首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Objective

Negation is a linguistic phenomenon that marks the absence of an entity or event. Negated events are frequently reported in both biological literature and clinical notes. Text mining applications benefit from the detection of negation and its scope. However, due to the complexity of language, identifying the scope of negation in a sentence is not a trivial task.

Design

Conditional random fields (CRF), a supervised machine-learning algorithm, were used to train models to detect negation cue phrases and their scope in both biological literature and clinical notes. The models were trained on the publicly available BioScope corpus.

Measurement

The performance of the CRF models was evaluated on identifying the negation cue phrases and their scope by calculating recall, precision and F1-score. The models were compared with four competitive baseline systems.

Results

The best CRF-based model performed statistically better than all baseline systems and NegEx, achieving an F1-score of 98% and 95% on detecting negation cue phrases and their scope in clinical notes, and an F1-score of 97% and 85% on detecting negation cue phrases and their scope in biological literature.

Conclusions

This approach is robust, as it can identify negation scope in both biological and clinical text. To benefit text mining applications, the system is publicly available as a Java API and as an online application at http://negscope.askhermes.org.  相似文献   

2.

Context

TimeText is a temporal reasoning system designed to represent, extract, and reason about temporal information in clinical text.

Objective

To measure the accuracy of the TimeText for processing clinical discharge summaries.

Design

Six physicians with biomedical informatics training served as domain experts. Twenty discharge summaries were randomly selected for the evaluation. For each of the first 14 reports, 5 to 8 clinically important medical events were chosen. The temporal reasoning system generated temporal relations about the endpoints (start or finish) of pairs of medical events. Two experts (subjects) manually generated temporal relations for these medical events. The system and expert-generated results were assessed by four other experts (raters). All of the twenty discharge summaries were used to assess the system’s accuracy in answering time-oriented clinical questions. For each report, five to ten clinically plausible temporal questions about events were generated. Two experts generated answers to the questions to serve as the gold standard. We wrote queries to retrieve answers from system’s output.

Measurements

Correctness of generated temporal relations, recall of clinically important relations, and accuracy in answering temporal questions.

Results

The raters determined that 97% of subjects’ 295 generated temporal relations were correct and that 96.5% of the system’s 995 generated temporal relations were correct. The system captured 79% of 307 temporal relations determined to be clinically important by the subjects and raters. The system answered 84% of the temporal questions correctly.

Conclusion

The system encoded the majority of information identified by experts, and was able to answer simple temporal questions.  相似文献   

3.

Objective

To specify the problem of patient-level temporal aggregation from clinical text and introduce several probabilistic methods for addressing that problem. The patient-level perspective differs from the prevailing natural language processing (NLP) practice of evaluating at the term, event, sentence, document, or visit level.

Methods

We utilized an existing pediatric asthma cohort with manual annotations. After generating a basic feature set via standard clinical NLP methods, we introduce six methods of aggregating time-distributed features from the document level to the patient level. These aggregation methods are used to classify patients according to their asthma status in two hypothetical settings: retrospective epidemiology and clinical decision support.

Results

In both settings, solid patient classification performance was obtained with machine learning algorithms on a number of evidence aggregation methods, with Sum aggregation obtaining the highest F1 score of 85.71% on the retrospective epidemiological setting, and a probability density function-based method obtaining the highest F1 score of 74.63% on the clinical decision support setting. Multiple techniques also estimated the diagnosis date (index date) of asthma with promising accuracy.

Discussion

The clinical decision support setting is a more difficult problem. We rule out some aggregation methods rather than determining the best overall aggregation method, since our preliminary data set represented a practical setting in which manually annotated data were limited.

Conclusion

Results contrasted the strengths of several aggregation algorithms in different settings. Multiple approaches exhibited good patient classification performance, and also predicted the timing of estimates with reasonable accuracy.  相似文献   

4.
5.

Objective

This paper describes natural-language-processing techniques for two tasks: identification of medical concepts in clinical text, and classification of assertions, which indicate the existence, absence, or uncertainty of a medical problem. Because so many resources are available for processing clinical texts, there is interest in developing a framework in which features derived from these resources can be optimally selected for the two tasks of interest.

Materials and methods

The authors used two machine-learning (ML) classifiers: support vector machines (SVMs) and conditional random fields (CRFs). Because SVMs and CRFs can operate on a large set of features extracted from both clinical texts and external resources, the authors address the following research question: Which features need to be selected for obtaining optimal results? To this end, the authors devise feature-selection techniques which greatly reduce the amount of manual experimentation and improve performance.

Results

The authors evaluated their approaches on the 2010 i2b2/VA challenge data. Concept extraction achieves 79.59 micro F-measure. Assertion classification achieves 93.94 micro F-measure.

Discussion

Approaching medical concept extraction and assertion classification through ML-based techniques has the advantage of easily adapting to new data sets and new medical informatics tasks. However, ML-based techniques perform best when optimal features are selected. By devising promising feature-selection techniques, the authors obtain results that outperform the current state of the art.

Conclusion

This paper presents two ML-based approaches for processing language in the clinical texts evaluated in the 2010 i2b2/VA challenge. By using novel feature-selection methods, the techniques presented in this paper are unique among the i2b2 participants.  相似文献   

6.

Objective

Concept extraction is a process to identify phrases referring to concepts of interests in unstructured text. It is a critical component in automated text processing. We investigate the performance of machine learning taggers for clinical concept extraction, particularly the portability of taggers across documents from multiple data sources.

Methods

We used BioTagger-GM to train machine learning taggers, which we originally developed for the detection of gene/protein names in the biology domain. Trained taggers were evaluated using the annotated clinical documents made available in the 2010 i2b2/VA Challenge workshop, consisting of documents from four data sources.

Results

As expected, performance of a tagger trained on one data source degraded when evaluated on another source, but the degradation of the performance varied depending on data sources. A tagger trained on multiple data sources was robust, and it achieved an F score as high as 0.890 on one data source. The results also suggest that performance of machine learning taggers is likely to improve if more annotated documents are available for training.

Conclusion

Our study shows how the performance of machine learning taggers is degraded when they are ported across clinical documents from different sources. The portability of taggers can be enhanced by training on datasets from multiple sources. The study also shows that BioTagger-GM can be easily extended to detect clinical concept mentions with good performance.  相似文献   

7.

Objective

To develop, evaluate, and share: (1) syntactic parsing guidelines for clinical text, with a new approach to handling ill-formed sentences; and (2) a clinical Treebank annotated according to the guidelines. To document the process and findings for readers with similar interest.

Methods

Using random samples from a shared natural language processing challenge dataset, we developed a handbook of domain-customized syntactic parsing guidelines based on iterative annotation and adjudication between two institutions. Special considerations were incorporated into the guidelines for handling ill-formed sentences, which are common in clinical text. Intra- and inter-annotator agreement rates were used to evaluate consistency in following the guidelines. Quantitative and qualitative properties of the annotated Treebank, as well as its use to retrain a statistical parser, were reported.

Results

A supplement to the Penn Treebank II guidelines was developed for annotating clinical sentences. After three iterations of annotation and adjudication on 450 sentences, the annotators reached an F-measure agreement rate of 0.930 (while intra-annotator rate was 0.948) on a final independent set. A total of 1100 sentences from progress notes were annotated that demonstrated domain-specific linguistic features. A statistical parser retrained with combined general English (mainly news text) annotations and our annotations achieved an accuracy of 0.811 (higher than models trained purely with either general or clinical sentences alone). Both the guidelines and syntactic annotations are made available at https://sourceforge.net/projects/medicaltreebank.

Conclusions

We developed guidelines for parsing clinical text and annotated a corpus accordingly. The high intra- and inter-annotator agreement rates showed decent consistency in following the guidelines. The corpus was shown to be useful in retraining a statistical parser that achieved moderate accuracy.  相似文献   

8.

Background

Temporal information detection systems have been developed by the Mayo Clinic for the 2012 i2b2 Natural Language Processing Challenge.

Objective

To construct automated systems for EVENT/TIMEX3 extraction and temporal link (TLINK) identification from clinical text.

Materials and methods

The i2b2 organizers provided 190 annotated discharge summaries as the training set and 120 discharge summaries as the test set. Our Event system used a conditional random field classifier with a variety of features including lexical information, natural language elements, and medical ontology. The TIMEX3 system employed a rule-based method using regular expression pattern match and systematic reasoning to determine normalized values. The TLINK system employed both rule-based reasoning and machine learning. All three systems were built in an Apache Unstructured Information Management Architecture framework.

Results

Our TIMEX3 system performed the best (F-measure of 0.900, value accuracy 0.731) among the challenge teams. The Event system produced an F-measure of 0.870, and the TLINK system an F-measure of 0.537.

Conclusions

Our TIMEX3 system demonstrated good capability of regular expression rules to extract and normalize time information. Event and TLINK machine learning systems required well-defined feature sets to perform well. We could also leverage expert knowledge as part of the machine learning features to further improve TLINK identification performance.  相似文献   

9.

Objective

De-identified medical records are critical to biomedical research. Text de-identification software exists, including “resynthesis” components that replace real identifiers with synthetic identifiers. The goal of this research is to evaluate the effectiveness and examine possible bias introduced by resynthesis on de-identification software.

Design

We evaluated the open-source MITRE Identification Scrubber Toolkit, which includes a resynthesis capability, with clinical text from Vanderbilt University Medical Center patient records. We investigated four record classes from over 500 patients'' files, including laboratory reports, medication orders, discharge summaries and clinical notes. We trained and tested the de-identification tool on real and resynthesized records.

Measurements

We measured performance in terms of precision, recall, F-measure and accuracy for the detection of protected health identifiers as designated by the HIPAA Safe Harbor Rule.

Results

The de-identification tool was trained and tested on a collection of real and resynthesized Vanderbilt records. Results for training and testing on the real records were 0.990 accuracy and 0.960 F-measure. The results improved when trained and tested on resynthesized records with 0.998 accuracy and 0.980 F-measure but deteriorated moderately when trained on real records and tested on resynthesized records with 0.989 accuracy 0.862 F-measure. Moreover, the results declined significantly when trained on resynthesized records and tested on real records with 0.942 accuracy and 0.728 F-measure.

Conclusion

The de-identification tool achieves high accuracy when training and test sets are homogeneous (ie, both real or resynthesized records). The resynthesis component regularizes the data to make them less “realistic,” resulting in loss of performance particularly when training on resynthesized data and testing on real data.  相似文献   

10.

Objective

As clinical text mining continues to mature, its potential as an enabling technology for innovations in patient care and clinical research is becoming a reality. A critical part of that process is rigid benchmark testing of natural language processing methods on realistic clinical narrative. In this paper, the authors describe the design and performance of three state-of-the-art text-mining applications from the National Research Council of Canada on evaluations within the 2010 i2b2 challenge.

Design

The three systems perform three key steps in clinical information extraction: (1) extraction of medical problems, tests, and treatments, from discharge summaries and progress notes; (2) classification of assertions made on the medical problems; (3) classification of relations between medical concepts. Machine learning systems performed these tasks using large-dimensional bags of features, as derived from both the text itself and from external sources: UMLS, cTAKES, and Medline.

Measurements

Performance was measured per subtask, using micro-averaged F-scores, as calculated by comparing system annotations with ground-truth annotations on a test set.

Results

The systems ranked high among all submitted systems in the competition, with the following F-scores: concept extraction 0.8523 (ranked first); assertion detection 0.9362 (ranked first); relationship detection 0.7313 (ranked second).

Conclusion

For all tasks, we found that the introduction of a wide range of features was crucial to success. Importantly, our choice of machine learning algorithms allowed us to be versatile in our feature design, and to introduce a large number of features without overfitting and without encountering computing-resource bottlenecks.  相似文献   

11.

Objective

The authors used the i2b2 Medication Extraction Challenge to evaluate their entity extraction methods, contribute to the generation of a publicly available collection of annotated clinical notes, and start developing methods for ontology-based reasoning using structured information generated from the unstructured clinical narrative.

Design

Extraction of salient features of medication orders from the text of de-identified hospital discharge summaries was addressed with a knowledge-based approach using simple rules and lookup lists. The entity recognition tool, MetaMap, was combined with dose, frequency, and duration modules specifically developed for the Challenge as well as a prototype module for reason identification.

Measurements

Evaluation metrics and corresponding results were provided by the Challenge organizers.

Results

The results indicate that robust rule-based tools achieve satisfactory results in extraction of simple elements of medication orders, but more sophisticated methods are needed for identification of reasons for the orders and durations.

Limitations

Owing to the time constraints and nature of the Challenge, some obvious follow-on analysis has not been completed yet.

Conclusions

The authors plan to integrate the new modules with MetaMap to enhance its accuracy. This integration effort will provide guidance in retargeting existing tools for better processing of clinical text.  相似文献   

12.

Objective

To evaluate the validity of, characterize the usage of, and propose potential research applications for International Classification of Diseases, Ninth Revision (ICD-9) tobacco codes in clinical populations.

Materials and methods

Using data on cancer cases and cancer-free controls from Vanderbilt''s biorepository, BioVU, we evaluated the utility of ICD-9 tobacco use codes to identify ever-smokers in general and high smoking prevalence (lung cancer) clinic populations. We assessed potential biases in documentation, and performed temporal analysis relating transitions between smoking codes to smoking cessation attempts. We also examined the suitability of these codes for use in genetic association analyses.

Results

ICD-9 tobacco use codes can identify smokers in a general clinic population (specificity of 1, sensitivity of  0.32), and there is little evidence of documentation bias. Frequency of code transitions between ‘current’ and ‘former’ tobacco use was significantly correlated with initial success at smoking cessation (p<0.0001). Finally, code-based smoking status assignment is a comparable covariate to text-based smoking status for genetic association studies.

Discussion

Our results support the use of ICD-9 tobacco use codes for identifying smokers in a clinical population. Furthermore, with some limitations, these codes are suitable for adjustment of smoking status in genetic studies utilizing electronic health records.

Conclusions

Researchers should not be deterred by the unavailability of full-text records to determine smoking status if they have ICD-9 code histories.  相似文献   

13.

Objective

A system that translates narrative text in the medical domain into structured representation is in great demand. The system performs three sub-tasks: concept extraction, assertion classification, and relation identification.

Design

The overall system consists of five steps: (1) pre-processing sentences, (2) marking noun phrases (NPs) and adjective phrases (APs), (3) extracting concepts that use a dosage-unit dictionary to dynamically switch two models based on Conditional Random Fields (CRF), (4) classifying assertions based on voting of five classifiers, and (5) identifying relations using normalized sentences with a set of effective discriminating features.

Measurements

Macro-averaged and micro-averaged precision, recall and F-measure were used to evaluate results.

Results

The performance is competitive with the state-of-the-art systems with micro-averaged F-measure of 0.8489 for concept extraction, 0.9392 for assertion classification and 0.7326 for relation identification.

Conclusions

The system exploits an array of common features and achieves state-of-the-art performance. Prudent feature engineering sets the foundation of our systems. In concept extraction, we demonstrated that switching models, one of which is especially designed for telegraphic sentences, improved extraction of the treatment concept significantly. In assertion classification, a set of features derived from a rule-based classifier were proven to be effective for the classes such as conditional and possible. These classes would suffer from data scarcity in conventional machine-learning methods. In relation identification, we use two-staged architecture, the second of which applies pairwise classifiers to possible candidate classes. This architecture significantly improves performance.  相似文献   

14.

Objective

To develop a computerized clinical decision support system (CDSS) for cervical cancer screening that can interpret free-text Papanicolaou (Pap) reports.

Materials and Methods

The CDSS was constituted by two rulebases: the free-text rulebase for interpreting Pap reports and a guideline rulebase. The free-text rulebase was developed by analyzing a corpus of 49 293 Pap reports. The guideline rulebase was constructed using national cervical cancer screening guidelines. The CDSS accesses the electronic medical record (EMR) system to generate patient-specific recommendations. For evaluation, the screening recommendations made by the CDSS for 74 patients were reviewed by a physician.

Results and Discussion

Evaluation revealed that the CDSS outputs the optimal screening recommendations for 73 out of 74 test patients and it identified two cases for gynecology referral that were missed by the physician. The CDSS aided the physician to amend recommendations in six cases. The failure case was because human papillomavirus (HPV) testing was sometimes performed separately from the Pap test and these results were reported by a laboratory system that was not queried by the CDSS. Subsequently, the CDSS was upgraded to look up the HPV results missed earlier and it generated the optimal recommendations for all 74 test cases.

Limitations

Single institution and single expert study.

Conclusion

An accurate CDSS system could be constructed for cervical cancer screening given the standardized reporting of Pap tests and the availability of explicit guidelines. Overall, the study demonstrates that free text in the EMR can be effectively utilized through natural language processing to develop clinical decision support tools.  相似文献   

15.
16.

Objective

Coreference resolution of concepts, although a very active area in the natural language processing community, has not yet been widely applied to clinical documents. Accordingly, the 2011 i2b2 competition focusing on this area is a timely and useful challenge. The objective of this research was to collate coreferent chains of concepts from a corpus of clinical documents. These concepts are in the categories of person, problems, treatments, and tests.

Design

A machine learning approach based on graphical models was employed to cluster coreferent concepts. Features selected were divided into domain independent and domain specific sets. Training was done with the i2b2 provided training set of 489 documents with 6949 chains. Testing was done on 322 documents.

Results

The learning engine, using the un-weighted average of three different measurement schemes, resulted in an F measure of 0.8423 where no domain specific features were included and 0.8483 where the feature set included both domain independent and domain specific features.

Conclusion

Our machine learning approach is a promising solution for recognizing coreferent concepts, which in turn is useful for practical applications such as the assembly of problem and medication lists from clinical documents.  相似文献   

17.

Objective

An analysis of the timing of events is critical for a deeper understanding of the course of events within a patient record. The 2012 i2b2 NLP challenge focused on the extraction of temporal relationships between concepts within textual hospital discharge summaries.

Materials and methods

The team from the National Research Council Canada (NRC) submitted three system runs to the second track of the challenge: typifying the time-relationship between pre-annotated entities. The NRC system was designed around four specialist modules containing statistical machine learning classifiers. Each specialist targeted distinct sets of relationships: local relationships, ‘sectime’-type relationships, non-local overlap-type relationships, and non-local causal relationships.

Results

The best NRC submission achieved a precision of 0.7499, a recall of 0.6431, and an F1 score of 0.6924, resulting in a statistical tie for first place. Post hoc improvements led to a precision of 0.7537, a recall of 0.6455, and an F1 score of 0.6954, giving the highest scores reported on this task to date.

Discussion and conclusions

Methods for general relation extraction extended well to temporal relations, and gave top-ranked state-of-the-art results. Careful ordering of predictions within result sets proved critical to this success.  相似文献   

18.

Objective

To develop a system to extract follow-up information from radiology reports. The method may be used as a component in a system which automatically generates follow-up information in a timely fashion.

Methods

A novel method of combining an LSP (labeled sequential pattern) classifier with a CRF (conditional random field) recognizer was devised. The LSP classifier filters out irrelevant sentences, while the CRF recognizer extracts follow-up and time phrases from candidate sentences presented by the LSP classifier.

Measurements

The standard performance metrics of precision (P), recall (R), and F measure (F) in the exact and inexact matching settings were used for evaluation.

Results

Four experiments conducted using 20 000 radiology reports showed that the CRF recognizer achieved high performance without time-consuming feature engineering and that the LSP classifier further improved the performance of the CRF recognizer. The performance of the current system is P=0.90, R=0.86, F=0.88 in the exact matching setting and P=0.98, R=0.93, F=0.95 in the inexact matching setting.

Conclusion

The experiments demonstrate that the system performs far better than a baseline rule-based system and is worth considering for deployment trials in an alert generation system. The LSP classifier successfully compensated for the inherent weakness of CRF, that is, its inability to use global information.  相似文献   

19.

Objective

De-identification allows faster and more collaborative clinical research while protecting patient confidentiality. Clinical narrative de-identification is a tedious process that can be alleviated by automated natural language processing methods. The goal of this research is the development of an automated text de-identification system for Veterans Health Administration (VHA) clinical documents.

Materials and methods

We devised a novel stepwise hybrid approach designed to improve the current strategies used for text de-identification. The proposed system is based on a previous study on the best de-identification methods for VHA documents. This best-of-breed automated clinical text de-identification system (aka BoB) tackles the problem as two separate tasks: (1) maximize patient confidentiality by redacting as much protected health information (PHI) as possible; and (2) leave de-identified documents in a usable state preserving as much clinical information as possible.

Results

We evaluated BoB with a manually annotated corpus of a variety of VHA clinical notes, as well as with the 2006 i2b2 de-identification challenge corpus. We present evaluations at the instance- and token-level, with detailed results for BoB''s main components. Moreover, an existing text de-identification system was also included in our evaluation.

Discussion

BoB''s design efficiently takes advantage of the methods implemented in its pipeline, resulting in high sensitivity values (especially for sensitive PHI categories) and a limited number of false positives.

Conclusions

Our system successfully addressed VHA clinical document de-identification, and its hybrid stepwise design demonstrates robustness and efficiency, prioritizing patient confidentiality while leaving most clinical information intact.  相似文献   

20.

Objective

To describe a system for determining the assertion status of medical problems mentioned in clinical reports, which was entered in the 2010 i2b2/VA community evaluation ‘Challenges in natural language processing for clinical data’ for the task of classifying assertions associated with problem concepts extracted from patient records.

Materials and methods

A combination of machine learning (conditional random field and maximum entropy) and rule-based (pattern matching) techniques was used to detect negation, speculation, and hypothetical and conditional information, as well as information associated with persons other than the patient.

Results

The best submission obtained an overall micro-averaged F-score of 0.9343.

Conclusions

Using semantic attributes of concepts and information about document structure as features for statistical classification of assertions is a good way to leverage rule-based and statistical techniques. In this task, the choice of features may be more important than the choice of classifier algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号