform mixing assumption. The buoyancy-driven convective plume around a body seems to have a significant influence on pollutant transport and human exposure, especially in the absence of room air mixing.  相似文献   

4.
The transportation of gaseous contaminant from a low and moderate low impulse (momentum<1 m s(-1)) source to the breathing zone was studied in a uniform air stream flow. Results of the effects of the direction and the velocity of principal air flow, convection due to a human body, arm movement of a human being and the type of source on the concentration profiles are presented. Three important results were obtained. Firstly, for a given low and moderate impulse low impulse contaminant source in the near field of a worker, his/her orientation relative to the principal air flow direction is the most important factor in reducing occupational exposure, with an air velocity of about 0.3 m s(-1). Secondly, the effect of convection resulting from body heat on air flow was lower than expected. Thirdly, arm movements influence contaminant dispersion, and should be included when models assessing exposure are developed. The present data can also be used to validate existing computational fluid dynamic (CFD) models.  相似文献   

5.
Breathing zone samples are used to estimate worker exposure to airborne contaminants by collecting air from a vaguely defined zone surrounding the head. This zone is considered to have an airborne chemical concentration equivalent to the concentration breathed by the worker. It has been generally assumed that vapor is uniformly mixed in the breathing zone; therefore, samplers are placed on either lapel or on the chest of the worker. An extensive field investigation in a boat manufacturing plant was conducted where styrene air concentrations were measured by mounting four 3M one-stage diffusion samplers around the worker's breathing zone. Two job classes were studied: the spray gun operators and the rolling and tucking operators. Styrene air concentrations detected at the nose were significantly different than those concentrations detected at the other three locations and represented 90 percent, 84 percent, and 76 percent of the left lapel, right lapel, and chest samplers, respectively. This research revealed that the chest sampler provides a consistent relationship to the concentrations measured at the nose for a given job category. Additionally, this research identified the possible factors which could contribute to breathing zone concentration variations.  相似文献   

6.
Proper air flow and tracer gas distribution or contaminant ventilation are of great importance in biomedical test chambers or industrial workrooms. The focus is on mass transfer in an inhalation test chamber with a breathing subject on a bike exposed to a tracer gas environment (e.g., carbon monoxide). This is an environmentally realistic setup for dosimetry-and-health effect studies, which require controlled, near-uniform pollutant concentrations. However, unmodified test chambers exhibit a strong single vortex in the larger breathing zone, which, depending upon the subject's location, implies possible trace gas depletion during inhalation, foreign particle entrainment, excessive air velocities, and so on. Employing a commercial finite-volume code with user-enhanced Fortran programs, the transient three-dimensional turbulent momentum, mass, and heat transfer equations have been solved and the configurations of a suitable flow redirection device, different man-machine locations, and thermal effects have been analyzed. As a result, the best air flow device configuration and man-machine orientation have been determined to achieve high and consistent trace gas concentrations inhaled by the subject, for example, 96 percent of the CO concentration at the chamber inlet is inhaled by the subject for the optimal scenario.  相似文献   

7.
Tracer gas testing per ANSI/ASHRAE 110-1995 Method of Testing Performance of Laboratory Fume Hoods was used to investigate the role of thermal loading in exceeding laboratory fume hood control levels. Three types of typical laboratory burners (blast, Meeker, and economy) were used to provide a thermal challenge. Heat outputs of between 0 and 61,610 Btu/hr were based on fuel heat capacity (for liquid propane gas) and fuel gas flow rates. Breathing zone concentrations were measured with a MIRAN 1B2 infrared gas analyzer. Also, for each test, the difference between the room and duct temperatures (delta temperature) was measured. Results indicated a linear relationship between heat loads and tracer gas breathing zone concentrations for both Btu/hr and delta temperature. Control levels of 0.1 ppm were exceeded at less than 12,000 Btu/hr. Also, control levels were exceeded at a lower heat load when the tracer gas generation rate was increased. These results indicate that thermal loads in laboratory fume hoods increase the risk of exceeding laboratory fume hood control levels. Some compensatory measures relative to hood configuration and flow rates are recommended for laboratory operations involving heat sources.  相似文献   

8.
To understand the physical mechanisms of the contaminant dispersion and containment leakage during the ventilation process through a laboratory fume hood, the complicated three-dimensional flow patterns and the real-time tracer gas (SF6) leakage were studied via the laser-assisted flow visualization method and the standard/special gas sampling technique, respectively. Through flow visualization, the large-scale vortex structures and boundary layer separations were found around the side poles and doorsill of the hood. In the near-wake region of the manikin, large recirculation zones and wavy flow structures were also identified. When tracer gas concentration measurements were conducted point-by-point across the sash opening, the areas near the doorsill, the lower parts of the side poles, and the sides of the manikin showed significant contaminant leaks. These areas with high contaminant leaks exactly corresponded to where the flow recirculated or separated. However, when the ANSI/ASHRAE 110-1995 protocol was used to measure the concentration of SF6 at the breathing zone of the manikin, no appreciable leakage was detected. It is suggested that a method based on the aerodynamic features and multipoint leakage detections would reflect a more realistic evaluation of overall performance of laboratory fume hood than a single-point sampling method at the manikin's breathing zone.  相似文献   

9.
Ten healthy males, 20-45 years of age, were subjected to measure the non-evaporative heat exchange by using thermal flux transducers at different ambient temperatures, atmospheric pressures, air velosities and body postures. Fifteen thermal flux transducers were mounted on each subject at the same points as Winslow's method (1936) proposed for calculating mean skin temperature. Non-evaporative heat exchange (Q) was computed from 15 heat flux measurements using the same weighting formula of Winslow. Evaporative heat loss (E) was estimated from body weight changes measured on a Potter bed scale. Metabolic heat production (M) was estimated indirectly from the oxygen consumption and carbon dioxide production. Mean body temperature was estimated from mean skin temperature calculated from 15 points and the esophageal temperature. In a wide variation of environmental conditions the summation of body heat storage during the experiment equaled that of the heat that reduced E and Q from M. However, the transducer seemed to overestimate the non-evaporative heat exchange of the body at high ambient temperatures where sweat rate was very high. The above results suggest that thermal flux transducer is a reliable tool in estimating non-evaporative heat exchange under a wide variation of environmental and physical conditions when used with great caution.  相似文献   

10.
In order to improve arc welding work in a small enclosed workspace, numerical simulations were conducted to find the most appropriate welding and ventilation conditions, such as welding currents, hood position and flow rates with no blowhole formation. In the simulations, distributions of airflow vectors and fume concentrations were calculated for two hood opening positions: one faced a welder's breathing zone, the other a contaminant source. As a result it was predicted that a hood opening facing a breathing zone remarkably lowered the fume concentration in the breathing zone compared with that facing a contaminant source. The reliability was confirmed in CO2 arc welding experiments in the enclosed workspace by using a welding robot. In addition, the number of blowholes in welds, examined with x-ray, decreased with the increase in the welding current and with the decrease in the exhaust flow rate. These results showed that the fume concentration near welder's breathing zone and the number of blowholes could be reduced effectively by appropriate selection of the welding current and hood position, and it was confirmed that the numerical simulations were sufficiently useful to predict these appropriate welding conditions.  相似文献   

11.
Time weighted average concentrations of benzene in breathing zone air (measured by diffusive sampling coupled with FID gas chromatography) and concentrations of catechol and quinol in the urine (collected at about 1500 in the second half of a working week and analysed by high performance liquid chromatography) were compared in 152 workers who were exposed to benzene (64 men, 88 women). The concentration of urinary metabolites was also determined in 131 non-exposed subjects (43 men, 88 women). There was a linear relation between the benzene concentrations in the breathing zone and the urinary concentrations of catechol and quinol (with or without correction for urine density) in both sexes. Neither catechol nor quinol concentration was able to separate those exposed to benzene at 10 ppm from those without exposure. The data indicated that when workers were exposed to benzene at 100 ppm about 25% of benzene absorbed was excreted into the urine as phenolic metabolites, of which 13.2%, 1.6%, and 10.2% are phenol, catechol, and quinol, respectively.  相似文献   

12.
Time weighted average concentrations of benzene in breathing zone air (measured by diffusive sampling coupled with FID gas chromatography) and concentrations of catechol and quinol in the urine (collected at about 1500 in the second half of a working week and analysed by high performance liquid chromatography) were compared in 152 workers who were exposed to benzene (64 men, 88 women). The concentration of urinary metabolites was also determined in 131 non-exposed subjects (43 men, 88 women). There was a linear relation between the benzene concentrations in the breathing zone and the urinary concentrations of catechol and quinol (with or without correction for urine density) in both sexes. Neither catechol nor quinol concentration was able to separate those exposed to benzene at 10 ppm from those without exposure. The data indicated that when workers were exposed to benzene at 100 ppm about 25% of benzene absorbed was excreted into the urine as phenolic metabolites, of which 13.2%, 1.6%, and 10.2% are phenol, catechol, and quinol, respectively.  相似文献   

13.
This paper presents a mathematical model to predict breathing-zone concentrations of airborne contaminants generated during compressed air spray painting in cross-flow ventilated booths. The model focuses on characterizing the generation and transport of overspray mist. It extends previous work on conventional spray guns to include exposures generated by HVLP guns. Dimensional analysis and scale model wind-tunnel studies are employed using non-volatile oils, instead of paint, to produce empirical equations for estimating exposure to total mass. Results indicate that a dimensionless breathing zone concentration is a nonlinear function of the ratio of momentum flux of air from the spray gun to the momentum flux of air passing through the projected area of the worker's body. The orientation of the spraying operation within the booth is also very significant. The exposure model requires an estimate of the contaminant generation rate, which is approximated by a simple impactor model. The results represent an initial step in the construction of more realistic models capable of predicting exposure as a mathematical function of the governing parameters.  相似文献   

14.
Effect of water temperature on dermal exposure to chloroform.   总被引:10,自引:2,他引:8       下载免费PDF全文
We have developed and applied a new measurement methodology to investigate dermal absorption of chloroform while bathing. Ten subjects bathed in chlorinated water while breathing pure air through a face mask. Their exhaled breath was delivered to a glow discharge source/ion trap mass spectrometer for continuous real-time measurement of chloroform in the breath. This new method provides abundant data compared to previous discrete time-integrated breath sampling methods. The method is particularly well suited to studying dermal exposure because the full face mask eliminates exposure to contaminated air. Seven of the 10 subjects bathed in water at two or three different temperatures between 30 degrees C and 40 degrees C. Subjects at the highest temperatures exhaled about 30 times more chloroform than the same subjects at the lowest temperatures. This probably results from a decline in blood flow to the skin at the lower temperatures as the body seeks to conserve heat forcing the chloroform to diffuse over a much greater path length before encountering the blood. These results suggest that pharmacokinetic models need to employ temperature-dependent parameters. Two existing models predict quite different times of about 12 min and 29 min for chloroform flux through the stratum corneum to reach equilibrium. At 40 degrees C, the time for the flux to reach a near steady-state value is 6-9 min. Although uptake and decay processes involve several body compartments, the complicating effect of the stratum corneum lag time made it difficult to fit multiexponential curves to the data; however, a single-compartment model gave a satisfactory fit.  相似文献   

15.
During the past two decades, there has been considerable progress in developing particle size-selective criteria for aerosol sampling and exposure assessment that relate more realistically to actual human exposures than previously. An important aspect has been the aspiration efficiency-the 'inhalability'-with which particles enter through the nose and mouth of aerosol-exposed individuals during breathing. Most of the reported experiments to determine inhalability have been conducted in wind tunnels with life-sized, breathing mannequins, for windspeeds from 0.5 m s(-1) and above. A few experiments have been reported for calm air. However, nothing has been reported for the intermediate range from 0.5 m s(-1) downward, and it so happens-as we now know-that this corresponds to most industrial workplaces. The research described in this paper represents a first step toward filling this knowledge gap. It focuses on identifying the features of the airflow near the mannequin at such low windspeeds that might have important influences on the nature of particle transport, and hence on inhalability, and eventually the performances of personal aerosol samplers mounted in the breathing zone. We have carried out flow visualization experiments for the realistic range of windspeeds indicated, investigating specifically the effect of the air jet released into the freestream during expiration and the effect of the upward-moving boundary layer near the body associated with the buoyancy of air in that region as a result of heat received from the warm body. We set out to identify the combinations of conditions-external windspeed, breathing mode (nose versus mouth breathing), breathing rate and body temperature-where such factors need to be taken into account. We developed an experimental system that allowed the visualization of smoke traces, providing very good observation of how the flow was modified as conditions changed. From inspection of a large number of moving pictures, we developed a matrix of regimes-categorized by windspeed and breathing rate-where the effect of the expired air is sufficient to permanently and seriously destabilize the airflow approaching the mannequin. It was found that the effect of body temperature was minimal. Such results will be important in the interpretation of current and future inhalability experiments carried out at realistic low windspeeds.  相似文献   

16.
The phenomenon of boundary layer separation can be an important factor in determining a worker's exposure to toxic airborne pollutants. A conceptual model was developed to understand this phenomenon and to predict the average concentration in the reverse flow region downstream of a worker in a uniform freestream. Subsequently, the assumptions of this model were tested experimentally in wind tunnel studies. On the basis of these results, a revised model is presented and validated by using a tracer gas method. The revised model provides a reasonable estimate of the average concentration in the reverse flow region of the mannequin. Empirical models are presented that relate both the average concentration in the reverse flow region and the breathing zone concentration to the body dimensions and the freestream air velocity. Applications and limitations of the results are discussed.  相似文献   

17.
Computer simulations were used to examine competing exhaust hood configurations for shielded metal arc welding. The welder's breathing zone concentration appears to be an inverse linear function of the computer-predicted hood capture efficiency. Hood aspect ratio, hood flow, and the welder's position relative to the hood all have a significant effect on the breathing zone concentration. The height of the hood above the welding surface showed no significant effect in reducing breathing zone concentration. Further examination of breathing zone concentration as a function of capture efficiency is needed before reliable design methods can be developed using this parameter.  相似文献   

18.
For many years exposure to airborne contaminants has been estimated by air or biological monitoring. In occupational settings, mathematical models increasingly are employed as adjuncts to monitoring, for instance, during process design or in retrospective epidemiological studies. Models can make predictions in a wide variety of scenarios, can be used for rapid screening, and may reduce the need for monitoring in exposure assessment. However, models make simplifying assumptions regarding air flow and contaminant transport. The errors resulting from these assumptions have not been systematically evaluated. Here we compare exposure estimates from the single-zone completely mixed (CM-1), two-zone completely mixed (CM-2), and uniform diffusivity (UD) models with workroom concentration fields predicted by computational fluid dynamics (CFD). The room air flow, concentration fields, and the breathing zone concentration of a stationary worker were computed using Fluent V4.3 for factorial combinations of three source locations, three dilution air flow rates and two emission rate profiles, constant and time-varying. These numerical experiments were used to generate plausible concentration fields, not to simulate exactly the processes in a real workroom. Thus, "error" is defined here as difference between model and CFD predictions. For both constant and time-varying emission sources, exposure estimates depended on receptor and source location. For the constant source case, ventilation rate was shown to be inconsequential to CM-1 model error. CM-1, CM-2, and UD models differed in their agreement with CFD. UD was closest to CFD for estimating concentration in the simulated breathing zone (BZ) near the source, although large errors resulted when the model was applied to the plane of possible breathing zones. CM-1 performed better for this plane but underestimated the near-source BZ exposure. For the near-source BZ location, CM-2 replicated CFD predictions more closely than CM-1 did, but less closely than UD did. Error in CM-1 model estimation of short-term average exposure to a time-varying source was highly dependent on ventilation rate. Error decreased as ventilation rate increased.  相似文献   

19.
Published data on benzene vapor concentrations in work simulation settings were used to examine the predictive ability of a near field/far field vapor dispersion model with an exponentially decreasing vapor emission rate. A given simulation involved two 15-min periods of applying a known volume of benzene-containing liquid to equipment on a worktable in a room with a measured air exchange rate. Replicate personal breathing zone (15-min time-weighted average, TWA) and room area (1-hr TWA) air samples were collected. In our modeling, the benzene vapor concentration in the near field zone (at the worktable) represented the personal breathing zone exposure level, and the benzene vapor concentration in the far field zone represented the room area concentration. Across 10 simulation combinations of two factors (the mass of benzene applied and the room air exchange rate), the mean of the personal breathing zone exposure levels ranged from 0.2 to 9.9 mg m(-3), and the mean of the room area concentrations ranged from 0.05 to 5.05 mg m(-3). Our model provided reasonably accurate estimates of the measured benzene vapor concentrations. Linear regression of the mean measured personal breathing zone exposure versus the predicted near field concentration yielded slope = 0.93 and r(2) = 0.94; the null hypothesis that the true slope equals one was not rejected (p-value = 0.39). Linear regression of the mean measured room area concentration versus the predicted far field concentration yielded slope = 0.90 and r(2) = 0.94; the null hypothesis that the true slope equals one was not rejected (p-value = 0.20). Other statistical tests showed no significant differences between measured and predicted values. In addition, most predicted concentrations fell within an approximate range of one-half to twofold the respective measured concentrations.  相似文献   

20.
Vertical concentration profiles of airborne particulate matter were measured in four different indoor environments- library, coffee room, workshop and undergraduate student hostel- on the University Campus at Sutton Bonington. Measurements were carried out using an electronically-controlled lifting platform carrying a real-time optical particle monitor for sampling air sequentially at different heights within the breathing zone. Data was automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of the various particle size ranges which include inhalable, thoracic, alveolic, PM10 and PM2.5. Vertical concentration profiles measured in these different indoor environments exhibited different characteristics but in almost all cases it was clear that different height groups of the population are exposed to different concentrations of the pollutant. This has implications on setting of air quality standards for the protection of public health. The results indicate that we may have to re-think the whole concept of air quality standards and develop protocols for indoor air quality monitoring and modelling which would take into account the above-mentioned factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号