首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study evaluated the extent to which movement of the lower limbs and pelvis may compensate for the disturbance to posture that results from respiratory movement of the thorax and abdomen. Motion of the neck, pelvis, leg and centre of pressure (COP) were recorded with high resolution in conjunction with electromyographic activity (EMG) of flexor and extensor muscles of the trunk and hip. Respiration was measured from ribcage motion. Subjects breathed quietly, and with increased volume due to hypercapnoea (as a result of breathing with increased dead-space) and a voluntary increase in respiration. Additional recordings were made during apnoea. The relationship between respiration and other parameters was measured from the correlation between data in the frequency domain (i.e. coherence) and from time-locked averages triggered from respiration. In quiet standing, small angular displacements ( approximately 0.5 degrees ) of the trunk and leg were identified in raw data. Correspondingly, there were peaks in the power spectra of the angular movements and EMG. While body movement and EMG were coherent with respiration (>0.5), the coherence between respiration and COP displacement was low (<0.2). The amplitude of movement and coherence was increased when respiration was increased. The present data suggest that the postural disturbance that results from respiratory movement is matched, at least partly, and counteracted by small angular displacements of the lower trunk and lower limbs. Thus, stability in quiet stance is dependent on movement of multiple body segments and control of equilibrium cannot be reduced to control of a single joint.  相似文献   

2.
Cerebellar control of postural scaling and central set in stance   总被引:12,自引:0,他引:12  
  相似文献   

3.
疲劳是很多内科及神经疾患的常见表现,理解这些疾病肌肉疲劳的中枢或者外周起源对制定针对性的肌肉疲劳治疗措施具有重要指导意义。综述肌肉疲劳发生的中枢因素(包括脊髓水平和激素上水平所有可以导致运动神经元兴奋性下降的因素)、外周因素(包括神经肌肉的传播、肌肉动作电位的扩散、兴奋-收缩偶联),并讨论采用直接(最大自主收缩、抽搐力)和间接(抽搐叠加、肌电图、运动皮质刺激)的检测方法评估肌肉疲劳的中枢和外周起源。  相似文献   

4.
Unilateral ablation of the motor area in primates provokes contralateral hemiplegia and asymmetrical posture due to derangement of muscle tone. Such a phenomenon, however, fades away in approximately 35–55 days. Spinal cord transection at low thoracic levels or bilateral lumbo-sacral deafferentation induces reappearance of the acute symptoms in the forelimbs of well compensated animals following the previous cortical lesion. It seems reasonable that the spinal cord plays an important role in the peripheral compensation via afferent impulses.  相似文献   

5.
To compare the effectiveness of the 'repositioning' Epley maneuver and the 'liberatory' Semont maneuver in the treatment of benign paroxysmal positional vertigo (BPPV) of the posterior semicircular canal, a prospective study was performed, with 3 months of followup. A consecutive sample of 100 patients was included in two groups (age-and-sex matched) with a similar number of patients with idiopathic BPPV in each group. Group I was treated using the 'repositioning' maneuver and group II, the 'liberatory' maneuver. At weeks 1, 4, and 12 during the study, the proportion of patients without positional nistagmus was identified, and patients gave an evaluation of their subjective improvement (as a percentage). When positional nystagmus was evident, the corresponding maneuver was used again. Sixty percent of the patients were without nystagmus after the single use of any of the maneuvers. At the end of the study, more than 90% of patients were without nystagmus, with a 90% median value of subjective improvement. Patients with idiopathic BPPV showed a similar response to treatment as patients with BPPV associated to other disorders. We conclude that both maneuvers are effective for the treatment of BPPV of the posterior semicircular canal.  相似文献   

6.
This study evaluated the degree to which the disturbance to posture from respiration is compensated for in healthy normals and whether this is different in people with recurrent low back pain (LBP), and to compare the changes when respiratory demand is increased. Angular displacement of the lumbar spine and hips, and motion of the centre of pressure (COP), were recorded with high resolution and respiratory phase was recorded from ribcage motion. With subjects standing in a relaxed posture, recordings were made during quiet breathing, while breathing with increased dead-space to induce hypercapnoea, and while subjects voluntarily increased their respiration to match ribcage expansion that was induced in the hypercapnoea condition. The relationship between respiration and the movement parameters was measured from the coherence between breathing and COP and angular motion at the frequency of respiration, and from averages triggered from the respiratory data. Small angular changes in the lumbopelvic and hip angles were evident at the frequency of respiration in both groups. However, in quiet standing, the LBP subjects had a greater displacement of their COP that was associated with respiration than the control subjects. The LBP group had a trend for less hip motion. There were no changes in the movement parameters when respiratory demand increased involuntarily via hypercapnoea, but when respiration increased voluntarily, the amplitude of motion and the displacement of the COP increased in both groups. The present data suggest that the postural compensation to respiration counteracts at least part of the disturbance to posture caused by respiration and that this compensation may be less effective in people with LBP.  相似文献   

7.
8.
A key finding of human balance experiments has been that the integration of sensory information utilized for postural control appears to be dynamically regulated to adapt to changing environmental conditions and the available sensory information, a process referred to as “sensory re-weighting.” We propose a postural control model that includes automatic sensory re-weighting. This model is an adaptation of a previously reported model of sensory feedback that included manual sensory re-weighting. The new model achieves sensory re-weighting that is physiologically plausible and readily implemented. Model simulations are compared to previously reported experimental results to demonstrate the automated sensory re-weighting strategy of the modified model. On the whole, the postural sway time series generated by the model with automatic sensory re-weighting show good agreement with experimental data, and are capable of producing patterns similar to those observed experimentally.  相似文献   

9.
Anthropological and biomechanical research suggests that the human foot evolved a unique design for propulsion and support. In theory, the arch and toes must play an important role, however, many postural studies tend to focus on the simple hinge action of the ankle joint. To investigate further the role of foot anatomy and sensorimotor control of posture, we quantified the deformation of the foot arch and studied the effects of local perturbations applied to the toes (TOE) or 1st/2nd metatarsals (MT) while standing. In sitting position, loading and lifting a 10-kg weight on the knee respectively lowered and raised the foot arch between 1 and 1.5 mm. Less than 50% of this change could be accounted for by plantar surface skin compression. During quiet standing, the foot arch probe and shin sway revealed a significant correlation, which shows that as the tibia tilts forward, the foot arch flattens and vice versa. During TOE and MT perturbations (a 2- to 6-mm upward shift of an appropriate part of the foot at 2.5 mm/s), electromyogram (EMG) measures of the tibialis anterior and gastrocnemius revealed notable changes, and the root-mean-square (RMS) variability of shin sway increased significantly, these increments being greater in the MT condition. The slow return of RMS to baseline level (>30 s) suggested that a very small perturbation changes the surface reference frame, which then takes time to reestablish. These findings show that rather than serving as a rigid base of support, the foot is compliant, in an active state, and sensitive to minute deformations. In conclusion, the architecture and physiology of the foot appear to contribute to the task of bipedal postural control with great sensitivity.  相似文献   

10.
We studied the influence of a dental occlusion perturbation on postural control. The tests were performed in three dental occlusion conditions: (Rest Position: no dental contact, Maximal Intercuspal Occlusion: maximal dental contact, and Thwarted Laterality Occlusion: simulation of a dental malocclusion) and four postural conditions: static (stable platform) and dynamic (unstable platform), with eyes open and eyes closed. A decay of postural control was noted between the Rest Position and Thwarted Laterality Occlusion conditions with regard to average speed and power indexes in dynamic conditions and with eyes closed. However, the head position and stabilization were not different from those in the other experimental conditions, which means that the same functional goal was reached with an increase in the total energetic cost. This work shows that dental occlusion differently affects postural control, depending on the static or dynamic conditions. Indeed, dental occlusion impaired postural control only in dynamic postural conditions and in absence of visual cues. The sensory information linked to the dental occlusion comes into effect only during difficult postural tasks and its importance grows as the other sensory cues become scarce.  相似文献   

11.
12.
Sensorimotor integration in human postural control   总被引:34,自引:0,他引:34  
It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an increase in stiffness should be accompanied by a corresponding increase in damping. Increased damping was achieved primarily by decreasing the apparent time delay of feedback control rather than by changing the damping coefficient (i.e., corrective torque related to body-sway velocity). In normal subjects, stiffness and damping were highly correlated with body mass and moment of inertia, with stiffness always about 1/3 larger than necessary to resist the destabilizing torque due to gravity. The stiffness parameter in some VL subjects was larger compared with normal subjects, suggesting that they may use increased stiffness to help compensate for their loss. Overall results show that the simple act of standing quietly depends on a remarkably complex sensorimotor control system.  相似文献   

13.
People are good at telling the direction of a moving tactile stimulus and this capacity provides a sensitive clinical test of somatosensory disturbances. Tactile directional sensitivity depends on two different kinds of somatosensory information, i.e. spatiotemporal information and information about friction-induced changes in skin stretch. The objective of this study was to compare the relative contribution to postural control of these two types of information for both glabrous and hairy skin. Postural sway amplitudes and sway paths were recorded, with or without access to tactile and/or visual stabilizing stimuli. Subjects were standing on two types of surface, either solid metal or 50 mm foam plastic. Two types of stimulus were used to generate sway-related tactile information. One was a thin air-stream that was used to assess the contribution by spatiotemporal information, and the second was a narrow steel rod that was glued to the skin to assess the contribution by skin-stretch information. The stimuli were applied to the hairy skin of the forearm and to the glabrous skin of the fingertip. In addition, we studied the ability to tell the direction of movement of an air-stream stimulus on glabrous and hairy skin. The air-stream caused significant sway reductions when applied to glabrous, but not hairy skin. The weak effect on hairy skin reflected the perceptually poor directional sensitivity for the air-stream stimulus in this cutaneous area. In contrast, the glued rod reduced sway when applied to both glabrous and hairy skin reflecting the tactile afferents high sensitivity to skin stretch in these areas. Both types of tactile stimulus reduced sway amplitudes more than sway paths for both hairy and glabrous skin. The visual cue, on the other hand, tended to reduce sway paths more than amplitudes. The two types of tactile receptive surface seem to influence postural control in the same manner, despite anatomical and physiological differences. The results invite speculation that patients with poor directional sensitivity might have reduced postural stability compared with healthy individuals.  相似文献   

14.
Gicerin is an integral membrane glycoprotein which mediates cell-cell and cell-extracellular matrix (ECM) interactions in the nervous system. We studied gicerin expression in the hypoglossal nucleus post transection using in situ hybridization and immunocytochemistry. We found that hypoglossal nerve injury resulted in a significant increase in gicerin expression. Its expression levels reached peak values in reactive astrocytes surrounding axotomized motoneurons of the ipsilateral hypoglossal nucleus 14 days after hypoglossal nerve injury. The results indicate that gicerin is up-regulated during nerve regeneration, suggesting that gicerin expressed in the reactive astrocytes might be involved in the processes of nerve regeneration.  相似文献   

15.
Orbital microgravity represents a unique environment, which allows the isolation of variables assumed to be involved in the mechanism of body positioning in space. In this context, the alignment of the trunk axis along allocentric references and the positioning of the body center of mass inside the supporting base compete for the role of the primary-controlled variable when assuming erect posture. This paper reports the quantitative evaluation of the postural strategies exhibited by two subjects with feet fixed to the floor of the space module along a 4-month period of exposure to microgravity. With respect to previous findings in parabolic flights and short term space missions, the analysis focused on long-term process of sensorimotor adaptation to weightlessness. Results show that while trunk-axis orientation is preserved and used as a stable postural frame of reference, the positioning of the body center of mass appears to be significantly biased backward and turns out to be involved in a long-term process of adaptation throughout the entire flight towards the re-emergence of a typically terrestrial postural regulation compatible with equilibrium. Received: 30 July 1998 / Accepted: 30 April 1999  相似文献   

16.
The interaction of localized central and superficial peripheral thermal stimulation was studied in rats using diathermic warming of different brain areas controlling postural extension, locomotion, and grooming and a thermal floor warmed from thermally neutral 26.5 to 33.5 or 40.5°C, which induced locomotion and grooming. When behaviors were elicited by both central and superficial stimuli, combined stimuli were additive (activity) or partially additive subject to a ceiling (grooming). When behaviors were elicited by only one (or predominantly one) of two stimuli, combinations of the stimuli evidenced inhibition (grooming), multiplicative summation (activity), or mixtures of facilitation at low intensities and inhibition at high intensities (extension). Behaviors not elicited in significant amounts by either stimulus did not increase when both were combined (extension). It was concluded that the varied influences on thermoregulatory behaviors exerted by superficial and central thermosensors acting separately and in combination can largely explain the differences in behavioral response patterns induced by various thermal stress conditions that distribute heat differently between the surface and core of the body.  相似文献   

17.
Influence of central set on human postural responses   总被引:16,自引:0,他引:16  
1. The effect of central set on automatic postural responses was studied in humans exposed to horizontal support-surface perturbations causing forward sway. Central set was varied by providing subjects with prior experience of postural stimulus velocities or amplitudes under 1) serial and random conditions, 2) expected and unexpected conditions, and 3) practiced and unpracticed conditions. In particular, the influence of central-set conditions was examined on the pattern and magnitude of six leg and trunk electromyograph (EMG) activations and associated ankle torque responses to postural perturbations with identical stimulus parameters. 2. The scaling of initial agonist integrated EMG (IEMG) and torque responses to postural perturbation amplitude disappeared when perturbation amplitudes were randomized. This finding suggests that the initial magnitude of postural responses were centrally set to anticipated postural perturbation amplitudes based on sequential experience with the stimulus. 3. Expectation of postural stimulus amplitude had a significant effect on initial torque responses; subjects overresponded when a larger perturbation was expected and underresponded when a smaller perturbation was expected. Expectation of postural stimulus velocity had a smaller effect on initial torque responses, and subjects consistently overresponded when the velocity of the perturbation was unexpected. This difference in amplitude and velocity expectation may be because of the capacity to encode stimulus velocity, but not amplitude information, into the earliest postural responses of the current trial. The relative strength of amplitude and velocity central-set effects varied widely with individual subjects. 4. Central-set conditions did not affect initial EMG response latencies (100 +/- 20 ms, mean +/- SD) or the relative onset of proximal and distal agonists and antagonists. Unexpected or unpracticed stimulus amplitudes, however, were associated with significant late activation of ankle antagonist, tibialis. Thus errors in initial response magnitude because of central-set effects appear to be partially corrected by reciprocal antagonist activity. Agonist IEMG, however, did not always reflect significant changes in torque responses with central-set conditions. 5. Expectation of postural stimulus amplitude and velocity had two different types of effects on the magnitudes of postural responses: 1) a directionally specific, central-set effect consisting of either increased or decreased responses, depending on expectation of stimulus amplitude; and 2) a nonspecific enhanced response to novel stimulus velocities with a gradual reduction when a velocity was presented repeatedly. Two different neural mechanisms are proposed for these two adaptive effects. 6. Reduction of postural response magnitude and antagonist activity during practice may be partially explained by adaptive mechanisms based on expectation because of prior experience with stimulus velocity and amp  相似文献   

18.
Past research has demonstrated that both peripheral and central vision play an important role in the control of movement direction. However, it has been unclear whether the benefits of these sources of information are due to adjustments in the limb trajectory during movement execution (i.e., online) or modification in motor commands prior to movement initiation (i.e., offline). In the present paper, we analyzed the variability in limb trajectories in a directional aiming task to examine the relative contributions of peripheral and central vision in both the planning and execution of movements. The point of gaze was manipulated to vary where in the limb trajectory information was gained from central and peripheral vision. Analysis of the variability in directional error at various stages of the movement revealed that participants utilized information from early in the trajectory during movement execution when it appeared in both peripheral and central visual fields. Information from late in the trajectory was used offline to improve the programming of subsequent movements regardless of where this information was available in the visual field.  相似文献   

19.
Vestibular signals are known to have an important role in stance under specific conditions. Potentially these effects could be modulated by vestibular reflexes or by voluntary responses to perceived vestibular signals. Our preliminary aim was to confirm that vestibulospinal reflexes change in parallel with sway under different postural conditions, and then to determine whether any relationship was present between these reflexes and body sway within fixed postural conditions. Sixteen subjects (eight male, eight female) were tested in conditions assessing the effects of vision (eyes open or closed), support surface (firm or compliant), external support (with or without) and stance width (feet apart or together). Sway (centre of pressure) in the anteroposterior (AP) and mediolateral planes was measured using a force platform. A subgroup of 11 subjects (five male, six female) underwent testing to measure short (SL) and medium latency (ML) reflexes from soleus. Bipolar, transmastoid galvanic stimulation (1 mA, 200 ms) was administered while subjects stood in the most unstable of our conditions (eyes closed, compliant surface and feet together). In the final part, to assess possible perceptual contributions to body sway, short duration AP sway levels were measured and expressed in angular terms (sway in mrad, velocity in mrad s–1) in the 11 subjects for both our baseline (eyes open, firm surface and feet apart) and most unstable conditions. Average sway levels increased more than seven-fold between conditions and had significant, positive correlations with reported changes in mean vestibulospinal reflexes under similar conditions (overall r =0.75, P <0.001). However, the SL reflex for the subgroup of 11 subjects had a significant negative correlation ( r =–0.71; P =0.014) with the degree of AP sway in the condition with maximum reliance on vestibular inputs (eyes closed, compliant surface, and feet together). Under baseline conditions, 5/125 (4%) of the short-term AP sway displacements were above the threshold previously reported for the detection of imposed sway. In the unstable condition, when sway was increased, 43/138 (31%) of the short-term AP sway movements were above the threshold for perception of imposed body sway based on vestibular signals. Our results confirm that vestibulospinal reflexes appear to be acutely facilitated as body sway increases. For the most unstable condition, when non-vestibular information was absent or attenuated, subjects with larger SL reflexes had less AP sway, suggesting that the SL reflex acted to attenuate sway. Under the same condition, short duration sway levels increased such that 31% were above the previously published threshold for detection using vestibular afferents. We conclude that both vestibular reflexes and perceptual signals appear to have a specific role in the maintenance of upright stance, under conditions in which other sources of postural information are attenuated or absent.  相似文献   

20.
Summary EMG responses to toe-up tilt perturbations on a movable platform system were analysed in 86 children between the age of 12 months and 13 years. To assess the relative contribution of peripheral and central nerve conduction properties, a concomitant recording of the fastest efferent pathways in the central and peripheral motor system was made using non-invasive transcranial magnetic stimulation of motor cortex and peripheral nerve roots. This allowed the determination of the fastest downstream efferent connection times from motor cortex to lumbar motor neuron pools and to measure the fastest efferent conduction from these motor neuron pools to effector muscles in the lower leg. The sequence observed for stance stabilizing EMG responses was similar to that obtained in earlier studies with short latency (SL) and middle latency (ML) components occurring in the stretched triceps surae muscle and long latency (LL) responses occurring in the non-stretched tibialis anterior muscle. Homologous responses were also obtained in upper leg muscles, being recruited consistently later than those in lower leg muscles across all age groups. In the short latency range two different SL1- and SL2-responses were obtained in children of all age groups as well as in adult controls. Both the SL1- and the SL2-responses showed a flat developmental profile, reaching adult values between 20 and 30 months of age which correlated with that of the fastest efferents from lumbar motor neuron pools to leg muscles, i.e. the final motor path. ML-responses showed a steeper developmental profile. The LL-responses in TA muscle showed an even more prolonged maturational profile which fitted well with the development of central conduction times between motor cortex and the spinal motor neuron pools. The sum of the fastest possible afferent conduction times as estimated from somatosensory evoked potentials, and the fastest downstream efferent conduction times from motor cortex to effector muscles was smaller than the onset latencies of LL-responses. The resulting transcerebral processing time exceeded the sum of the fastest up- and downstream conduction times by up to 70 ms. This suggests a prolonged transcerebral processing loop for the proprioceptive input to LL-responses rather than a transcortical loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号