首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Labyrinthine nerve-evoked monosynaptic excitatory postsynaptic potentials (EPSPs) in second-order vestibular neurons (2°VN) sum with disynaptic inhibitory postsynaptic potentials (IPSPs) that originate from the thickest afferent fibers of the same nerve branch and are mediated by neurons in the ipsilateral vestibular nucleus. Pharmacological properties of the inhibition and the interaction with the afferent excitation were studied by recording monosynaptic responses of phasic and tonic 2°VN in an isolated frog brain after electrical stimulation of individual semicircular canal nerves. Specific transmitter antagonists revealed glycine and GABAA receptor-mediated IPSPs with a disynaptic onset only in phasic but not in tonic 2°VN. Compared with GABAergic IPSPs, glycinergic responses in phasic 2°VN have larger amplitudes and a longer duration and reduce early and late components of the afferent nerve-evoked subthreshold activation and spike discharge. The difference in profile of the disynaptic glycinergic and GABAergic inhibition is compatible with the larger number of glycinergic as opposed to GABAergic terminal-like structures on 2°VN. The increase in monosynaptic excitation after a block of the disynaptic inhibition in phasic 2°VN is in part mediated by a N-methyl-D-aspartate receptor-activated component. Although inhibitory inputs were superimposed on monosynaptic EPSPs in tonic 2°VN as well, the much longer latency of these IPSPs excludes a control by short-latency inhibitory feed-forward side-loops as observed in phasic 2°VN. The differential synaptic organization of the inhibitory control of labyrinthine afferent signals in phasic and tonic 2°VN is consistent with the different intrinsic signal processing modes of the two neuronal types and suggests a co-adaptation of intrinsic membrane properties and emerging network properties.  相似文献   

2.
Second-order vestibular neurons (2 degrees VN) were identified in the isolated frog brain by the presence of monosynaptic excitatory postsynaptic potentials (EPSPs) after separate electrical stimulation of individual vestibular nerve branches. Combinations of one macular and the three semicircular canal nerve branches or combinations of two macular nerve branches were stimulated separately in different sets of experiments. Monosynaptic EPSPs evoked from the utricle or from the lagena converged with monosynaptic EPSPs from one of the three semicircular canal organs in ~30% of 2 degrees VN. Utricular afferent signals converged predominantly with horizontal canal afferent signals (74%), and lagenar afferent signals converged with anterior vertical (63%) or posterior vertical (37%) but not with horizontal canal afferent signals. This convergence pattern correlates with the coactivation of particular combinations of canal and otolith organs during natural head movements. A convergence of afferent saccular and canal signals was restricted to very few 2 degrees VN (3%). In contrast to the considerable number of 2 degrees VN that received an afferent input from the utricle or the lagena as well as from one of the three canal nerves (~30%), smaller numbers of 2 degrees VN (14% of each type of 2 degrees otolith or 2 degrees canal neuron) received an afferent input from only one particular otolith organ or from only one particular semicircular canal organ. Even fewer 2 degrees VN received an afferent input from more than one semicircular canal or from more than one otolith nerve (~7% each). Among 2 degrees VN with afferent inputs from more than one otolith nerve, an afferent saccular nerve input was particularly rare (4-5%). The restricted convergence of afferent saccular inputs with other afferent otolith or canal inputs as well as the termination pattern of saccular afferent fibers are compatible with a substrate vibration sensitivity of this otolith organ in frog. The ascending and/or descending projections of identified 2 degrees VN were determined by the presence of antidromic spikes. 2 degrees VN mediating afferent utricular and/or semicircular canal nerve signals had ascending and/or descending axons. 2 degrees VN mediating afferent lagenar or saccular nerve signals had descending but no ascending axons. The latter result is consistent with the absence of short-latency macular signals on extraocular motoneurons during vertical linear acceleration. Comparison of data from frog and cat demonstrated the presence of a similar organization pattern of maculo- and canal-ocular reflexes in both species.  相似文献   

3.
Head/body motion-related sensory signals are transformed in second-order vestibular neurons (2°VN) into commands for appropriate motor reactions that stabilize gaze and posture during locomotion. In all vertebrates, these neurons form functional subgroups with different membrane properties and response dynamics, compatible with the necessity to process a wide range of motion-related sensory signals. In frog, 2°VN subdivide into two well-defined populations with distinctly different intrinsic membrane properties, discharge dynamics and synaptic response characteristics. Tonic 2°VN form low-pass filters with membrane properties that cause synaptic amplification, whereas phasic 2°VN form band-pass filters that cause shunting of repetitive inputs. The different, yet complementary, filter properties render tonic neurons suitable for integration and phasic neurons for differentiation and event detection. Specific insertion of phasic 2°VN into local vestibular networks of inhibitory interneurons reinforces the functional consequences of the intrinsic membrane properties of this particular cell type with respect to the processing of afferent sensory signals. Thus, the combination of matching intrinsic cellular and emerging network properties generates sets of neuronal elements that form adjustable, frequency-tuned filter components for separate transformation of the various dynamic aspects of head motion-related signals. The overall frequency tuning of central vestibular neurons differs between vertebrates along with variations in species-specific locomotor dynamics, thereby illustrating an ecophysiological plasticity of the involved neuronal elements. Moreover, separation into multiple, dynamically different subtypes at any neuronal level along the vestibulo-motor reflex pathways suggests an organization of head motion-related sensory-motor transformation in parallel, frequency-tuned channels.  相似文献   

4.
Flores A  Soto E  Vega R 《Neuroscience》2001,103(2):457-464
This study was performed using intracellular and multiunit extracellular recording techniques in order to characterize the role of nitric oxide in the afferent synaptic transmission of the vestibular system of the axolotl (Ambystoma tigrinum). Bath application of nitric oxide synthase inhibitors N(G)-nitro-L-arginine (0.01microM to 10microM) and N-nitro-L-arginine methyl ester hydrochloride (0.1microM to 1000microM) elicited a dose-dependent decrease in the basal discharge of the semicircular canal afferent fibers. N(G)-Nitro-L-arginine also diminished the response to mechanical stimuli. Moreover, N(G)-nitro-L-arginine (1microM) produced a hyperpolarization associated with a decrease in the spike discharge and diminished the frequency of the excitatory postsynaptic potentials on afferent fibers recorded intracellularly. Nitric oxide donors were also tested: (i) S-nitroso-N-acetyl-DL-penicillamine (0.1microM to 100microM) increased the basal discharge and the response to mechanical stimuli. At the maximum effective concentration (100microM) this drug affected neither the amplitude nor the frequency of the excitatory postsynaptic potentials. However, it slightly depolarized the afferent neurons and decreased their input resistance. (ii) 3-Morpholino-sydnonimine hydrochloride did not significantly affect the basal discharge or the mechanically evoked peak response of afferent neurons at any of the concentrations used (1microM to 1000microM). However, after 10min of perfusion in the bath, 1microM and 10microM 3-morpholino-sydnonimine hydrochloride significantly modified the baseline of the mechanically evoked response, producing an increase in the mean spike discharge of the afferent fibers. These results indicate that nitric oxide may have a facilitatory role on the basal discharge and on the response to mechanical stimuli of the vestibular afferent fibers. Thus, nitric oxide probably participates in the sensory coding and adaptative changes of vestibular input in normal and pathological conditions.  相似文献   

5.
Spinalized toadfish were held in a lucite chamber and perfused through the mouth with running seawater. Primary vestibular afferents and vestibular efferent axons and somas were studied with glass microelectrodes. Vestibular semicircular canal afferent and efferent axons were visually identified and penetrated with glass microelectrodes. Afferents responded to pulses of injected current with trains of action potentials, whereas efferents responded with only a single spike. This differential response to injected current served to further distinguish these two classes of nerve fibers that share the same canal nerve for part of their course. When current pulses were injected into efferent somadendritic recording sites, cells responded with trains of action potentials similar to those seen in other central nervous system neurons. Semicircular canal afferents were spontaneously active and occupied the same spectrum of regularity as vestibular afferents recorded in other species. Behavioral arousal evoked by lightly touching the fish on the snout or over the eye resembled spontaneous arousal observed in the field and consisted of eye withdrawal, fin erection, and attempted swimming. Efferent vestibular neurons were spontaneously active and increased their frequency of discharge when the fish was behaviorally aroused. Most efferents were briskly activated by behavioral arousal, but the time constant of the decay of their responses was variable ranging from 100 to 600 ms. Not only touch, but multimodal stimuli were capable of increasing the level of spontaneous activity of efferent vestibular neurons. The shortest latency to behavioral activation was 160 ms. Vestibular primary afferents also manifested increase in neuronal activity with behavioral activation. Irregularly discharging afferents were much more responsive than regularly discharging afferents. One rare case of transient inhibition in a regularly discharging afferent is illustrated. Severing the efferent vestibular nerve blocked behavioral activation in vestibular primary afferents. Electrical stimulation of the efferent vestibular nerve produced excitatory postsynaptic potentials (EPSPs) at latencies within the monosynaptic range in vestibular primary afferents. These monosynaptic EPSPs could produce action potentials in primary afferents or could sum with subthreshold depolarizations produced by current passed through the microelectrode to initiate impulses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Central vestibular neurons play an important role in the processing of body motion-related multisensory signals and their transformation into motor commands for gaze and posture control. Over recent years, medial vestibular nucleus (MVN) neurons and to a lesser extent other vestibular neurons have been extensively studied in vivo and in vitro, in a range of species. These studies have begun to reveal how their intrinsic electrophysiological properties may relate to their response patterns, discharge dynamics and computational capabilities. In vitro studies indicate that MVN neurons are of two major subtypes (A and B), which differ in their spike shape and after-hyperpolarizations. This reflects differences in particular K+ conductances present in the two subtypes, which also affect their response dynamics with type A cells having relatively low-frequency dynamics (resembling “tonic” MVN cells in vivo) and type B cells having relatively high-frequency dynamics (resembling “kinetic” cells in vivo). The presence of more than one functional subtype of vestibular neuron seems to be a ubiquitous feature since vestibular neurons in the chick and frog also subdivide into populations with different, analogous electrophysiological properties. The ratio of type A to type B neurons appears to be plastic, and may be determined by the signal processing requirements of the vestibular system, which are species-variant. The membrane properties and discharge pattern of type A and type B MVN neurons develop largely post-natally, through the expression of the underlying ion channel conductances. The membrane properties of MVN neurons show rapid and long-lasting plastic changes after deafferentation (unilateral labyrinthectomy), which may serve to maintain their level of activity and excitability after the loss of afferent inputs.  相似文献   

7.
The lateral vestibular nucleus of the toadfish Opsanus tau was localized by means of axonal iontophoresis of Procion Yellow. The ultrastructure of the lateral vestibular nucleus neurons was then correlated with their electrophysiological properties. The lateral vestibular nucleus consists of neurons of various sizes which are distributed in small clusters over a heavily myelinated neuropil. The perikarya and main dendrites of the large and the small neurons are surrounded by a synaptic bed, which is separated from the neighboring neuropil by a layer of thin astrocytic processes. The synaptic bed contains three main classes of axon terminals, club endings, large and small terminals, the first being quite infrequent. All the large terminals as well as the occasionally observed club endings contain a pure population of rounded synaptic vesicles. In some of the small axon terminals there are also rounded vesicles; however, the majority contain flattened vesicles or a pleomorphic population. These data indicate that the small terminals originate from different afferent sources. The synaptic interfaces of the large boutons and of the club endings bear three types of junctional complexes: attachment plates, gap junctions and active zones. Those showing both gap junctions and active zones were designated as morphologically ‘mixed synapses’. Gap junctions, although in large number, have only been observed at the synaptic interfaces between terminals with rounded vesicles and the perikarya or the dendrite of the lateral vestibular nucleus neurons. Therefore electrotonic coupling would only be possible by way of presynaptic fibers. Some axons observed in the neuropil were found to establish gap junctional complexes with two different dendritec profiles and this observation is in favour of electrotonic coupling by way of presynaptic terminals.Field and intracellular potentials were recorded in the lateral vestibular nucleus. The field potential evoked by stimulation of the vestibular nerve consisted of an early positive-negative wave followed by a slow negativity, and that evoked by spinal cord stimulation was composed of an antidromic potential followed by a slow negative wave. Vestibulo-spinal neurons were identified by their antidromic spikes. In these cells, stimulation of the ipsilateral vestibular nerve evoked an excitatory postsynaptic potential with two components. The short delay of the first component of this excitatory postsynaptic potential and its ability to follow paired stimulation at close intervals without reduction of the second response suggest that it is transmitted electrotonically from primary vestibular afferent fibers. By contrast the latency of the second peak of the vestibular evoked excitatory postsynaptic potential and its sensitivity to high stimulus frequencies are compatible with monosynaptic chemically mediated transmission from primary vestibular afferents. Spinal stimulation evoked graded antidromic depolarizations in vestibulo-spinal neurons. The latency of these potentials was too short to allow for chemical transmission through afferents or recurrent collaterals and suggests electrotonic spread of antidromic activity from neighboring neurons. An important finding is that the graded antidromic depolarizations can initiate spikes; thus coupling between neurons in the lateral vestibular nucleus is sufficiently close that a cell can be excited by activity spread from neighboring cells. Similar graded depolarizations were recorded in identified primary vestibular afferents; their latencies and time course indicate that they were brought about by electrotonic spread of postsynaptic potentials and spikes to the impaled presynaptic fibers; this confirms the morphological evidence that coupling between lateral vestibular nucleus neurons occurs, at least in part, by way of presynaptic vestibular axons. As the spinal stimulus strength was increased, these graded depolarizations became large enough to initiate spikes which presumably propagate to the vestibular receptors. Thus antidromic invasion of the presynaptic terminals may provide negative feedback by preventing their re-excitation at short intervals after a synchronous discharge of an adequate number of postsynaptic cells. Excitatory inputs to the neurons of the lateral vestibular nucleus were identified from the spinal cord and from the contralateral vestibular nerve. Long latency excitatory postsynaptic potentials large enough to excite the cells were recorded following spinal stimulation; the threshold intensity for evoking them was consistently higher than that adequate to generate the graded antidromic depolarizations. Field potentials recorded after stimulation of the contra lateral vestibular nerve consisted of an initial positive negative wave followed by a slow negative wave. the stimulus intensity for evoking these potentials was the same or slightly above the threshold for those evoked in the lateral vestibular nucleus on the stimulated side. Also lateral vestibular nucleus neurons exhibited excitatory postsynaptic potentials large enough to excite the cells following stimulation of the contralateral vestibular nerve. but no inhibitory postsynaptic potentials were detected. This lack of commissural inhibition indicates a qualitative difference between the central organization of these cells in the toadfish and in mammals.The presence of neurons in the lateral vestibular nucleus which send their axons to the labyrinth was confirmed by their heavy staining with Procion Yellow following axonal iontophoresis. In a number of vestibular neurons. abruptly rising spikes were evoked at short latencies after adequate stimulation of the ipsilateral vestibular nerve. Graded stimuli applied to the vestibular nerve evoked graded short latency depolarizations as well as long latency excitatory postsynaptic potentials in these presumed efferent neurons to the labyrinth; the former could indicate electrotonic coupling of the efferent cells or electrotonic transmission from primary afferents, resulting in a short latency feedback loop.From these studies, the synaptic organization of the lateral vestibular nucleus neurons is compared with that of the Mauthner cells of teleosts, and the possibility of a dual mode of transmission, electrical and chemical, by primary vestibular afferents is discussed.  相似文献   

8.
Second-order vestibular neurons of frogs receive converging monosynaptic excitatory and disynaptic excitatory and inhibitory inputs following electrical pulse stimulation of an individual semicircular canal nerve on the ipsilateral side. Here we revealed, in the in vitro frog brain, disynaptic inhibitory postsynaptic potentials (IPSPs) by bath application of antagonists specific for glycine or gamma-aminobutyric acid-A (GABA(A)) receptors. Differences in the response parameters between disynaptic IPSPs and excitatory postsynaptic potentials (EPSPs) suggested that disynaptic IPSPs originated from a more homogeneous subpopulation of thicker vestibular nerve afferent fibers than mono- or disynaptic EPSPs. To investigate a possible size-related organization of these canal-specific, parallel pathways, we combined long-lasting anodal currents of variable intensities with strong cathodal test pulses, to block pulse-evoked responses reversibly in a graded manner according to the size-related sensitivity of vestibular nerve afferent fibers. The anodal current intensity required to block a particular response component was about 15 times lower than the strength of the cathodal test pulse that activated this response component. These large threshold differences were exploited for a selective anodal suppression of the responses from thick vestibular nerve afferent fibers. In fact, response components known to originate exclusively from thick-caliber afferent fibers such as the electrically transmitted monosynaptic EPSP component exhibited the lowest thresholds for cathodal test pulses and were the first to disappear in the presence of small anodal polarization steps. Thresholds for the activation/inactivation of responses and current intensities required for response saturation/blockade were used to assess the fiber spectrum that evoked the different response components. Mono- and disynaptic EPSPs appeared to originate from a broad spectrum of thick and thin vestibular nerve afferent fibers. The spectrum of afferent fibers that activated disynaptic IPSPs on the other hand was more homogeneous and consisted of thick and intermediate fibers. Such a canal-specific and fiber type-related organization of converging inputs of second-order vestibular neurons via feedforward projections was shown for the first time by this study in frogs, but might also prevail in mammals. Similar differences in these feedforward pathways have been proposed earlier in a vestibular side-loop model. Our results are consistent with the basic assumptions of this model and relate to the processing and tuning of dynamic vestibular signals.  相似文献   

9.
There is consensus that muscarinic and nicotinic receptors expressed in vestibular hair cells and afferent neurons are involved in the efferent modulation of the electrical activity of the afferent neurons. However the underlying mechanisms of postsynaptic control in neurons are not well understood. In our work we show that the activation of muscarinic receptors in the vestibular neurons modulates the potassium M-current modifying the activity of afferent neurons.  相似文献   

10.
Activation maps of pre- and postsynaptic field potential components evoked by separate electrical stimulation of utricular, lagenar, and saccular nerve branches in the isolated frog hindbrain were recorded within a stereotactic outline of the vestibular nuclei. Utricular and lagenar nerve-evoked activation maps overlapped strongly in the lateral and descending vestibular nuclei, whereas lagenar amplitudes were greater in the superior vestibular nucleus. In contrast, the saccular nerve-evoked activation map coincided largely with the dorsal nucleus and the adjacent dorsal part of the lateral vestibular nucleus, corroborating a major auditory and lesser vestibular function of the frog saccule. The stereotactic position of individual second-order otolith neurons matched the distribution of the corresponding otolith nerve-evoked activation maps. Furthermore, particular types of second-order utricular and lagenar neurons were clustered with particular types of second-order canal neurons in a topology that anatomically mirrored the preferred convergence pattern of afferent otolith and canal signals in second-order vestibular neurons. Similarities in the spatial organization of functionally equivalent types of second-order otolith and canal neurons between frog and other vertebrates indicated conservation of a common topographical organization principle. However, the absence of a precise afferent sensory topography combined with the presence of spatially segregated groups of particular second-order vestibular neurons suggests that the vestibular circuitry is organized as a premotor map rather than an organotypical sensory map. Moreover, the conserved segmental location of individual vestibular neuronal phenotypes shows linkage of individual components of vestibulomotor pathways with the underlying genetically specified rhombomeric framework.  相似文献   

11.
Individual primary vestibular afferents exhibit spontaneous activity the regularity of which can vary from regular to irregular. Different aspects of vestibular responsiveness have been associated with this dimension of regularity of resting discharge. Isolated rat vestibular ganglion cells (VGCs) showed heterogeneous intrinsic firing properties during sustained membrane depolarization: some neurons exhibited a strong adaptation generating just a single or a few spikes (phasic type), whereas other neurons showed moderate adaptation or tonic firing (tonic type). Tonic discharging VGCs were rare at postnatal days 5–7 and increased up to 60% of neurons during postnatal 2–3 wk. To explore the major factors responsible for the discharge regularity of primary vestibular afferents, we investigated the contribution of K+ channels to the firing properties of isolated rat VGCs. Phasic firing became tonic firing in the presence of 4-aminopyridine or -dendrotoxin, indicating that Kv1 potassium channels control the firing pattern of the phasic VGCs. Tetraethylammonium decreased the number of spikes during step current stimuli in all types. Blockade of Ca2+-activated K+ channels decreased the number of spikes in tonic VGCs. Our results suggest that Kv1 channels are critical both in determining the pattern of spike discharge in rat vestibular ganglion neurons and in their proportional change during maturation.  相似文献   

12.
Summary Relationships between the response patterns of semicircular canal afferents to mechanical stimulation and the morphologies of their peripheral endings were investigated in an isolated preparation of the anterior semicircular canal ampulla of chicken, using a combination of electrical recording with intracellular injections of Lucifer Yellow CH. The hair bundle mechanical stimulus was applied in a diffuse manner by a glass rod vibrating in the nearby bathing medium. Two types of spike discharge patterns and postsynaptic potentials were recorded. One type was found exclusively in the bouton type afferent and demonstrated a phasic increase of firing frequency and transient depolarizing postsynaptic potentials at the beginning of mechanical stimulation. These synaptic potentials were also observed spontaneously and their amplitudes were increased by membrane hyperpolarization. The other type was found exclusively in afferents with calyceal endings and showed a tonic increase of spiking frequency and depolarizing DC postsynaptic potentials with superimposing AC responses at the frequency of the mechanical stimulation. Amplitudes of postsynaptic potentials were increased by hyperpolarization. Hair cells generated depolarizing DC transduction potentials superimposed with AC potentials at frequency of the mechanical stimulation. The spontaneous spike discharging patterns of afferent nerve fibres were classified either as a regular type (CV < 0.10) or as an irregular type (CV > 0.25) on the basis of coefficient of variation (CV) of interspike intervals. The spontaneous firing rate of regular units was higher than that of irregular units. Several membrane characteristics are different between these two types of afferent fibers; irregular units had short membrane time constants and fast spikes associated with clear spike-afterhyperpolarization. These features fit with the fact that irregular units tend to have phasic responses to mechanical stimulation while regular units typically have tonic responses. Irregular units had bouton endings with an average axonal diameter thicker than the regular units which had calix endings.  相似文献   

13.
1. We studied the passive and active electrical properties of the soma membrane of neurons in nodose ganglia removed from cats and rabbits and maintained in vitro. The ganglia were superfused at 37 degrees C with a solution formulated to approximate the extracellular fluid of each species. The solution was buffered to pH 7.34, continuously equilibrated with 95% O2 and 5% CO2, and contained dialyzed calf serum and glucose. We also examined these properties in nodose ganglion neurons in vivo. Intracellular recordings were obtained with glass micropipettes filled with either 3 M KCl or 5 M K acetate. 2. We determined mean values for a variety of passive and active electrophysiologic properties. Values obtained in vitro did not differ significantly from those obtained in vivo. Based on the passive electrical properties of the soma membrane, neurons in the nodose ganglion appear to be a uniform population, despite the different sensory modalities conveyed by the afferent fibers. 3. Cell bodies of neurons generated action potentials in response to impulses in their afferent fibers. Somatic spikes could be evoked by stimulation of either the supranodose or infranodose vagus nerve, and an inflection point could be seen on their rising phase. When the vagus nerve was stimulated at frequencies greater than 10-20 Hz, the generation of somatic spikes often became progressively delayed and then failed completely, leaving a smaller potential (IS spike) which was apparently generated in the initial complex. The afterhyperpolarization was associated only with the somatic spike. 4. Many neurons, both in vitro and in vivo, developed a persistent hyperpolarization when repetitive action potentials occurred in the soma. This hyperpolarization was apparent at frequencies as low as 1-2 Hz, persisted for up to 5 s after the occurrence of the last somatic spike, and sometimes caused failure of somatic spikes to be generated. 5. Neurons in both species differed in their responses to suprathreshold depolarization applied through the recording electrode. Some neurons produced a train of action potentials which lasted for the duration of the depolarizing pulse, the frequency of the train being related to the magnitude of depolarization. The trains were characterized by gradually decreasing spike amplitudes and increasing interspike intervals. Other neurons responded with only a single spike or brief burst of action potentials at the beginning of depolarization to threshold. 6. It is suggested that the adaptive properties of the soma membrane of a peripheral sensory neuron are similar to those of its sensory ending, and that electrophysiological studies of the soma membrane may provide an opportunity to examine mechanisms of receptor adaptation.  相似文献   

14.
Vega R  Soto E 《Neuroscience》2003,118(1):75-85
This study was designed to determine the effects of opiate drugs on the electrical activity of afferent neurons and on the ionic currents of hair cells from semicircular canals. Experiments were done on larval axolotls (Ambystoma tigrinum). The multiunit spike activity of afferent neurons was recorded in the isolated inner ear under both resting conditions and mechanical stimulation. Ionic currents were recorded using voltage clamp of hair cells isolated from the semicircular canal. In the isolated inner-ear preparation, microperfusion of either non-specific opioid receptor antagonist naloxone (10 nM to 1 mM), mu receptor agonist [D-Ala(2), N-Me-Phe(4),Gly(5)-ol]-enkephalin (1 pM to 10 microM), or kappa receptor antagonist nor-binaltorphimine (10 nM to 100 microM) elicited a dose-dependent long-lasting (>5 min) increase of the electrical discharge of afferent neurons. The mu receptor agonist funaltrexamine (1 nM to 100 microM) and the kappa receptor agonist U-50488 (1 nM to 10 microM) diminished the basal spike discharge of vestibular afferents. The delta receptor agonist D-Pen(2)-D-Pen(5)-enkephalin (1 nM to 10 mM) and the antagonist naltrindole (1 nM to 10 mM) were without a significant effect. The only drug that displayed a significant action on hair-cell ionic currents was trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl) benzeneacetamide methanesulfonate (U-50488) that reduced the Ca(2+) current in a dose-dependent fashion. On its own, mu receptor agonist [D-Ala(2), N-Me-Phe(4),Gly(5)-ol]-enkephalin (0.01 and 10 microM) significantly potentiated the response of afferent neurons to the excitatory amino acid agonist (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (0.1 microM), while synaptic transmission was blocked by the use of high-Mg(2+), low-Ca(2+) solutions. Our data indicate that the activity of vestibular afferent neurons may be regulated in a complex fashion by opioid receptors: mu opioid receptors mediating an excitatory, postsynaptic modulatory input to afferent neurons, and kappa receptors mediating an inhibitory, presynaptic input to hair cells.  相似文献   

15.
Summary EPSPs and spikes were recorded at rest and during rotation from single fibres of the posterior nerve in the isolated frog labyrinth. The spike discharge properties of 57 units were examined at rest and during repetitive acceleratory-velocity steps. Forty of these units were subjected to excitatory steps of 5–12 s duration and 45% displayed an evident discharge adaptation. In the non-adapting units, the excitatory response also deviated from that expected on the basis of the torsion-pendulum model and exhibited an exponential time-course in only 36% of the fibres examined. The time constant T2 of the response rising phase was significantly longer than that of the decay (2.5 s versus 1.7 s). When all the 57 units were considered, a linear behaviour was found in 67%. The average gain in these linear units was 1.9 ± 1.4 spikes · s–1/deg · s–2. Adaptive fibres exhibited a lower resting firing rate and a higher gain (3.8 spikes/s and 2.3 spikes · s–1/deg · s–2, respectively) when compared with the non-adapting ones (7.1 spikes/s and 1.5 spikes · s–1/deg · s–2). An undershoot was present in 57% of the units; it increased with acceleration and was not strictly related to adaptation. Fifteen of the 40 units tested with the 5–12 s duration excitatory steps survived repeated inhibitory accelerations of the same duration. In these units a marked response asymmetry was evident since their resting activity could be abolished by accelerations not larger than 10 deg/s2. In 40% of the units inhibited by acceleration the mean response was proportional to the stimulus logarithm, while the others saturated for weak stimulations. A consistent overshoot of the discharge was evident in most of the units (60%). Analysis of the EPSP emission rates demonstrates that even a 10–20% increase in their frequency during excitation results in a two-three fold increase in the corresponding spike frequency. Similarly, a decrease of 15–35% in their numbers during inhibition is sufficient to completely block the spike firing. These findings reveal the high sensitivity of the afferent synapse, spike discharge being modulated by slight modifications in the release of the excitatory transmitter.  相似文献   

16.
To delineate the vestibular afferent innervation in the vestibular efferent nucleus in the brainstem, neurobiotin or biotinylated dextran amine was injected into the superior Scarpa's ganglion of Sprague-Dawley rats. The locations of vestibular efferent neurons in the brainstem were identified by neutral red or choline acetyltransferase staining. Of the three pairs of vestibular efferent nuclei, labeled fibers and bouton-like endings were found only within the dorsolateral vestibular efferent nucleus on the ipsilateral side. Labeled afferent terminals with bouton-like varicosities were observed in the vicinity of cell bodies or dendrites of these efferent neurons. Our findings suggest that vestibular primary afferents may exert direct influence on vestibular efferent neurons, constituting an ipsilateral close-loop arrangement in the central vestibular system.  相似文献   

17.
Gao H  Lu Y 《Neuroscience》2008,153(1):131-143
Onset of auditory brainstem responses in chickens takes place at about embryonic day 11/12 (E11/12). We investigated early development of neuronal properties of chicken nucleus laminaris neurons, the third-order auditory neurons critically involved in sound localization. Whole-cell patch recordings were performed in brainstem slices obtained at E10, E11, E12, E14, E16, and E18. At E18 neurons acquired an adult-like firing pattern in response to prolonged depolarizing current injections, with a single spike at the onset of the current injection followed by a plateau of membrane potential. At earlier ages, however, multiple spikes and/or subthreshold membrane potential oscillations were generated. We observed a >threefold reduction in input resistance from E10 to E18, and progressive changes in excitability properties, such as elevated threshold currents for spike generation, increased spike rising and falling rates, accompanied by reduced spike width and enhanced ability to follow high frequency inputs. Consistent with development of firing properties, the amplitude of voltage-gated potassium channel (Kv) currents increased by approximately threefold from E10 to E18, with a dramatic increase ( approximately ninefold) in the low threshold component. Excitatory postsynaptic potentials (EPSPs) were first recorded at E10, prior to and independent of the cochlear afferent inputs from the auditory nerve to the cochlear nucleus. EPSPs became markedly briefer in duration during the period studied. We conclude that the basic features of the key neuronal properties of NL neurons are well constructed during early development from E10 to E18.  相似文献   

18.
Afferent diversity and the organization of central vestibular pathways   总被引:10,自引:0,他引:10  
This review considers whether the vestibular system includes separate populations of sensory axons innervating individual organs and giving rise to distinct central pathways. There is a variability in the discharge properties of afferents supplying each organ. Discharge regularity provides a marker for this diversity since fibers which differ in this way also differ in many other properties. Postspike recovery of excitability determines the discharge regularity of an afferent and its sensitivity to depolarizing inputs. Sensitivity is small in regularly discharging afferents and large in irregularly discharging afferents. The enhanced sensitivity of irregular fibers explains their larger responses to sensory inputs, to efferent activation, and to externally applied galvanic currents, but not their distinctive response dynamics. Morphophysiological studies show that regular and irregular afferents innervate overlapping regions of the vestibular nuclei. Intracellular recordings of EPSPs reveal that some secondary vestibular neurons receive a restricted input from regular or irregular afferents, but that most such neurons receive a mixed input from both kinds of afferents. Anodal currents delivered to the labyrinth can result in a selective and reversible silencing of irregular afferents. Such a functional ablation can provide estimates of the relative contributions of regular and irregular inputs to a central neuron’s discharge. From such estimates it is concluded that secondary neurons need not resemble their afferent inputs in discharge regularity or response dynamics. Several suggestions are made as to the potentially distinctive contributions made by regular and irregular afferents: (1) Reflecting their response dynamics, regular and irregular afferents could compensate for differences in the dynamic loads of various reflexes or of individual reflexes in different parts of their frequency range; (2) The gating of irregular inputs to secondary VOR neurons could modify the operation of reflexes under varying behavioral circumstances; (3) Two-dimensional sensitivity can arise from the convergence onto secondary neurons of otolith inputs differing in their directional properties and response dynamics; (4) Calyx afferents have relatively low gains when compared with irregular dimorphic afferents. This could serve to expand the stimulus range over which the response of calyx afferents remains linear, while at the same time preserving the other features peculiar to irregular afferents. Among those features are phasic response dynamics and large responses to efferent activation; (5) Because of the convergence of several afferents onto each secondary neuron, information transmission to the latter depends on the gain of individual afferents, but not on their discharge regularity. Received: 22 March 1999 / Accepted: 21 July 1999  相似文献   

19.
Vestibular receptors of the frog, Rana temporaria, were examined for the effect of bath-applied opioid peptide leu-enkephalin, its synthetic analogue dalargin and the specific opiate antagonist naloxone. Multiunit afferent activity of the whole vestibular nerve was recorded in an in vitro preparation. Leu-enkephalin (0.005-100 nM) and dalargin (0.1-100 nM) depress the resting discharge frequency. Naloxone (10 nM-1 microM) antagonizes responses induced by leu-enkephalin and dalargin that suggests a specific action of opioid peptides. Leu-enkephalin and delargin inhibit the excitatory action of L-glutamate. The effects of opioid peptides on L-glutamate-induced responses are unaffected by Co2+ block of transmitter release from hair cells that could speak in favour of the postsynaptic nature of these responses. At the same time, the other possible site of action of opioid peptides, such as efferent system, can not be excluded. The results indicate that opiate receptors are present in hair cells and that the neurotransmitter L-glutamate is involved in opiate action at the peripheral vestibular system of the frog. We suggest that opioid peptides may act as a neuromodulator in this system.  相似文献   

20.
This study is a first step in an attempt to identify the factors which determine and maintain the electrophysiological phenotype(s) of mature neurons of the medial vestibular nucleus (MVN). We cultured MVN microexplants obtained from slices of the brainstem of newborn rats, using a hollow punching needle. The electrophysiological maturation of the neurons was followed by analyzing their responses to 1 s steps of current of increasing amplitude. The maximal number of spikes that was generated in response to such stimuli increased dramatically over time in vitro. However, even after 28 days in vitro, it did not exceed about 60 spikes/s. At this stage of culture, the input-output properties of the spike generator of the MVN neurons were similar to those observed in brainstem slices of newborn rats, but clearly inferior to those of adult neurons which can generate sustained firing up to 150-200 spikes/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号