首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 970 毫秒
1.
S Okada  H Nakauchi  K Nagayoshi  S Nishikawa  Y Miura  T Suda 《Blood》1992,80(12):3044-3050
c-kit is expressed on hematopoietic stem cells and progenitor cells, but not on lymphohematopoietic differentiated cells. Lineage marker-negative, c-kit-positive (Lin-c-kit+) bone marrow cells were fractionated by means of Ly6A/E or Sca-1 expression. Lin-c-kit+Sca-1+ cells, which consisted of 0.08% of bone marrow nucleated cells, did not contain day-8 colony-forming units-spleen (CFU-S), but 80% were day-12 CFU-S. One hundred cells rescued the lethally irradiated mice and reconstituted hematopoiesis. On the other hand, 2 x 10(3) of Lin-c-kit+Sca-1- cells formed 20 day-8 and 11 day-12 spleen colonies, but they could not rescue the lethally irradiated mice. These data indicate that Lin-c-kit+Sca-1+ cells are primitive hematopoietic stem cells and that Sca-1-cells do not contain stem cells that reconstitute hematopoiesis. Lin-c-kit+Sca-1+ cells formed no colonies in the presence of stem cell factor (SCF) or interleukin-6 (IL-6), and only 10% of them formed colonies in the presence of IL-3. However, approximately 50% of them formed large colonies in the presence of IL-3, IL-6, and SCF. Moreover, when single cells were deposited into culture medium by fluorescence-activated cell sorter clone sorting system, 40% of them proliferated on a stromal cell line (PA-6) and proliferated for more than 2 weeks. In contrast, 15% of the Lin-c-kit+Sca-1-cells formed colonies in the presence of IL-3, but no synergistic effects were observed in combination with SCF plus IL-6 and/or IL-3. Approximately 10% proliferated on PA-6, but most of them degenerated within 2 weeks. The population ratio of c-kit+Sca-1+ to c-kit+Sca-1- increased 2 and 4 days after exposure to 5-fluorouracil (5-FU). These results are consistent with the relative enrichment of highly proliferative colony-forming cells by 5-FU. These data show that, although c-kit is found both on the primitive hematopoietic stem cells and progenitors, Sca-1+ cells are more primitive and respond better than Sca-1- cells to a combination of hematopoietic factors, including SCF and stromal cells.  相似文献   

2.
Molineux  G; Migdalska  A; Haley  J; Evans  GS; Dexter  TM 《Blood》1994,83(12):3491-3499
To examine the potential role of stem-cell factor (SCF) in cancer chemotherapy, we have administered it to mice either before or after 5- fluorouracil (5-FU). When polyethylene glycolated (PEG-ylated) SCF was administered to mice before 5-FU, it had a significant sensitizing effect on primitive bone marrow cells. Examination of the hematopoietic status of these mice showed that the damage caused by 5-FU to both bone marrow and spleen hematopoiesis was exaggerated when it was preceded by SCF. SCF given before each of two 5-FU treatments at 7-day intervals resulted in the death of all treated mice. The time of death and hematopoietic status of these animals are compatible with the onset of hypoplastic marrow failure leading to pancytopenia and death. SCF given after 5-FU had little impact either on the initial degree of hematopoietic damage or subsequent recovery. Gut populations were similarly sensitized to 5-FU by prior treatment with SCF, and the damage caused to intestinal populations was greater than that resulting from 5-FU alone. This indicates that the different tissues may be similarly sensitized by SCF. The sensitizing effect of SCF was reversed by concurrent administration of transforming growth factor (TGF)-beta 3, and survival of the majority of the mice was ensured. Examination of hematopoiesis in mice treated concurrently with SCF and TGF-beta 3 showed that the degree of marrow and spleen damage had reverted to that caused by 5-FU alone. In further experiments, 100% survival and normal hematopoiesis could be attained by transplantation of 1 million syngeneic bone marrow cells 24 hours after 5-FU treatment following SCF sensitization. These data indicate that PEG-ylated SCF can sensitize normally resistant hematopoietic and gut stem cells to the effects of 5- FU. This sensitization resulted in effective eradication of hematopoiesis in SCF-pretreated/5-FU-treated animals and their subsequent death from marrow failure. These findings imply that SCF pretreatment may represent a novel method of increasing the effectiveness of conventional chemotherapy, making marrow ablation more effective without drug dose escalation and perhaps sensitizing some tumor cells to the effects of therapy.  相似文献   

3.
A subset of leukemic cells is assumed to maintain long-term growth of acute myeloid leukemia (AML) in vivo. Characterization of these AML progenitor cells may further define growth properties of human leukemia. In vitro incubations with 5-fluorouracil (5-FU) have been used for enrichment of normal primitive hematopoietic stem cells. By analogy to normal hematopoiesis, it was hypothesized that primitive leukemic stem cells might be kinetically more inactive than colony- forming cells (colony-forming units-AML [CFU-AML]). To examine this hypothesis, conditions were established for incubation with 5-FU that eliminated all CFU-AML. These conditions selected a 5-FU-resistant AML fraction that was evaluated for its capacity for long-term growth by transplantation into mice with severe combined immunodeficiency (SCID) and long-term culture in the quantitative cobblestone area-forming cell (CAFC) assay. Transplantation of the 5-FU-resistant fraction of four cases of AML into SCID mice resulted in growth of AML. Whereas no CFU- AML survived, 31% to 82% of primitive (week-6) CAFC were recovered from the 5-FU-treated cells. Hematopoietic cells proliferating in the CAFC assay were shown to be leukemic by cytologic, cytogenetic, or molecular analysis. The reduction of AML growth as determined by outgrowth of AML in SCID mice was in the same order of magnitude as the primitive (week- 6) CAFC reduction. This indicates that both assays measure closely related cell populations and that the CAFC assay can be used to study long-term growth of AML. These results show a hierarchy of AML cells that includes 5-FU-resistant progenitors. These cells are characterized as primitive (week-6) CAFC and as leukemia-initiating cells in SCID mice.  相似文献   

4.
de Haan  G; Dontje  B; Engel  C; Loeffler  M; Nijhof  W 《Blood》1995,86(8):2986-2992
Because of the complexity of appropriate stem cell assays, little information on the in vivo regulation of murine stem cell biology or stemmatopoiesis is available. It is unknown whether and how in vivo the primitive hematopoietic stem cell compartment is affected during a continued increased production of mature blood cells. In this study, we present data showing that prolonged (3 weeks) administration of granulocyte colony-stimulating factor (G-CSF), which is a major regulator of mature granulocyte production, has a substantial impact on both the size and the location of various stem cell subset pools in mice. We have used the novel cobblestone area forming cell (CAFC) assay to assess the effects of G-CSF on the stem cell compartment (CAFC days 7, 14, 21, and 28). In marrow, in which normally 99% of the total number of stem cells can be found, G-CSF induced a severe depletion of particularly the most primitive stem cells to 5% to 10% of normal values. The response after 7 days of G-CSF treatment was an increased amplification between CAFC day 14 and 7. However, this response occurred at the expense of the number of CAFC day 14. It is likely that the resulting gap of CAFC day 14 cell numbers was subsequently replenished from the more primitive CAFC day 21 and 28 compartments, because these cell numbers remained low during the entire treatment period. In the spleen, the number of stem cells increased, likely caused by a migration from the marrow via the blood, leading to an accumulation in the spleen. The increased number of stem cells in the spleen overcompensated for the loss in the marrow. When total body (marrow and spleen) stem cell numbers were calculated, it appeared that a continued increased production of mature granulocytes resulted in the establishment of a higher, new steady state of the stem cell compartment; most committed stem cells (CAFC day 7) were increased threefold, CAFC day 14 were increased 2.3-fold, CAFC-day 21 were increased 1.8-fold, and the most primitive stem cells evaluated, CAFC day 28, were not different from normal, although now 95% of these cells were located in the spleen. Four weeks after discontinuation of the G- CSF treatment, the stem cell reserve in the spleen had returned to a normal level, whereas stem cell numbers in marrow had recovered to values above normal. This study shows that the primitive stem cell compartment is seriously perturbed during an increased stimulation of the production of mature blood cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Low-toxicity conditioning regimens prior to bone marrow transplantation (BMT) are widely explored. We developed a new protocol using hematopoietic growth factors prior to low-dose total body irradiation (TBI) in recipients of autologous transplants to establish high levels of long-term donor cell engraftment. We hypothesized that treatment of recipient mice with growth factors would selectively deplete stem cells, resulting in successful long-term donor cell engraftment after transplantation. Recipient mice were treated for 1 or 7 days with growth factors (stem cell factor [SCF] plus interleukin 11 [IL-11], SCF plus Flt-3 ligand [FL], or granulocyte colony-stimulating factor [G-CSF]) prior to low-dose TBI (4 Gy). Donor cell chimerism was measured after transplantation of congenic bone marrow cells. High levels of donor cell engraftment were observed in recipients pretreated for 7 days with SCF plus IL-11 or SCF plus FL. Although 1-day pretreatments with these cytokines initially resulted in reduced donor cell engraftment, a continuous increase in time was observed, finally resulting in highly significantly increased levels of donor cell contribution. In contrast, G-CSF treatment showed no beneficial effects on long-term engraftment. In vitro stem cell assays demonstrated the effect of cytokine treatment on stem cell numbers. Donor cell engraftment and number of remaining recipient stem cells after TBI were strongly inversely correlated, except for groups treated for 1 day with SCF plus IL-11 or SCF plus FL. We conclude that long-term donor cell engraftment can be strongly augmented by treatment of recipient mice prior to low-dose TBI with hematopoietic growth factors that act on primitive cells.  相似文献   

6.
Shih  JP; Ogawa  M 《Blood》1993,81(5):1155-1160
It was reported that monoclonal antibody (MoAb) J11d.2 reacts with mature blood cells of mice but not with their progenitors. We tested in culture studies whether this antibody could be used for enrichment for primitive marrow progenitors. The majority of colony-forming cells including multipotential progenitors in the marrow cells from 5- fluorouracil (5-FU)-treated mice were J11d.2+, whereas most of the progenitors from normal mice were J11d.2-. In addition, formation of multilineage colonies from J11d.2+ in both 5-FU-treated and normal mice was augmented by interleukin 6. These observations indicated that MoAb J11d.2 recognizes cell cycle-dormant progenitors. We have recently described a simple method that provides 800-fold enrichment for the progenitors in post-5-FU marrow cells using MoAb D7 (anti-Ly-6A/E). When this method was modified to include sorting with MoAb J11d.2, D7+ J11d.2+ cells were 2,250-fold enriched for multipotential progenitors. Micromanipulation and culture of individual D7+ J11d.2+ cells showed that average plating efficiency of the cell population is approximately 70% and that about 30% of the progenitors are lymphohematopoietic in nature. These data demonstrate that J11d.2 is a useful MoAb for the isolation of primitive hematopoietic progenitors of mice.  相似文献   

7.
Cord blood (CB) has been successfully used to regenerate the hematopoietic system after myeloablative therapy. We investigated whether cytokine mediated expansion depletes CB of cells with stem cell characteristics. CB mononuclear cells (MNC) were enriched for quiescent (primitive) stem cells by incubation with 25 μg/ml 5-Fluorouracil (5-FU) and control CB MNC were incubated with media alone. Cells were then incubated for 7 days with Interleukin-1 (IL1)+IL3+ Stem Cell Factor (SCF) and progenitor content, cell cycle status, nucleated cell count, immunophenotype and resistance to 25 μg/ml 5-FU (primitive stem cells) were evaluated before and after cytokine exposure. Incubation with IL1+IL3+SCF caused an increase (fold expansion) in committed (28.6 ± 8.1), immature (5.8 ± 1.8), and primitive progenitors (4.1 ± 0.8) among control CB MNC compared to a decrease in committed progenitors (0 ± 0) but an increase in both immature (8.4 ± 4.8) and primitive progenitors (7 ± 2.9) among 5-FU resistant CB MNC. An increase in the proportion of CD34+ cells occurred in both fractions. Expanded control CB MNC showed a significant increase in numbers of 5-FU resistant committed (p = 0.024), immature (p = 0.014) and primitive progenitors (p = 0.01) as compared with fresh CB MNC. Re-exposure of 5-FU resistant expanded CB MNC to 5-FU shows growth of some immature and primitive progenitors. Cytokine-mediated expansion of untreated and quiescent CB cells is possible and cytokine-mediated expansion does not deplete CB cells with stem cell characteristics.  相似文献   

8.
Murine bone marrow cells with lineage phenotypes (Lin)-Sca-1+c-kit+ and Lin-Sca-1-c-kit+ cells represent primitive hematopoietic stem cells (HSCs) and committed hematopoietic progenitor cells, respectively. The number of Lin-Sca-1+c-kit+ HSCs in bone marrow was significantly increased in tumor necrosis factor (TNF) receptor p55-deficient (TNF- R55-1-) mice compared with the TNF-R55+/+ wild-type mice without a marked change in bone marrow cellularity. In both the methylcellulose culture and a single-cell proliferation assay, mouse TNF alpha (mTNF alpha) inhibited in vitro the proliferation of wild-type mouse-derived Lin-Sca-1+c-kit+ cells in response to a combination of multiple growth factors. The same is true for that of Lin-Sca-1+c-kit+ cells stimulated with granulocyte colony-stimulating factor (G-CSF) plus stem cell factor (SCF). Moreover, mTNF alpha significantly arrested the entry into S-phase from G0/G1 phase of Lin-Sca-1+c-kit+ cells stimulated with multiple growth factors and Lin-Sca-1-c-kit+ cells stimulated with G- CSF plus SCF. In contrast, mTNF alpha failed to affect the growth and cell cycle progression of Lin-Sca-1+c-kit+ cells and Lin-Sca-1-c-kit+ cells that were obtained from TNF-R55-deficient mice. These data suggest that TNF may be an important physiologic regulator of hematopoiesis and that TNF-R55 may be essentially involved in TNF- mediated inhibition of the growth of both primitive stem and more committed progenitor cells.  相似文献   

9.
OBJECTIVE: The aim of this study was to characterize murine side population (SP) stem cells and SP cell subpopulations for primitive stem cell capacity. MATERIALS AND METHODS: SP cells, characterized by a specific Hoechst dye efflux pattern, were isolated by flow cytometric analysis and sorting from murine adult whole bone marrow (WBM). Different subpopulations of SP cells were isolated by staining with anti-Sca and anti-CD34 antibodies. Primitive stem cell content of SP cells and SP subsets were determined by cobblestone area-forming cell (CAFC) frequencies. RESULTS: Measurement of CAFC frequencies revealed that SP cells are greatly enriched for both primitive stem cells (day-28-35 CAFC) and somewhat more mature hematopoietic cells (day-14-21 CAFC) compared to WBM. The day-28 and day-35 CAFC enrichments in SP cells vs WBM cells were 1065 and 471, respectively. Analysis of the subpopulations of SP cells revealed that SP(+)Sca(-)CD34(+) cells contained almost exclusively day-7 CAFC and had little day-28-35 CAFC activity. SP(+)Sca(+)CD34(+) cells had high day-7-14 CAFC frequencies, but lower day-35 CAFC frequencies compared to SP(+)Sca(+)CD34(-) cells. SP(+)Sca(+)CD34(-) cells contained very low day-7 CAFC activity, but nearly 2200 times the day-28-35 CAFC activity as normal bone marrow. To evaluate the influence of Hoechst dye efflux capacity, we divided the SP tail into four groups of cells. The SP cells with lowest efflux of Hoechst dye contained the highest progenitor activity (day-7-14 CAFC). The highest day-35 CAFC frequencies, nearly 6000 times those of normal marrow, were seen in the SP cells with the greatest efflux of the Hoechst dye. CONCLUSIONS: Murine SP cells contain both progenitor and primitive populations of hematopoietic stem cells. The most primitive stem cells measured in the in vitro CAFC assay mark for Sca(+) and CD34(-) and have a high ability to efflux Hoechst dye. Isolation of these cells may provide the means to directly study mechanisms of primitive stem cell damage.  相似文献   

10.
Helgason CD  Antonchuk J  Bodner C  Humphries RK 《Blood》2003,102(10):3541-3547
SH2-containing inositol 5-phosphatase (SHIP) is an important negative regulator of cytokine and immune receptor signaling. SHIP-deficient mice have a number of hematopoietic perturbations, including enhanced cytokine responsiveness. Because cytokines play an important role in the maintenance/expansion of the primitive hematopoietic cell pool, we investigated the possibility that SHIP also regulates the properties of cells in these compartments. Primitive hematopoietic cells were evaluated in SHIP-deficient mice and wild-type littermate controls using the colony-forming unit-spleen (CFU-S) and competitive repopulating unit (CRU) assays for multipotent progenitors and long-term lympho-myeloid repopulating cells, respectively. Absence of SHIP was found to affect homeostasis of CFU-S and CRU compartments. Numbers of primitive cells were increased in extramedullary sites such as the spleen of SHIP-deficient mice, although total body numbers were not significantly changed. In vivo cell cycle status of the CRU compartment was further evaluated using 5-fluorouracil (5-FU). SHIP-deficient CRUs were more sensitive to 5-FU killing, indicating a higher proliferative cell fraction. More strikingly, SHIP was found to regulate the ability of primitive cells to regenerate in vivo, as CRU recovery was approximately 30-fold lower in mice that received transplants of SHIP-deficient cells compared with controls. These results support a major role for SHIP in modulating pathways important in homeostasis and regeneration of hematopoietic stem cells, and emphasize the importance of negative cytokine regulation at the earliest stages of hematopoiesis.  相似文献   

11.
Mauch  P; Lamont  C; Neben  TY; Quinto  C; Goldman  SJ; Witsell  A 《Blood》1995,86(12):4674-4680
Peripheral blood stem cells and progenitor cells, collected during recovery from exposure to cytotoxic agents or after cytokine administration, are being increasingly used in clinical bone marrow transplantation. To determine factors important for mobilization of both primitive stem cells and progenitor cells to the blood, we studied the blood and splenic and marrow compartments of intact and splenectomized mice after administration of recombinant human interleukin-11 (rhlL-11), recombinant rat stem cell factor (rrSCF), and IL-11 + SCF. IL-11 administration increased the number of spleen colony- forming units (CFU-S) in both the spleen and blood, but did not increase blood long-term marrow-repopulating ability (LTRA) in intact or splenectomized mice. SCF administration increased the number of CFU- S in both the spleen and blood and did not increase the blood or splenic LTRA of intact mice, but did increase blood LTRA to normal marrow levels in splenectomized mice. The combination of lL-11 + SCF syngeristically enhanced mobilization of long-term marrow-repopulating cells from the marrow to the spleen of intact mice and from the marrow to the blood of splenectomized mice. These data, combined with those of prior studies showing granulocyte colony-stimulating factor mobilization of long-term marrow repopulating cells from the marrow to the blood of mice with intact spleens, suggest different cytokine- induced pathways for mobilization of primitive stem cells.  相似文献   

12.
Rich  IN 《Blood》1995,86(2):463-472
The identity of the cells giving rise to the hematopoietic system in the mouse embryo are unknown. The results presented here strongly suggest that hematopoietic cells are derived from a nonhematopoietic cell population that has been previously thought to give rise to the germ cells. These cells are called primordial germ cells (PGCs) and can be recognized as large cells showing blebbing and pseudopodial extrusions on their surface. They are alkaline phosphatase (AP) positive and possess a stage-specific embryonic antigen (SSEA-1) on their surface. They represent a small pool of cells in the extraembryonic mesoderm at the base of the allantois in late day-6 embryos. Primordial germ cells from 7.5- and 8.5-day visceral yolk sac and embryo proper form AP+ and SSEA-1+ colonies within 5 days when grown on an embryonic fibroblast feeder cell layer in the presence of leukemia inhibitory factor (LIF), stem cell factor (SCF), and interleukin-3 (IL-3). Individual colonies taken from day-5 cultures can be shown to differentiate into erythroid lineage cells in secondary methyl cellulose culture and produce secondary and tertiary PGCs in the presence of LIF, SCF, and IL-3. Cells taken from the region of the allantois and primitive streak can form colonies on hydrophilic Teflon (DuPont, Wilmington, DE) foils precoated with collagen and fibronectin. The cells from these colonies were then shown to form cobblestone areas on irradiated adult bone marrow stromal layers, indicating that the most primitive in vitro hematopoietic stem cell, the cobblestone-area forming cell (CAFC), was present. PGC colonies were grown in methyl cellulose in the presence of LIF, SCF, and IL-3 for 5 days, and the colonies were removed and passaged 3 times on pretreated extracellular matrix hydrophilic Teflon foils. After each passage, the cells were assayed for their differentiation capacity and PGC content. After the last passage, the number of CAFCs was also determined. It was found that, under these conditions, the PGC population expanded more than 400- fold and also contained CAFCs. It is postulated that the PGC represents a totipotent stem cell population capable of producing a variety of different cell types including cells of the hematopoietic system.  相似文献   

13.
Peripheral blood stem cells (PBSC) are used for stem cell support in patients after intensive chemotherapy and generally permit faster hematopoietic recovery than bone marrow. The development of different protocols for chemotherapy conditioning, mobilization, and ex vivo manipulation of PBSC may potentially lead to loss of primitive hematopoietic stem cells or reduction of their quality. To characterize the frequency of different stem cell subsets and their quality per mobilized PBSC, we have studied 47 leukapheresis products (LPs) of 21 cancer patients using stroma-dependent long-term culture (LTC) and limiting dilution-type cobblestone area forming cell (CAFC) assays. A large variation in CAFC week-type frequencies between the LPs was observed. The frequencies of CAFC week 2 as a tentative indicator of progenitor cells and transiently repopulating hematopoietic stem cells ranged from 0.89 to 205 per 10(5) mobilized nucleated cells and the frequencies of more primitive CAFC week 6 varied between 0.37 and 48. The average total colony-forming cell (CFC) production per CAFC at week 6 varied between 1.2 and 730, as determined in parallel LTC. In contrast to LPs, bone marrow samples generated 4.2 to 48 CFC per CAFC at week 6. Notably, a poor stem cell quality was consistently found in LPs that contained less than 5,000 CAFC week 6 per kilogram of body weight. Frequency analyses of CFCs, CAFC subtypes, and immunophenotypic subsets showed a good level of mutual correlation, suggesting identical mobilization kinetics of different stem cell subsets. The premobilization chemotherapy intensity was directly correlated with both decreasing frequency and quality of the CAFC week 6 in LPs. The frequency of CFCs, immunophenotypic subsets, and CAFC subsets transplanted and the transplant quality as determined in LTC assays was related to the neutrophil and platelet recovery time after PBSC transplantation. Although the number of progenitor cells transplanted and the in vitro transplant quality showed the best correlation with early hematopoietic recovery, the data did not permit determination of which stem cell subsets are predominantly responsible for early posttransplantation recovery. As a result, frequency and quality analysis of stem cell subsets may be a useful tool to monitor and calibrate the efficacy of novel mobilization regimens and ex vivo manipulation of PBSC.  相似文献   

14.
Katayama  N; Shih  JP; Nishikawa  S; Kina  T; Clark  SC; Ogawa  M 《Blood》1993,82(8):2353-2360
We have analyzed c-kit expression by hematopoietic progenitors from normal and 5-fluorouracil (5-FU)-treated mice by staining with monoclonal anti-c-kit antibody ACK-4. Marrow cells that were enriched for progenitors by a combination of metrizamide density separation and negative immunomagnetic selection with lineage-specific monoclonal antibodies (MoAbs) were separated into three populations based on the level of c-kit expression, c-kit(high), c-kit(low), and c-kit-. The majority of colony-forming cells from normal mice were in c-kit(high) population, whereas most of the progenitors from 5-FU-treated mice were in the c-kit(low) population. Optimal colony formation from c-kit(low) cells from 5-FU-treated mice required the interactions of at least two factors among interleukin-3 (IL-3), IL-11 and steel factor (SF) whereas colony formation from c-kit(high) cells of normal mice was supported well by IL-3 alone. Blast cells that were derived from 5-day culture of c-kit(low) post 5-FU cells were c-kit(high). These observations suggest that the primitive hematopoietic progenitors in cell cycle dormancy are c-kit(low) whereas actively cell cycling maturer progenitors are c- kit(high). Mature cells, with the exception of mast cells, derived from secondary culture of the c-kit(high) blast cells expressed little, if any, c-kit. These results are consistent with a model in which c-kit expression progresses from low levels on primitive, dormant multipotent progenitors to high levels on later, actively cycling progenitors, and finally, decreases to very low or undetectable levels on most mature blood cells, with the exception of mast cells.  相似文献   

15.
Introduction of genes conferring drug resistance into hematopoietic cells may allow for improved chemotherapy by protection of normally drug-sensitive cells from the toxic side-effects of antitumor agents. We recently reported that transplantation of murine marrow transgenic for drug-resistant dihydrofolate reductase (DHFR) protected mice from lethal doses of methotrexate (MTX), demonstrating the feasibility of imparting drug resistance to recipients of marrow expressing drug-resistant DHFR activity. In order to optimize this strategy it is necessary to identify the hematopoietic cell populations which mediate drug resistance. For this purpose, we separated committed progenitor populations from primitive hematopoietic cells in DHFR transgenic marrow by counterflow elutriation (CE). As expected, supplementation with a fraction containing committed progenitors afforded protection from MTX-induced aplasia observed early after transplantion in animals administered MTX. In contrast, supplementation with a fraction containing primitive hematopoietic cells depleted of committed progenitors failed to provide immediate protection from early aplasia, but instead contributed to drug resistance 4 to 5 weeks after transplantation. The presence of primitive hematopoietic progenitors in both fractions was evident from Southern hybridization analysis for donor transgenic cells 2 months post-transplant. We conclude that protection from aplasia associated with MTX administration immediately after transplantation requires expression of drug-resistant DHFR activity in more differentiated, committed hematopoietic cells, while primitive DHFR transgenic progenitors contribute to long-term drug resistance. These results help to define the appropriate target cells for improved chemotherapy by protection of hematopoietic cells through the introduction of new genes conferring drug resistance.  相似文献   

16.
In the past, the analysis of primitive human hematopoietic progenitor cells with repopulating activity was limited by lack of appropriate in vitro assay systems. It was recently shown that cobblestone area- forming cells (CAFC) giving rise to cobblestone areas after 5 weeks in long-term marrow cultures (LTMC) represent a population of pluripotent progenitor cells with long-term marrow-repopulating activity. We have used a microtiter limiting dilution-type human LTMC system to quantitate the frequency of CAFC (week 5) in aplastic anemia (AA). In bone marrow mononuclear cells (BM-MNC) of healthy donors (n = 36) we observed a mean frequency of 84.4 CAFC per 10(5) BM-MNC (95% confidence interval limits, 66.4 to 102.4). The mean frequency of CAFC in BM of 31 AA patients was 6.6 per 10(5) BM-MNC (95% confidence interval limits, 5.3 to 7.9; n = 47). This frequency is significantly lower as compared with controls (P < .0001). The frequency of CAFC was reduced not only in pancytopenic AA patients (6.2 per 10(5) BM-MNC; P < .0001 v control), but also in patients in remission after immunosuppression (7.6; P < .0001 v control; P = .1 v pancytopenic AA patients). The CAFC frequency did not correlate with the severity or duration of the disease and did not predict response to immunosuppressive treatment. In summary, the frequency of primitive hematopoietic progenitor cells, as measured by the CAFC assay, is significantly reduced in AA. CAFC remain severely reduced even after hematologic recovery after immunosuppressive treatment. The low frequency of CAFC in remission patients is in keeping with other data pointing to a persisting defect of hematopoiesis in patients in remission after immunosuppressive treatment.  相似文献   

17.
OBJECTIVE: We hypothesized that the presence of tumor cells in bone marrow (BM) could alter hematopoietic progenitor cell functions. Therefore, we evaluated phenotypic and in vitro functional properties of BM-derived CD34+ progenitors issued from untreated and newly diagnosed patients presenting a mature B-lymphoproliferative disorder (LPD) involving the BM (Inv+). PATIENTS AND METHODS: In vitro proliferation and differentiation capacities of primitive and committed progenitors were evaluated by cobblestone area-forming cell (CAFC) and colony-forming cell (CFC) assays, and ex vivo cell expansion. Migratory capacities of CD34+ cells were explored by chemotaxis assays using a CXCL12alpha gradient. RESULTS: Our results showed that CD34+ cells from Inv+ patients overexpressed CD117 and had a significant decrease of week-3 and -6 CAFC, and CFC frequencies, compared to cells obtained from healthy volunteers and LPD patients without BM involvement (Inv-). In addition, progenitors from Inv+ patients maintained a significantly decreased CFC capacity after ex vivo cell expansion, compared to healthy volunteers. However, the former cells held their migratory capacity in response to CXCL12alpha. CONCLUSION: Functional defects of primitive and committed CD34+ progenitors detected among LPD patients with BM tumor involvement suggest either that tumor cells may induced bystander effects on progenitors or that "unusual" CD34+ cells may exist in the BM that could belong to the proliferating tumor tissue.  相似文献   

18.
Du  XX; Scott  D; Yang  ZX; Cooper  R; Xiao  XL; Williams  DA 《Blood》1995,86(1):128-134
Interleukin-11 (IL-11) is a bone marrow microenvironment-derived growth factor with pleiotropic effects on a variety of hematopoietic cells. To more accurately assess the effects of IL-11 on stem and progenitor compartments within the hematopoietic microenvironment (HM), we added recombinant human (rh) IL-11 to human and murine long-term bone marrow cultures (LTMC) and analyzed primitive (high proliferative potential- colony forming cells [HPP-CFC], long-term culture-initiating cells [LTC- IC], and long-term reconstituting stem cells) and progenitor (day 12 colony forming unit-spleen [CFU-S12], colony forming unit-megakaryocyte [CFU-Mk] and colony forming unit-granulocyte/macrophage [CFU-GM]) compartments throughout the duration of the cultures. rhIL-11 (100 ng/mL) added twice weekly resulted in significantly increased nonadherent (NA) cellularity, CFU-GM, and CFU-Mk production in human LTMC. Addition of rhIL-11 to murine LTMC was associated with a 5- to 40- fold increase in CFU-GM and a four- to 20-fold increase in day 12 CFU-S in NA cells. However, IL-11 had no significant effect on total HPP-CFC concentration and decreased the size of the more primitive stem/progenitor compartment as evidenced by both decreased LTC-IC frequency in human LTMC and decreased frequency of long-term reconstituting stem cells in murine LTMC. These data suggest that IL-11 may increase commitment of stem cells into a multipotential progenitor compartment.  相似文献   

19.
van der Loo  JC; Ploemacher  RE 《Blood》1995,85(9):2598-2606
The cobblestone-area forming cell (CAFC) assay permits a direct measurement of the seeding of primitive and more mature murine hematopoietic stem cell subsets by comparing the number of CAFC in the original transplant with the number of CAFC retrieved from bone marrow (BM) and spleen after transplantation. We found no differences in seeding efficiency between the more mature and primitive CAFC subsets, nor between seeding efficiencies of stem cells from low-density (LD) fractions of normal and day-6 post-5-fluorouracil BM. The data show that 18% to 20% of all intravenously transplanted stem cell subsets seed to the BM, whereas 8% to 10% seed to the spleen. In addition, similar seeding efficiencies were found for day-12 spleen colony- forming unit (CFU-S-12) as was determined by retransplantation. Previously, it has been reported that a 2- to 3-hour preincubation of BM with interleukin-3 (IL-3) enhances the in vivo repopulating ability of a graft. To test whether hematopoietic growth factors affected this increased engraftment by enhancing the seeding of the transplanted marrow, we assessed the 16- to 18-hour seeding efficiency of short- and long-term in vivo repopulating stem cell subsets to BM and spleen using the CAFC assay, after preincubation with or without hematopoietic growth factors. A 2- to 3-hour preincubation with IL-3, or a combination of IL-3, IL-12, and steel factor, at 37 degrees C, led to a substantial decrease in seeding compared with control (which was kept on ice) of all hematopoietic subsets measured, both in spleen and BM. In concert with these data, the long-term in vivo repopulating ability of growth-factor incubated BM was also decreased when compared with control. In conclusion, we have been unable to observe a beneficial effect of growth factor preincubation on the repopulating ability of a graft.  相似文献   

20.
OBJECTIVE: Ionizing radiation (IR) and busulfan (BU) are commonly used as preconditioning regimens for bone marrow transplantation (BMT). We examined whether induction of apoptosis in murine bone marrow (BM) hematopoietic cells contributes to IR- and BU-induced suppression of their hematopoietic function. METHODS: The hematopoietic functions of hematopoietic stem cells (HSCs) and progenitors were analyzed by the cobblestone area-forming cell (CAFC) assay. Apoptosis was determined by measuring 3,3'-dihexyloxacarbocyanine iodide (DiCO6) uptake, annexin V staining, and/or sub-G(0/1) cells. Four cell types were studied: murine BM mononuclear cells (BM-MNCs), linage-negative hematopoietic cells (Lin-) cells), Lin- Scal+ c-kit+ cells, and Lin- Scal- c-kit+ cells by flow cytometry. RESULTS: Exposure of BM-MNCs to IR (4 Gy) or incubation of the cells with BU (30 microM) resulted in a significant reduction in CAFC frequency (p<0.001). The survival fractions of various day-types of CAFC for the irradiated cells were less than 10%, while that for BU-treated cells was 71.3% on day 7 and progressively declined to 5.3% on day 35. Interestingly, IR significantly induced apoptosis in BM-MNCs, Lin- cells, HSCs, and progenitors, whereas BU failed to increase apoptosis in these cells. In addition, preincubation of BM-MNCs with z-Val-Ala-Asp (OCH3)-fluoromethylketone, methyl ester (z-VAD) attenuated IR-induced reduction in CAFC but not that induced by BU. CONCLUSION: IR and BU differentially suppress the hematopoietic function of HSCs and progenitors by fundamentally different mechanisms. IR inhibits the function primarily by the induction of HSC and progenitor apoptosis. In contrast, BU suppresses HSC and progenitor function via an apoptosis-independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号