首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A potassium channel (SynK) of the cyanobacterium Synechocystis sp. PCC 6803, a photoheterotrophic model organism for the study of photosynthesis, has been recently identified and demonstrated to function as a potassium selective channel when expressed in a heterologous system and to be located predominantly to the thylakoid membrane in cyanobacteria. To study its physiological role, a SynK-less knockout mutant was generated and characterized. Fluorimetric experiments indicated that SynK-less cyanobacteria cannot build up a proton gradient as efficiently as WT organisms, suggesting that SynK might be involved in the regulation of the electric component of the proton motive force. Accordingly, measurements of flash-induced cytochrome b(6)f turnover and respiration pointed to a reduced generation of ΔpH and to an altered linear electron transport in mutant cells. The lack of the channel did not cause an altered membrane organization, but decreased growth and modified the photosystem II/photosystem I ratio at high light intensities because of enhanced photosensitivity. These data shed light on the function of a prokaryotic potassium channel and reports evidence, by means of a genetic approach, on the requirement of a thylakoid ion channel for optimal photosynthesis.  相似文献   

3.
4.
To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl-acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 10(9) cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production.  相似文献   

5.
6.
We designed and constructed a controllable inducing lysis system in Synechocystis sp. PCC 6803 to facilitate extracting lipids for biofuel production. Several bacteriophage-derived lysis genes were integrated into the genome and placed downstream of a nickel-inducible signal transduction system. We applied 3 strategies: (i) directly using the phage lysis cassette, (ii) constitutively expressing endolysin genes while restricting holin genes, and (iii) combining lysis genes from different phages. Significant autolysis was induced in the Synechocystis sp. PCC 6803 cells with this system by the addition of NiSO4. Our inducible cyanobacterial lysing system eliminates the need for mechanical or chemical cell breakage and could facilitate recovery of biofuel from cyanobacteria.  相似文献   

7.
8.
Positive phototaxis systems have been well studied in bacteria; however, the photoreceptor(s) and their downstream signaling components that are responsible for negative phototaxis are poorly understood. Negative phototaxis sensory systems are important for cyanobacteria, oxygenic photosynthetic organisms that must contend with reactive oxygen species generated by an abundance of pigment photosensitizers. The unicellular cyanobacterium Synechocystis sp. PCC6803 exhibits type IV pilus-dependent negative phototaxis in response to unidirectional UV-A illumination. Using a reverse genetic approach, together with biochemical, molecular genetic, and RNA expression profiling analyses, we show that the cyanobacteriochrome locus (slr1212/uirS) of Synechocystis and two adjacent response regulator loci (slr1213/uirR and the PatA-type regulator slr1214/lsiR) encode a UV-A-activated signaling system that is required for negative phototaxis. We propose that UirS, which is membrane-associated via its ETR1 domain, functions as a UV-A photosensor directing expression of lsiR via release of bound UirR, which targets the lsiR promoter. Constitutive expression of LsiR induces negative phototaxis under conditions that normally promote positive phototaxis. Also induced by other stresses, LsiR thus integrates light inputs from multiple photosensors to determine the direction of movement.  相似文献   

9.
10.
To optimize photosynthesis, cyanobacteria move toward or away from a light source by a process known as phototaxis. Phototactic movement of the cyanobacterium Synechocystis PCC6803 is a surface-dependent phenomenon that requires type IV pili, cellular appendages implicated in twitching and social motility in a range of bacteria. To elucidate regulation of cyanobacterial motility, we generated transposon-tagged mutants with aberrant phototaxis; mutants were either nonmotile or exhibited an "inverted motility response" (negative phototaxis) relative to wild-type cells. Several mutants contained transposons in genes similar to those involved in bacterial chemotaxis. Synechocystis PCC6803 has three loci with chemotaxis-like genes, of which two, Tax1 and Tax3, are involved in phototaxis. Transposons interrupting the Tax1 locus yielded mutants that exhibited an inverted motility response, suggesting that this locus is involved in controlling positive phototaxis. However, a strain null for taxAY1 was nonmotile and hyperpiliated. Interestingly, whereas the C-terminal region of the TaxD1 polypeptide is similar to the signaling domain of enteric methyl-accepting chemoreceptor proteins, the N terminus has two domains resembling chromophore-binding domains of phytochrome, a photoreceptor in plants. Hence, TaxD1 may play a role in perceiving the light stimulus. Mutants in the Tax3 locus are nonmotile and do not make type IV pili. These findings establish links between chemotaxis-like regulatory elements and type IV pilus-mediated phototaxis.  相似文献   

11.
12.
Light-dependent regulation of a growing number of chloroplast enzymatic activities has been found to occur through the reversible reduction of intra- or intermolecular disulphides by thioredoxins. In cyanobacteria, despite their similarity to chloroplasts, no proteins have hitherto been shown to interact with thioredoxins, and the role of the cyanobacterial ferredoxin/thioredoxin system has remained obscure. By using an immobilized cysteine 35-to-serine site-directed mutant of the Synechocystis sp. PCC 6803 thioredoxin TrxA as bait, we screened the Synechocystis cytosolic and peripheral membrane protein complements for proteins interacting with TrxA. The covalent bond between the isolated target proteins and mutated TrxA was confirmed by nonreducing/reducing two-dimensional SDS/PAGE. Thus, we have identified 18 cytosolic proteins and 8 membrane-associated proteins as candidate thioredoxin substrates. Twenty of these proteins have not previously been associated with thioredoxin-mediated regulation. Phosphoglucomutase, one of the previously uncharacterized thioredoxin-linked enzymes, has not earlier been considered a target for metabolic control through disulphide reduction. In this article, we show that phosphoglucomutase is inhibited under oxidizing conditions and activated by DTT and reduced wild-type TrxA in vitro. The results imply that thioredoxin-mediated redox regulation is as extensive in cyanobacteria as in chloroplasts but that the subjects of regulation are largely different.  相似文献   

13.
The entire pathway for the synthesis of a fluorescent holophycobiliprotein subunit from a photosynthetic cyanobacterium (Synechocystis sp. PCC6803) was reconstituted in Escherichia coli. Cyanobacterial genes encoding enzymes required for the conversion of heme to the natural chromophore 3Z-phycocyanobilin, namely, heme oxygenase 1 and 3Z-phycocyanobilin:ferredoxin oxidoreductase, were expressed from a plasmid under control of the hybrid trp-lac (trc) promoter. Genes for the apoprotein (C-phycocyanin alpha subunit; cpcA) and the heterodimeric lyase (cpcE and cpcF) that catalyzes chromophore attachment were expressed from the trc promoter on a second plasmid. Upon induction, recombinant E. coli used the cellular pool of heme to produce holo-CpcA with spectroscopic properties qualitatively and quantitatively similar to those of the same protein produced endogenously in cyanobacteria. About a third of the apo-CpcA was converted to holo-CpcA. No significant bilin addition took place in a similarly engineered E. coli strain that lacks cpcE and cpcF. This approach should permit incisive analysis of many remaining questions in phycobiliprotein biosynthesis. These studies also demonstrate the feasibility of generating constructs of these proteins in situ for use as fluorescent protein probes in living cells.  相似文献   

14.
The family of the PII signal transduction proteins contains the most highly conserved signaling proteins in nature. The cyanobacterial PII-homologue transmits signals of the cellular nitrogen status and carbon status through phosphorylation of a seryl-residue. To identify the enzyme responsible for dephosphorylation of the phosphorylated PII protein in Synechocystis PCC 6803, prospective phosphatase encoding genes were inactivated by targeted insertion of kanamycin resistance cassettes. Disruption of ORF sll1771 generates a mutant unable to dephosphorylate PII under various experimental conditions. On the basis of conserved signature motifs, the sll1771 product (termed PphA) is a member of the protein phosphatase 2C (PP2C) superfamily, which is characterized by Mg(2+)/Mn(2+)-dependent catalytic activity. Biochemical analysis of overexpressed and purified PphA confirms its PP2C-type enzymatic properties and demonstrated its reactivity toward the phosphorylated PII protein. Thus, PphA is the first protein phosphatase in Synechocystis PCC 6803 for which the physiological substrate and function is known.  相似文献   

15.
There are four acyl-lipid desaturases in the cyanobacterium Synechocystis sp. PCC 6803. Each of these desaturases introduces a double bond at a specific position, such as the Delta6, Delta9, Delta12, or omicron3 position, in C18 fatty acids. The localization of the desaturases in cyanobacterial cells was examined immunocytochemically with antibodies raised against synthetic oligopeptides that corresponded to the carboxyl-terminal regions of the desaturases. All four desaturases appeared to be located in the regions of both the cytoplasmic and the thylakoid membranes. These findings suggest that fatty acid desaturation of membrane lipids takes place in the thylakoid membranes as well as in the cytoplasmic membranes.  相似文献   

16.
Cloning the whole 3.5-megabase (Mb) genome of the photosynthetic bacterium Synechocystis PCC6803 into the 4.2-Mb genome of the mesophilic bacterium Bacillus subtilis 168 resulted in a 7.7-Mb composite genome. We succeeded in such unprecedented large-size cloning by progressively assembling and editing contiguous DNA regions that cover the entire Synechocystis genome. The strain containing the two sets of genome grew only in the B. subtilis culture medium where all of the cloning procedures were carried out. The high structural stability of the cloned Synechocystis genome was closely associated with the symmetry of the bacterial genome structure of the DNA replication origin (oriC) and its termination (terC) and the exclusivity of Synechocystis ribosomal RNA operon genes (rrnA and rrnB). Given the significant diversity in genome structure observed upon horizontal DNA transfer in nature, our stable laboratory-generated composite genome raised fundamental questions concerning two complete genomes in one cell. Our megasize DNA cloning method, designated megacloning, may be generally applicable to other genomes or genome loci of free-living organisms.  相似文献   

17.
Origin of a chloroplast protein importer   总被引:11,自引:0,他引:11       下载免费PDF全文
During evolution, chloroplasts have relinquished the majority of their genes to the nucleus. The products of transferred genes are imported into the organelle with the help of an import machinery that is distributed across the inner and outer plastid membranes. The evolutionary origin of this machinery is puzzling because, in the putative predecessors, the cyanobacteria, the outer two membranes, the plasma membrane, and the lipopolysaccharide layer lack a functionally similar protein import system. A 75-kDa protein-conducting channel in the outer envelope of pea chloroplasts, Toc75, shares ≈22% amino acid identity to a similarly sized protein, designated SynToc75, encoded in the Synechocystis PCC6803 genome. Here we show that SynToc75 is located in the outer membrane (lipopolysaccharide layer) of Synechocystis PCC6803 and that SynToc75 forms a voltage-gated, high conductance channel with a high affinity for polyamines and peptides in reconstituted liposomes. These findings suggest that a component of the chloroplast protein import system, Toc75, was recruited from a preexisting channel-forming protein of the cyanobacterial outer membrane. Furthermore, the presence of a protein in the chloroplastic outer envelope homologous to a cyanobacterial protein provides support for the prokaryotic nature of this chloroplastic membrane.  相似文献   

18.
Cyanobacteriochromes are a newly recognized group of photoreceptors that are distinct relatives of phytochromes but are found only in cyanobacteria. A putative cyanobacteriochrome, CcaS, is known to chromatically regulate the expression of the phycobilisome linker gene (cpcG2) in Synechocystis sp. PCC 6803. In this study, we isolated the chromophore-binding domain of CcaS from Synechocystis as well as from phycocyanobilin-producing Escherichia coli. Both preparations showed the same reversible photoconversion between a green-absorbing form (Pg, lambda(max) = 535 nm) and a red-absorbing form (Pr, lambda(max) = 672 nm). Mass spectrometry and denaturation analyses suggested that Pg and Pr bind phycocyanobilin in a double-bond configuration of C15-Z and C15-E, respectively. Autophosphorylation activity of the histidine kinase domain in nearly full-length CcaS was up-regulated by preirradiation with green light. Similarly, phosphotransfer to the cognate response regulator, CcaR, was higher in Pr than in Pg. From these results, we conclude that CcaS phosphorylates CcaR under green light and induces expression of cpcG2, leading to accumulation of CpcG2-phycobilisome as a chromatic acclimation system. CcaS is the first recognized green light receptor in the expanded phytochrome superfamily, which includes phytochromes and cyanobacteriochromes.  相似文献   

19.
During oxygenic photosynthesis in cyanobacteria and chloroplasts of plants and eukaryotic algae, conversion of light energy to biologically useful chemical energy occurs in the specialized thylakoid membranes. Light-induced charge separation at the reaction centers of photosystems I and II, two multisubunit pigment-protein complexes in the thylakoid membranes, energetically drive sequential photosynthetic electron transfer reactions in this membrane system. In general, in the prokaryotic cyanobacterial cells, the thylakoid membrane is distinctly different from the plasma membrane. We have recently developed a two-dimensional separation procedure to purify thylakoid and plasma membranes from the genetically widely studied cyanobacterium Synechocystis sp. PCC 6803. Immunoblotting analysis demonstrated that the purified plasma membrane contained a number of protein components closely associated with the reaction centers of both photosystems. Moreover, these proteins were assembled in the plasma membrane as chlorophyll-containing multiprotein complexes, as evidenced from nondenaturing green gel and low-temperature fluorescence spectroscopy data. Furthermore, electron paramagnetic resonance spectroscopic analysis showed that in the partially assembled photosystem I core complex in the plasma membrane, the P700 reaction center was capable of undergoing light-induced charge separation. Based on these data, we propose that the plasma membrane, and not the thylakoid membrane, is the site for a number of the early steps of biogenesis of the photosynthetic reaction center complexes in these cyanobacterial cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号