首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Deep brain stimulation (DBS) of subcallosal cingulate white matter (SCC) may be an effective approach for treatment-resistant depression (TRD) that otherwise fails to respond to more conventional therapies, but DBS is invasive, costly, and has potential for adverse effects. Therefore, it is important to identify potential biomarkers for predicting antidepressant response before intervention. Resting-state EEG was recorded from 12 TRD patients at pre-treatment baseline, after 4 weeks SCC DBS, and after 24 weeks SCC DBS. Lower frontal theta cordance (FTC) at baseline (and higher FTC after 4 weeks) predicted lower depression severity scores after 24 weeks. Greater FTC increases (baseline-4 weeks) predicted greater decreases in depression severity scores subsequently (4-24 weeks) and over the course of the study (baseline-24 weeks). Predictive relationships were topographically specific to theta cordance for frontal electrodes. Thus, results from this pilot study suggest that baseline FTC and changes early in treatment each have utility as biomarkers for predicting 6-month clinical response to SCC DBS for TRD.  相似文献   

2.

Background

To date, antidepressant drugs show limited efficacy, leaving a large number of patients experiencing severe and persistent symptoms of major depression. Previous open-label clinical trials have reported significant sustained improvements with deep brain stimulation (DBS) of the subcallosal cingulate gyrus (SCG) in patients with severe, chronic treatment-resistant depression (TRD). This study aimed to confirm the efficacy and measure the impact of discontinuation of the electrical stimulation.

Methods

We conducted a 6-month double-blind, randomized, sham-controlled crossover study in implanted patients with previous severe TRD who experienced full remission after chronic stimulation. After more than 3 months of stable remission, patients were randomly assigned to 2 treatment arms: the ON–OFF arm, which involved active electrode stimulation for 3 months followed by sham stimulation for 3 months, and the OFF–ON arm, which involved sham stimulation for 3 months followed by active stimulation for 3 months. The primary outcome measure was the difference in the 17-item Hamilton Rating Scale for Depression (HAMD-17) total score between sham and active stimulation.

Results

We enrolled 5 patients in our trial. A Friedman repeated-measures analysis of variance revealed a significant effect of treatment (χ21 = 5.0, p = 0.025) in patients with higher depression scores during sham stimulation. At the end of active stimulation, depression was remitted in 4 of 5 patients and none of them had experienced a relapse, whereas at the end of sham stimulation, 2 patients remained in remission, 2 relapsed and 1 showed a progressive worsening without reaching relapse criteria.

Limitations

The small sample size limited the statistical power and external validity.

Conclusion

These preliminary findings indicate that DBS of the SCG is an effective and safe treatment for severe forms of TRD and that continuous electrical stimulation is required to maintain therapeutic effects.  相似文献   

3.
4.

Background

Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) is an emerging experimental therapy for treatment-resistant depression. New developments in SCC DBS surgical targeting are focused on identifying specific axonal pathways for stimulation that are estimated from preoperatively collected diffusion-weighted imaging (DWI) data. However, brain shift induced by opening burr holes in the skull may alter the position of the target pathways.

Objectives

Quantify the effect of electrode location deviations on tractographic representations for stimulating the target pathways using longitudinal clinical imaging datasets.

Methods

Preoperative MRI and DWI data (planned) were coregistered with postoperative MRI (1 day, near-term) and CT (3 weeks, long-term) data. Brain shift was measured with anatomical control points. Electrode models corresponding to the planned, near-term, and long-term locations were defined in each hemisphere of 15 patients. Tractography analyses were performed using estimated stimulation volumes as seeds centered on the different electrode positions.

Results

Mean brain shift of 2.2 mm was observed in the near-term for the frontal pole, which resolved in the long-term. However, electrode displacements from the planned stereotactic target location were observed in the anterior-superior direction in both the near-term (mean left electrode shift: 0.43 mm, mean right electrode shift: 0.99 mm) and long-term (mean left electrode shift: 1.02 mm, mean right electrode shift: 1.47 mm). DBS electrodes implanted in the right hemisphere (second-side operated) were more displaced from the plan than those in the left hemisphere. These displacements resulted in 3.6% decrease in pathway activation between the electrode and the ventral striatum, but 2.7% increase in the frontal pole connection, compared to the plan. Remitters from six-month chronic stimulation had less variance in pathway activation patterns than the non-remitters.

Conclusions

Brain shift is an important concern for SCC DBS surgical targeting and can impact connectomic analyses.  相似文献   

5.
《Brain stimulation》2020,13(4):1094-1101
BackgroundDeep brain stimulation (DBS) of subcallosal cingulate cortex (SCC) is a promising investigational therapy for treatment-resistant depression (TRD). However, outcomes vary, likely due to suboptimal DBS placement. Ideal placement is proposed to stimulate 4 SCC white matter bundles; however, no quantitative data have linked activation of these target tracts to response.ObjectiveHere we used the volume of tissue activated (VTA) and probabilistic diffusion tensor imaging (DTI) to quantify tract activation relating to response.MethodsDTI was performed in 19 TRD patients who received SCC-DBS. We defined clinical response as >48% reduction from baseline in the Hamilton Depression Rating Scale. Bilateral VTAs were generated based on subject-specific stimulation parameters. Patient-specific tract maps emanating from the VTAs were calculated using whole-brain probabilistic DTI. The four target tracts were isolated using tract-specific quantification and examined for overlap with DBS activated tissue.ResultsMedial frontal and temporal projections were stimulated in all responders at 6 and 12 months. Individual tract-based generalized linear mixed model analysis revealed a significant tract-by-response interaction at both 6 (F(1,135) = 3.828, p = 0.001) and 12 (F(1,135) = 5.688, p < 0.001) months, with post hoc tests revealing a response-related increase in cingulum activation at 6 months (t(135) = 2.418, p = 0.017) and decrease in forceps minor activation at 12 months (t(135) = -2.802, p = 0.006).ConclusionsA wider profile of white matter tracts, particularly to the medial frontal, was associated with DBS response. Cingulum bundle stimulation may promote early response and excess stimulation of the forceps minor might be detrimental. Our work supports prospective patient-specific targeting to inform personalized DBS.  相似文献   

6.
Objectives. Subcallosal cingulate (SCC) deep brain stimulation (DBS) is a promising experimental treatment for treatment-resistant depression (TRD). Given the role of brain-derived neurotrophic factor (BDNF) in neuroplasticity and antidepressant efficacy, we examined the effect of SCC-DBS on serum BDNF in TRD. Methods. Four patients with TRD underwent SCC-DBS treatment. Following a double-blind stimulus optimization phase of 3 months, patients received continuous stimulation in an open label fashion for 6 months. Clinical improvement in depressive symptoms was evaluated bi-weekly for 6 months using the Hamilton Depression Rating Scale (HDRS). Mature serum BDNF levels were measured before and 9–12 months after surgery. Results. Three patients responded to SCC-DBS: two showed full clinical response (50% reduction in HDRS scores) and one had partial response (35% reduction in HDRS scores) at the clinical endpoint. Interestingly, all four patients showed reduction in serum BDNF concentration from pre-DBS baseline. Conclusions. SCC-DBS for TRD may be associated with decreased levels of serum BDNF. Longitudinal studies with multiple measurements in a larger sample are required to determine the role of BDNF as a biomarker of SCC-DBS antidepressant efficacy.  相似文献   

7.
8.

Background

Studies are increasingly investigating the therapeutic effects of deep brain stimulation (DBS) applied to a variety of brain regions in the treatment of patients with highly treatment refractory depression. Limited research to date has investigated the therapeutic potential of DBS applied to the Bed Nucleus Of Stria Terminalis (BNST).

Objective

The aim of this study was to explore the therapeutic potential of DBS applied to the BNST.

Method

Five patients with highly treatment resistant depression underwent DBS to the BNST in an open label case series design.

Results

BNST DBS resulted in sustained remission of depression in two of the five patients, provided substantial therapeutic improvement two further patients, and had minimal antidepressant effect for the final patient. There were no operative complications and stimulation related side effects were limited and reversible with adjustment of stimulation. However, the time to achieve and complexity of programming required to achieve optimal therapeutic outcomes varied substantially between patients.

Conclusion

DBS applied to the BNST as therapeutic potential in patients with highly refractory depression and warrants exploration in larger clinical studies.  相似文献   

9.
10.
《Brain stimulation》2021,14(5):1226-1233
ObjectiveDeep brain stimulation (DBS) has been used as a treatment of last resort for treatment-resistant depression (TRD) for more than a decade. Many DBS targets have been proposed and tested clinically, but the underlying circuit mechanisms remain unclear. Uncovering white matter tracts (WMT) activated by DBS targets may provide crucial information about the circuit substrates mediating DBS efficacy in ameliorating TRD.MethodsWe performed probabilistic tractography using diffusion magnetic resonance imaging datas from 100 healthy volunteers in Human Connectome Project datasets to analyze the structural connectivity patterns of stimulation targeting currently-used DBS target for TRD. We generated mean and binary fiber distribution maps and calculated the numbers of WMT streamlines in the dataset.ResultsProbabilistic tracking results revealed that activation of distinct DBS targets demonstrated modulation of overlapping but considerably distinct pathways. DBS targets were categorized into 4 groups: Cortical, Striatal, Thalamic, and Medial Forebrain Bundle according to their main modulated WMT and brain areas. Our data also revealed that Brodmann area 10 and amygdala are hub structures that are associated with all DBS targets.ConclusionsOur results together suggest that the distinct mechanism of DBS targets implies individualized target selection and formulation in the future of DBS treatment for TRD. The modulation of Brodmann area 10 and amygdala may be critical for the efficacy of DBS-mediated treatment of TRD.  相似文献   

11.
Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) is an emerging experimental therapy for treatment‐resistant depression. New developments in SCC DBS surgical targeting are focused on identifying specific axonal pathways for stimulation that are estimated from patient‐specific computational models. This connectomic‐based biophysical modeling strategy has proven successful in improving the clinical response to SCC DBS therapy, but the DBS models used to date have been relatively simplistic, limiting the precision of the pathway activation estimates. Therefore, we used the most detailed patient‐specific foundation for DBS modeling currently available (i.e., field‐cable modeling) to evaluate SCC DBS in our most recent cohort of six subjects, all of which were responders to the therapy. We quantified activation of four major pathways in the SCC region: forceps minor (FM), cingulum bundle (CB), uncinate fasciculus (UF), and subcortical connections between the frontal pole and the thalamus or ventral striatum (FP). We then used the percentage of activated axons in each pathway as regressors in a linear model to predict the time it took patients to reach a stable response, or TSR. Our analysis suggests that stimulation of the left and right CBs, as well as FM are the most likely therapeutic targets for SCC DBS. In addition, the right CB alone predicted 84% of the variation in the TSR, and the correlation was positive, suggesting that activation of the right CB beyond a critical percentage may actually protract the recovery process.  相似文献   

12.
13.
14.
European Archives of Psychiatry and Clinical Neuroscience - Accelerated repetitive transcranial magnetic stimulation (rTMS) protocols are being increasingly studied because of their potential to...  相似文献   

15.
近年来诸多研究表明深部脑刺激(DBS)对难治性抑郁症存在潜在疗效,本文对国际上开展的DBS技术治疗难治性抑郁症的研究进展进行综述,以期探索该技术的治疗机制、作用靶点及临床疗效,总结当前DBS治疗难治性抑郁症的局限性,并预测未来DBS治疗难治性抑郁症的发展方向,为国内开展相关实验提供参考.  相似文献   

16.
Traditionally, the therapeutic approach to treatmentresistant depression (TRD) has relied on pharmacotherapy in various sequences and combinations, in addition to evidence-based psychotherapy or electroconvulsive therapy. Despite refinements to the existing therapeutic modalities, there remains a significant subpopulation of severely ill patients with refractory mood disorders who fail to achieve a clinical response despite aggressive psychosocial and biological treatments. Interest in the use of deep brain stimulation (DBS) for treatment-resistant psychiatric illness has emerged in recent years for a number of reasons: 1) as part of a general re-evaluation of both noninvasive and invasive brain stimulation techniques, 2) because of the demonstrated clinical efficacy of DBS for movement disorders, and 3) as a logical consequence of studies defining the functional neurocircuitry of several psychiatric disorders. This review will examine the progress of DBS in the treatment of Parkinson’s disease and the potential implications for its use in TRD, as well as the role of the psychiatrist in selection and ongoing management of patients who receive this procedure.  相似文献   

17.
Deep brain stimulation (DBS) to the nucleus accumbens (NAcc-DBS) was associated with antidepressant, anxiolytic, and procognitive effects in a small sample of patients suffering from treatment-resistant depression (TRD), followed over 1 year. Results of long-term follow-up of up to 4 years of NAcc-DBS are described in a group of 11 patients. Clinical effects, quality of life (QoL), cognition, and safety are reported. Eleven patients were stimulated with DBS bilateral to the NAcc. Main outcome measures were clinical effect (Hamilton Depression Rating Scale, Montgomery-Asperg Rating Scale of Depression, and Hamilton Anxiety Scale) QoL (SF-36), cognition and safety at baseline, 12 months (n=11), 24 months (n=10), and last follow-up (maximum 4 years, n=5). Analyses were performed in an intent-to-treat method with last observation carried forward, thus 11 patients contributed to each point in time. In all, 5 of 11 patients (45%) were classified as responders after 12 months and remained sustained responders without worsening of symptoms until last follow-up after 4 years. Both ratings of depression and anxiety were significantly reduced in the sample as a whole from first month of NAcc-DBS on. All patients improved in QoL measures. One non-responder committed suicide. No severe adverse events related to parameter change were reported. First-time, preliminary long-term data on NAcc-DBS have demonstrated a stable antidepressant and anxiolytic effect and an amelioration of QoL in this small sample of patients suffering from TRD. None of the responders of first year relapsed during the observational period (up to 4 years).  相似文献   

18.
19.
The purpose of this study was to evaluate preservation of cognitive function after deep brain stimulation (DBS) of the subgenual cingulate (Cg25) for treatment-resistant depression (TRD). We have previously reported on the treatment methods, safety, and 6-month clinical outcome (Mayberg et al., Neuron. 2005;45:651-660). Comprehensive neuropsychological assessments tapping 4 domains of frontal lobe function, and general cognitive abilities, were completed before implantation and at 3, 6, and 12 months postonset of continuous DBS in 6 TRD patients. No adverse neuropsychological effects were noted following surgery, onset and maintenance of DBS with the exception of transient motor slowing noted at 3 and 6 months that improved to normative levels by 12 months. Several areas of cognition that were below average or impaired at baseline improved over follow-up, and these changes were not correlated with improvements in mood. Though the sample size is small, these results support cognitive safety of Cg25 DBS for TRD.  相似文献   

20.
This pilot study examined the effectiveness of Intensive Short-term Dynamic Psychotherapy (ISTDP) in treatment-resistant depression (TRD). Ten patients with TRD were provided a course of ISTDP. Clinician and patient symptom and interpersonal measures were completed every 4 weeks, at termination, and in follow-up. Medication, disability, and hospital costs were compared before and after treatment. After an average of 13.6 sessions of therapy, all mean measures reached the normal range, with effect sizes ranging from 0.87 to 3.3. Gains were maintained in follow-up assessments. Treatment costs were offset by cost reductions elsewhere in the system. This open study suggests that ISTDP may be effective with this challenging patient group. A randomized, controlled trial and qualitative research are warranted to evaluate this treatment further and to examine its possible therapeutic elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号