共查询到20条相似文献,搜索用时 0 毫秒
1.
基于BP神经网络的手势动作表面肌电信号的模式识别 总被引:1,自引:0,他引:1
手势语言在日常生活中有着广泛的应用,本研究利用手势动作时从前臂4块肌肉上获取的4路表面肌电(SEMG)信号,经特征提取并采用BP神经网络,对8种手势动作模式进行了识别。鉴于BP网络具有较强的模式分类能力,而特征提取(幅度绝对值均值、AR模型系数、过零率)又利用了多路肌电信号的信息,实验结果取得了较高的识别正确率,表明所采用的方法是有效的。 相似文献
2.
基于表面肌电信号的手腕动作模式识别 总被引:1,自引:0,他引:1
基于表面肌电信号的肢体动作模式识别是假手仿生控制的基础.为提高动作模式识别率,从肌电信号的产生机理出发,选取分别表征肌电信号形态特征——细节复杂度和整体自似性的近似熵指标和分维数指标,作为模式识别的特征向量;同时提出一种具有增量学习能力的K最近邻(KNN)模型增量学习算法作为模式识别的分类器.在对10位受试者手腕的4个精细动作(腕伸、腕屈、腕内旋、腕外旋)的识别实验中,取得了92.5%以上的正确识别率.同时对增量学习能力对分类器动作模式识别率的影响做对比实验,当假肢使用者生理变化时,以KNN模型增量学习算法作为分类器比采用不具增量学习能力的KNN模型算法的识别率高4.5%.实验表明,该肌电信号动作模式的识别方法方案合理,具有应用价值. 相似文献
3.
目的实现连续手势动作表面肌电信号(surface electromyography,sEMG)的简单有效识别。方法首先推导出测试信号属于手势动作模板的概率密度经验公式,通过数据处理实验确定公式参数,最后设计连续手势识别实验以测试该经验公式用于动作sEMG识别的效果。结果推导出的经验公式在连续手势识别中获得了较好的识别结果,验证了该经验公式用于连续手势动作sEMG信号识别的有效性。结论基于经验公式的方法为实现基于sEMG信号的连续手势识别提供了一种可行的解决方案。 相似文献
4.
目的 利用肌电信号对手部动作进行识别,是控制现代康复假手的关键,其中使用少量电极识别出较多手势又是一难点。为更加充分利用所获得的肌电信息,本文提出一种层级分类方法。方法 首先提出一种基于层级分类的手部肌电信号动作识别方法,该方法首先根据被分类对象的多侧面属性,利用肌电积分值作为特征值,并通过线性判别函数实施预分类;其次建立肌电信号的自回归模型,将模型系数作为特征值,将人工神经网络作为分类器进行细分类;最后进行了对比实验论证。结果 实验结果表明,可以利用2个表面肌电电极以较高的识别率识别出8个常用手部动作。结论 该方法能够以较少的肌电电极识别出较多的动作,比未采用分层方法具有更好的分类效果。 相似文献
5.
目的 本研究针对表面肌电信号的非平稳特性,采用时变参数AR模型的方法对表面肌电信号进行分析,实现对短时表面肌电信号的肌肉疲劳快速评估.方法 应用时变参数模型对10名受试者疲劳前、后的肌电信号进行特征提取,建立时变参数AR模型,并采用递推最小二乘算法求解模型的时变参数,将线性非平稳问题转化为线性时不变问题.结果 以时变参数AR模型的第一个时变参数的均值作为肌肉疲劳的快速指针.实验证明时变参数比传统的中值频率对疲劳反应的灵敏度高(提高范围为37.80%到324.46%).结论 该方法可以实现对短时表面肌电信号的肌肉疲劳快速评估,为腰肌劳损的诊断和康复治疗,以及人体工效学的研究提供一个可靠的工具. 相似文献
6.
对于同一手势不同性别的表面肌电信号差异性较大。为了减小差异性,提出滑动平均能量与能量补偿相结合的方法。本实验共采集10种手势动作的表面肌电信号;利用滑动平均能量对活动段进行检测,并对女性的动作段进行能量补偿;小波包分解采用Db4、Bior3.2、Haar、Sys8、Dmey这5种小波函数提取特征;最后并通过粒子群优化支持向量机进行分类。结果分析表明,能量补偿增大了特征的辨识度,减小了性别差异性,提高了手势识别率。 相似文献
7.
为了提高表面肌电信号(sEMG)手部运动识别的正确率,比较常规的sEMG预处理和特征提取方法,提出一种基于经验模态分解(EMD)和小波包变换(WPT)的sEMG手势识别模型。首先,使用EMD方法将sEMG进行平稳化,得到一系列的固有模态函数。其次,求取各个固有模态函数与原始信号的相关性,选取相关性较高的前4个分量作为有效分量。然后,采用Db3小波函数进行WPT,提取小波包系数中的平均能量、平均绝对值、最大值、均方根和方差等特征。分别采用线性判别分析和支持向量机对12种手部运动进行模式识别。结果表明基于EMD和WPT的sEMG手势识别正确率比直接提取小波包系数中的特征识别正确率高。 相似文献
8.
目的 研究利用前臂及手部表面肌电( surface electromyography,sEMG)信号进行手势识别的方法,以及不同 手势下拇指、食指的关节角度,探讨 sEMG 信号控制外骨骼手的可行性。 方法 采集 20 名健康右利手受试者右侧 前臂及手部 6 块肌肉 sEMG 信号。 提取 sEMG 信号的时域特征值,对比人工神经网络( artificial neural network,
ANN)、K-近邻(K-nearest neighbor, KNN)、决策树(decision tree, DT)、随机森林( random forest, RF)和支持向量机(support vector machine, SVM)等多种分类器对 6 种日常手势进行识别。 同时,采用 Vicon 摄像机跟踪系统捕捉右手拇指、食指运动轨迹,计算拇指、食指关节角度。 结果 利用前臂及手部 sEMG 信号可以实现 6 种手势的模式识别,其中 ANN 分类器的分类预测效果最好,测试集预测精度可达 97. 9% ,Kappa 系数可达 0. 975。 同时,计算得到不同手势下拇指、食指的关节角度,并进行不同手势下关节角度相关性分析。 结论 利用前臂及手部 sEMG 信号进
行手势识别,能够实现具有几乎完全一致的分类预测结果。 研究结果证明了 sEMG 信号手势识别应用于外骨骼手
控制的可行性。 相似文献
9.
10.
基于运动神经元激励的表面肌电信号仿真研究 总被引:1,自引:0,他引:1
以单纤维动作电位的仿真为基础,结合运动单位的生理结构特点,利用神经肌肉系统激励与运动单位募集、发放间的近似关系,建立一个比较符合生理学特性的表面肌电(sEMG)信号模型,以仿真不同激励情况的sEMG信号.仿真实验发现,肌纤维与电极间距离的增加将使皮肤表面检测到的动作电位峰值下降;随着激励水平的提高,与仿真sEMG信号相关的收缩力逐渐增大,且仿真sEMG信号的时域波形以及频谱也与真实sEMG信号相似.实验结果表明仿真sEMG信号能够较有效地逼近真实sEMG信号,可用于运动单位发放检测等相关研究领域. 相似文献
11.
为了提高动作表面肌电信号的识别率,提出一种将最大李雅普诺夫指数和多尺度分析结合的方法。从非线性和非平稳的角度出发,引入多尺度最大李雅普诺夫指数特征,并应用到人体前臂6类动作表面肌电信号的模式识别中。首先利用希尔伯特-黄变换,对原始信号进行经验模态分解,即多尺度分解;然后利用非线性时间序列分析方法,计算多尺度最大李雅普诺夫指数;最后将多尺度最大李雅普诺夫指数作为特征向量,输入支持向量机进行识别。平均识别率达到97.5%,比利用原始信号的最大李雅普诺夫指数进行识别时提高了3.9%。结果表明,利用多尺度最大李雅普诺夫指数对动作表面肌电信号进行模式识别效果良好。 相似文献
12.
利用AR模型提取控制用肌电信号的特征 总被引:1,自引:1,他引:1
赵光宙 《北京生物医学工程》1989,8(3):136-142
肌电信号往往作为控制信号源用于肢体运动功能的康复,本文中提出的用AR模型提取肌电信号的特征用于控制目的是一种有效的方法,便于实现多种功能的控制。文中详细介绍了应用快速横向最小二乘(FTF)标法,建立肌电信号AR模型的原理,以及在截瘫病人步行系统中的具体应用。 相似文献
13.
杜妍辰 《生物医学工程学进展》2023,(2):158-162
智能膝关节假肢是截肢患者恢复日常运动的重要辅具。对人体下肢运动意图的识别是实现下肢假肢控制的关键。该文针对此问题,提出了一种通过表面肌电信号预测膝关节角度的方法。对表面肌电提取时域特征,通过 BP 神经网络模型建立平地行走过程中表面肌电信号和膝关节角度的映射关系,预测膝关节角度。 相似文献
14.
基于小波分析与神经网络相结合的表面肌电信号识别的研究 总被引:3,自引:0,他引:3
表面肌电信号是从人体骨骼肌表面通过电极记录下来的神经肌肉活动发放的生物电信号,具有非平稳性和复杂性的特点。本研究通过使用小波分析与神经网络相结合的方法,识别正常肌电信号与疲劳肌电信号。实验表明,将小波分解后的肌电信号代替原始肌电信号,能明显提高神经网络对肌电信号的识别准确率。 相似文献
15.
针对表面肌电信号的非平稳特性,采用自回归模型对表面肌电信号进行分析,对短时间内的表面肌电信号肌肉疲劳迅速做出判定。应用非平稳时间序列的时变系统建模方法对10例受试者疲劳前、疲劳后表面肌电信号进行特征提取。建立时变参数自回归模型,通过引入Legendre基函数将线性非平稳过程参数辨识转化为线性时不变系统参数辨识,结合相关指数可以获得时变系统参数估计的最优Legendre基函数维数,进而可以获得最佳模型拟合效果,并采用最小二乘法解出时不变参数。用疲劳前、后的自回归模型的第一个时变参数(ARC1)的变化率作为检测肌肉疲劳敏感性指标,并采用双尾t检验,分别与平均功率频率(MPF)和中值频率(MF)的变化率进行统计学对比分析。结果表明, ARC1、MPF和MF疲劳前后的变化率分别为34.33%±2.41%、25.68%±2.03%、22.80%±2.19%,且ACR1的变化率分别显著高于MPF和MF(P<0.05).所提出的方法通过表面肌电信号对肌肉疲劳检测时,具有时间短和敏感性高等优点,可用于在线实时分析肌肉疲劳程度,为肢肌肉劳损的评估、康复治疗及人体工效学的研究提供一个潜在的分析工具。 相似文献
16.
目的为提高假肢系统对动作信号的识别速度,设计了基于优化蚁群算法(ant colonyoptimization,ACO)的特征选择法,对表面肌电信号(surface electromyography,sEMG)高维特征向量降维以减少计算负担。方法以特征与目标类型之间互信息关系作为启发函数,通过蚁群算法选出最佳特征子集,最后用已训练好的人工神经网络检验其分类性能。结果对10名健康受试者进行了手腕部动作的肌电信号模式分类实验。与传统主成分分析法(principle component analysis,PCA)相比,该算法选出的特征子集提高了识别准确率,并显著降低了原始特征集的特征维数,进而简化分类器的结构,减少计算开销。结论本方法在实时性要求高的肌电控制假肢等系统中具有良好的应用前景。 相似文献
17.
表面肌电信号的分析与应用 总被引:8,自引:0,他引:8
表面肌电信号的检测是一种无创电检测方法,它的检测分析对临床诊断及康复医学、运动医学等具有重要意义。本文介绍了表面肌电的信号分析方法(时域分析法、频域分析法、时频分析法及人工神经网络等方法),并介绍了表面肌电信号检测分析的应用状况和前景展望。 相似文献
18.
19.
基于神经网络和递归模板对准技术的表面肌电信号分解 总被引:1,自引:0,他引:1
为了提高表面肌电信号(surface electromyography, sEMG)分解的准确率,我们利用空间相邻两通道sEMG信号的信息,采用联合低频小波分解系数作为运动单位动作电位(motor unit action potential, MUAP)活动段的特征,并将自组织特征映射(self-organizing feature map, SOFM)与学习向量量化(learning vector quantization, LVQ)网络结合起来,完成对MUAP波形的分类.同时为了实现对sEMG信号分解的完整性,采用一种基于递归的模板对准技术分解叠加波形.仿真信号和真实信号的实验表明,本方法具有较高的分解准确率,对于中低收缩力度下sEMG信号的分解十分有效. 相似文献
20.
本文针对表面肌电信号的非平稳特性,采用时变参数AR模型对表面肌电信号进行分析,将线性非平稳问题转化为线性时不变问题,并采用递推最小二乘算法求解模型的时变参数.在此基础上,提出了结合奇异值分解进行参数优化,进而进行模式分类的方法.能够成功地区分下腰痛患者治疗前后的状态,为下腰痛的诊断、治疗与康复判定奠定了一定的基础. 相似文献