共查询到20条相似文献,搜索用时 15 毫秒
1.
目的基于平面波发射/接收原理的超快超声成像技术近年来已成为国际医学超声领域的研究热点,有望取代传统的聚焦扫描式超声成像技术。传统方式受其成像模式的限制,无法实现高帧频成像,而通过平面波发射以及相干复合方法,可大大提高超声成像的帧频。本文提出一个新的设想,即采用高程方向无聚焦换能器(non-elevation-focused probe,NEFP),相对于传统的高程方向有聚焦换能器(elevation-focused probe,EFP),可能有助于进一步提高超快超声成像技术的成像效果。方法首先简要介绍平面波相干复合成像的原理和方法,进而通过FieldⅡ软件仿真,验证相干复合成像方法对平面波成像图像质量的提升效果。最后,通过仿真和实验实现探头高程方向的发射声束聚焦模式,并对上述2种模式换能器的平面波成像效果进行了对比分析。结果使用平面波复合成像算法得到很好的成像效果,两种探头经对比,NEFP探头成像图像的对比度相对于EFP探头明显增强。结论对于超快超声成像方法,使用NEFP超声探头可以取得更优的成像效果。 相似文献
2.
The objective of this study was to investigate muscle and tendon stiffness in the triceps surae muscles in patients who had
previously had a stroke. The participants were 12 men showing slight to moderate degrees of muscle tonus in the affected leg.
All patients showed minimal or no overt clinical motor symptoms, and all walked without mechanical aid. Muscle strengths in
isometric and isokinetic activities were measured, as was passive resistance during plantarflexion in each leg. Walking speed
was also measured. Evaluations of physical performance and muscle tone were made. Muscle and tendon stiffness was calculated
from measurements whilst passively stretching during electrical stimulation, separately for each leg. Muscle strength was
significantly higher in the non-affected than in the affected leg. Muscle stiffness was significantly higher in the affected
leg than in the non-affected leg. Tendon stiffness was significantly higher in the non-affected than in the affected leg.
The higher muscle stiffness in the affected leg might enhance the possibility for storing elastic energy during preactivation.
Lower tendon stiffness in the affected leg might reduce the development of fatigue in movements at low velocities.
Accepted: 13 March 2000 相似文献
3.
BackgroundThere is an increased interest in quantifying and characterizing epicardial fat which has been linked to various cardiovascular diseases such as coronary artery disease and atrial fibrillation. Recently, three-dimensional single-phase Dixon techniques have been used to depict the heart and to quantify the surrounding fat. The purpose of this study was to investigate the merits of a new high-resolution cine 3D Dixon technique for quantification of epicardial adipose tissue and compare it to single-phase 3D Dixon in patients with cardiovascular disease. MethodsFifteen patients referred for clinical CMR examination of known or suspected heart disease were scanned on a 1.5 T scanner using single-phase Dixon and cine Dixon. Epicardial fat was segmented by three readers and intra- and inter-observer variability was calculated per slice. Cine Dixon segmentation was performed in the same cardiac phase as single-phase Dixon. Subjective image quality assessment of water and fat images were performed by three readers using a 4-point Likert scale (1 = severe; 2 = significant; 3 = mild; 4 = no blurring of cardiac structures). ResultsIntra-observer variability was excellent for cine Dixon images (ICC = 0.96), and higher than single-phase Dixon (ICC = 0.92). Inter-observer variability was good for cine Dixon (ICC = 0.76) and moderate for single-phase Dixon (ICC = 0.63). The intra-observer measurement error (mean ± standard deviation) per slice for cine was − 0.02 ± 0.51 ml (− 0.08 ± 0.4%), and for single-phase 0.39 ± 0.72 ml (0.18 ± 0.41%). Inter-observer measurement error for cine was 0.46 ± 0.98 ml (0.11 ± 0.46%) and for single-phase 0.42 ± 1.53 ml (0.17 ± 0.47%). Visual scoring of the water image yielded median of 2 (interquartile range = [Q3-Q1] 2–2) for cine and median of 3 (interquartile range = 3–2) for single-phase (P < 0.05) while no significant difference was found for the fat images, both techniques yielding a median of 3 and interquartile range of 3–2. ConclusionCine Dixon can be used to quantify epicardial fat with lower intra- and inter-observer variability compared to standard single-phase Dixon. The time-resolved information provided by the cine acquisition appears to support the delineation of the epicardial adipose tissue depot. 相似文献
4.
The present study aimed to examine the influences of tendon stiffness, joint stiffness, and electromyographic activity on
jump performances consisting of a single-joint movement. Twenty-four men performed three kinds of unilateral maximal jump
using only the ankle joint (squat jump: SJ; countermovement jump: CMJ; drop jump: DJ) on the sledge apparatus. The relative
differences in the jump height of CMJ and DJ compared to SJ were defined as pre-stretch augmentation. During jumping exercises,
electromyographic activities (mEMG) were recorded from the plantar flexors. Ankle joint stiffness was calculated as the change
in the joint torque divided by the change in ankle joint angle during the eccentric phase of DJ. Achilles tendon stiffness
was measured using ultrasonography during isometric plantar flexion. No significant correlations were found between joint
stiffness and pre-stretch augmentation in both CMJ and DJ. On the contrary, tendon stiffness was significantly correlated
with pre-stretch augmentation in both CMJ ( r = −0.471) and DJ ( r = −0.502). The relative mEMG value of CMJ (to that of SJ) during the concentric phase was significantly correlated with pre-stretch
augmentation ( r = 0.481), although this relationship was not found in DJ. These results suggested that (1) the greater jump height in CMJ
could be explained by both the tendon elasticity and the increased activation level of muscle, (2) tendon elasticity played
a more significant role in the enhancement of jump height during DJ, and (3) joint stiffness was not related to either pre-stretch
augmentation or tendon stiffness. 相似文献
5.
Human first dorsal interosseous muscle was stimulated tetanically using several levels of percutaneous electrical current which produced forces in the muscle-tendon complex of between 30% and 100% of maximum. During the tetanus the muscle was subjected to a small fast stretch. The ratio of the force response to the displacement of the muscle-tendon complex gave a measure of the stiffness of the total complex. An adaptation of the method of Morgan (1977) allowed the stiffness to be separated into two components the stiffness of the muscle fibres and the stiffness of the tendon. The results showed that at full activation the stiffness of the muscle fibres and the tendon are approximately the same. The normalised stiffness values obtained in the experiments compared well with animal data. 相似文献
6.
The mechanical properties of the human arm are regulated to maintain stability across many tasks. The static mechanics of the arm can be characterized by estimates of endpoint stiffness, considered especially relevant for the maintenance of posture. At a fixed posture, endpoint stiffness can be regulated by changes in muscle activation, but which activation-dependent muscle properties contribute to this global measure of limb mechanics remains unclear. We evaluated the role of muscle properties in the regulation of endpoint stiffness by incorporating scalable models of muscle stiffness into a three-dimensional musculoskeletal model of the human arm. Two classes of muscle models were tested: one characterizing short-range stiffness and two estimating stiffness from the slope of the force-length curve. All models were compared with previously collected experimental data describing how endpoint stiffness varies with changes in voluntary force. Importantly, muscle properties were not fit to the experimental data but scaled only by the geometry of individual muscles in the model. We found that force-dependent variations in endpoint stiffness were accurately described by the short-range stiffness of active arm muscles. Over the wide range of evaluated arm postures and voluntary forces, the musculoskeletal model incorporating short-range stiffness accounted for 98 ± 2, 91 ± 4, and 82 ± 12% of the variance in stiffness orientation, shape, and area, respectively, across all simulated subjects. In contrast, estimates based on muscle force-length curves were less accurate in all measures, especially stiffness area. These results suggest that muscle short-range stiffness is a major contributor to endpoint stiffness of the human arm. Furthermore, the developed model provides an important tool for assessing how the nervous system may regulate endpoint stiffness via changes in muscle activation. 相似文献
7.
The present study aimed to investigate the effect of isometric squat training on human tendon stiffness and jump performances.
Eight subjects completed 12 weeks (4 days/week) of isometric squat training, which consisted of bilateral leg extension at
70% of maximum voluntary contraction (MVC) for 15 s per set (10 sets/day). Before and after training, the elongations of the
tendon–aponeurosis complex in the vastus lateralis muscle and patella tendon were directly measured using ultrasonography
while the subjects performed ramp isometric knee extension up to MVC. The relationship between the estimated muscle force
and tendon elongation was fitted to a linear regression, the slope of which was defined as stiffness. In addition, performances
in two kinds of maximal vertical jumps, i.e. squatting (SJ) and counter-movement jumps (CMJ), were measured. The training
significantly increased the volume ( P<0.01) and MVC torque ( P<0.01) of the quadriceps femoris muscle. The stiffness of the tendon–aponeurosis complex increased significantly from 51±22
(mean ± SD) to 59±24 N/mm ( P=0.04), although that of the patella tendon did not change ( P=0.48). The SJ height increased significantly after training ( P=0.03), although the CMJ height did not ( P=0.45). In addition, the relative difference in jump height between SJ and CMJ decreased significantly after training ( P=0.02). These results suggest that isometric squat training changes the stiffness of human tendon–aponeurosis complex in knee
extensors to act negatively on the effects of pre-stretch during stretch-shortening cycle exercises. 相似文献
8.
CONTEXT: Greater musculotendinous stiffness may enhance spinal stretch reflex sensitivity by improving mechanical coupling of the muscle spindle and the stretch stimulus. This heightened sensitivity would correspond with a shorter latency and higher-amplitude reflex response, potentially enhancing joint stability. OBJECTIVE: To compare spinal stretch reflex latency and amplitude across groups that differed in musculotendinous stiffness. DESIGN: Static group comparisons. SETTING: Research laboratory. PATIENTS OR OTHER PARTICIPANTS: Forty physically active individuals (20 men, 20 women). Intervention(s): We verified a sex difference in musculotendinous stiffness and compared spinal stretch reflex latency and amplitude in high-stiffness (men) and low-stiffness (women) groups. We also evaluated relationships between musculotendinous stiffness and spinal stretch reflex latency and amplitude, respectively. MAIN OUTCOME MEASURE(S): Triceps surae musculotendinous stiffness and soleus spinal stretch reflex latency and amplitude were assessed at 30% of a maximal voluntary isometric plantar-flexion contraction. RESULTS: The high-stiffness group demonstrated significantly greater stiffness (137.41 +/- 26.99 N/cm) than the low-stiffness group did (91.06 +/- 20.10 N/cm). However, reflex latency (high stiffness = 50.11 +/- 2.07 milliseconds, low stiffness = 48.26 +/- 2.40 milliseconds) and amplitude (high stiffness = 0.28% +/- 0.12% maximum motor response, low stiffness = 0.31% +/- 0.16% maximum motor response) did not differ significantly across stiffness groups. Neither reflex latency (r = .053, P = .746) nor amplitude (r = .073, P = .653) was related significantly to musculotendinous stiffness. CONCLUSIONS: A moderate level of pretension (eg, 30%) likely eliminates series elastic slack; thus, a greater change in force per unit-of-length change (ie, heightened stiffness) would have minimal effects on coupling of the muscle spindle and the stretch stimulus and, therefore, on spinal stretch reflex sensitivity. It appears unlikely that differences in musculotendinous stiffness influenced spinal stretch reflex sensitivity when initiated from a moderate level of pretension. Consequently, differences in musculotendinous stiffness did not appear to influence dynamic joint stability with respect to reflexive neuromuscular control. 相似文献
9.
Subluxation of the affected shoulder in post-stroke patients is associated with nerve disorders and muscle fatigue. Clinicians must be able to accurately and reliably measure inferior glenohumeral subluxation in patients to provide appropriate treatment. However, quantitative methods for evaluating the laxity and stiffness of the glenohumeral joint (GHJ) are still being developed. The aim of this study was to develop a new protocol for evaluating the laxity and stiffness of the inferior GHJ using ultrasonography under optimal testing conditions and to investigate changes in the GHJ from a commercially available humerus brace and shoulder brace. Multistage inferior displacement forces were applied to create a glide between the most cephalad point on the visible anterosuperior surface of the humeral head and coracoid process in seven healthy volunteers. GHJ stiffness was defined as the slope of the linear regression line between the glides and different testing loads. The testing conditions were defined by different test loading mechanisms ( n = 2), shoulder constraining conditions ( n = 2), and loading modes ( n = 4). The optimal testing condition was defined as the condition with the least residual variance of measured laxity to the calculated stiffness under different testing loads. A paired t-test was used to compare the laxity and stiffness of the inferior GHJ using different braces. No significant difference was identified between the two test loading mechanisms ( t = 0.218, p = 0.831) and two shoulder constraining conditions ( t = ?0.235, p = 0.818). We concluded that ultrasonographic laxity measurements performed using a pulley set loading mechanism was as reliable as direct loading. Additionally, constraining the unloaded shoulder was proposed due to the lower mean residual variance value. Moreover, pulling the elbow downward with loading on the upper arm was suggested, as pulling the elbow downward with the elbow flexed and loading on the forearm may overestimate stiffness and pain in the inferior GHJ at the loading point due to friction between the wide belt and skin. Furthermore, subjects wearing a humerus brace with a belt, which creates the effect of lifting the humerus toward the acromion, had greater GHJ stiffness compared to subjects wearing a shoulder brace without a belt to lift the humerus under the proposed testing conditions. This study provides experimental evidence that shoulder braces may reduce GHJ laxity under an external load, implying that the use of a humeral brace can prevent subluxation in post-stroke patients. The resulting optimal testing conditions for measuring the laxity and stiffness of the GHJ is to constrain the unloaded shoulder and bend the loaded arm at the elbow with loading on the upper arm using a pulley system. 相似文献
11.
The purpose of this study was to determine if changes in triceps-surae tendon stiffness (TST K) could affect running economy (RE) in highly trained distance runners. The intent was to induce increased TST K in a subgroup of runners by an added isometric training program. If TST K is a primary determinant of RE, then the energy cost of running (EC) should decrease in the trained subjects. EC was measured via open-circuit spirometry in 12 highly trained male distance runners, and TST K was measured using ultrasonography and dynamometry. Runners were randomly assigned to either a training or control group. The training group performed 4 × 20 s isometric contractions at 80% of maximum voluntary plantarflexion moment three times per week for 8 weeks. All subjects (mean [( V)dot]text O 2 max dot{V}{text{O}}_{ 2} { max } = 67.4 ± 4.6 ml kg −1 min −1) continued their usual training for running. TST K was measured every 2 weeks. EC was measured in both training and control groups before and after the 8 weeks at three submaximal velocities, corresponding to 75, 85 and 95% of the speed at lactate threshold (sLT). Isometric training did neither result in a mean increase in TST K (0.9 ± 25.8%) nor a mean improvement in RE (0.1 ± 3.6%); however, there was a significant relationship ( r 2 = 0.43, p = 0.02) between the change in TST K and change in EC, regardless of the assigned group. It was concluded that TST K and EC are somewhat labile and change together. 相似文献
12.
This paper proposes the use of a k-space method to obtain the correction for transcranial ultrasound beam focusing. Mirroring past approaches, a synthetic point source at the focal point is numerically excited, and propagated through the skull, using acoustic properties acquired from registered computed tomography of the skull being studied. The received data outside the skull contain the correction information and can be phase conjugated (time reversed) and then physically generated to achieve a tight focusing inside the skull, by assuming quasi-plane transmission where shear waves are not present or their contribution can be neglected. Compared with the conventional finite-difference time-domain method for wave propagation simulation, it will be shown that the k-space method is significantly more accurate even for a relatively coarse spatial resolution, leading to a dramatically reduced computation time. Both numerical simulations and experiments conducted on an ex vivo human skull demonstrate that precise focusing can be realized using the k-space method with a spatial resolution as low as only 2.56 grid points per wavelength, thus allowing treatment planning computation on the order of minutes. 相似文献
13.
1. The purpose of this study was to evaluate the mechanical response to stretch in normal human ankle dorsiflexors at different levels of voluntary contraction. In an active muscle, the total mechanical response is the sum of the intrinsic response from the contractile apparatus, the response from passive tissues, and the reflex mediated response. Each of these components was investigated. 2. The total incremental stiffness was defined as the ratio between the torque increment and the amplitude of the stretch. In 14 subjects the total stiffness increased from approximately 0.6 N.m/deg to approximately 2.5 N.m/deg at 50% of MVC and remained constant (+/- 10%) from 30 to 80% of MVC. 3. The contribution to incremental stiffness from intrinsic muscle properties was measured during electrical stimulation of the deep peroneal nerve at 7-50 Hz. Intrinsic stiffness increased linearly with torque from approximately 0.5 N.m/deg to approximately 2.5 N.m/deg at 80% of MVC. 4. The reflex component (total minus intrinsic stiffness) had a maximum of 0.5-1.5 N.m/deg at 30-50% of MVC and was approximately zero at no and maximal contraction. For intermediate levels of contraction the reflex increased the stiffness with 40-100% of the intrinsic stiffness in this flexor muscle. 5. The reflex contribution to total stiffness began approximately 50 ms after onset of stretch and peaked 150-300 ms after onset of stretch. 6. Total, intrinsic, and reflex mediated stiffness were all nearly independent of the amplitude of stretch in the range from 2 to 7 degrees. The higher stiffness observed for 1 degree stretches could be due to "short range stiffness" of the cross bridges. 7. Stretching of a contracting muscle generates large force increments even for moderate amplitudes of stretch. Approximately half of this force increment is due to the stretch reflex, which makes the muscle stiffer than predicted from the intrinsic stiffness. These findings in human flexor muscles are surprisingly similar to previous findings in extensor muscles of the decerebrate cat. 相似文献
14.
The extracellular matrix network of skeletal muscle and tendon connective tissue is primarily composed of collagen and connects the muscle contractile protein to the bones in the human body. The mechanical properties of the connective tissue are important for the effectiveness of which the muscle force is transformed into movement. Periods of unloading and exercise affect the synthesis rate of connective tissue collagen protein, whereas only sparse information exits regarding collagen protein degradation. It is likely, though, that changes in both collagen protein synthesis and degradation are required for remodeling of the connective tissue internal structure that ultimately results in altered mechanical properties of the connective tissue. Both unloading and exercise lead to increased production of growth factors and inflammatory mediators that are involved in connective tissue remodeling. Despite the fact that non-steroidal anti-inflammatory drugs seem to inhibit the healing process of connective tissue and the stimulating effect of exercise on connective tissue protein synthesis, these drugs are often consumed in relation to connective tissue injury and soreness. However, the potential effect of non-steroidal anti-inflammatory drugs on connective tissue needs further investigation. 相似文献
15.
Plyometric training is commonly used to improve athletic performance; however, it is unclear how each component of the muscle-tendon complex (MTC) is affected by this intervention. The effects of 14?weeks of plyometric training on the passive stiffness of the gastrocnemii muscles and Achilles tendon was determined simultaneously to assess possible local adaptations of elastic properties. The passive force-length relationship of the gastrocnemii MTC and elongation of the gastrocnemii muscles were determined using ultrasonography during passive cyclic stretching in 19 subjects divided into trained (n?=?9) and control (n?=?10) groups. An upward trend in stiffness of the gastrocnemii MTC (P?=?0.09) and a significant increase in the intrinsic gastrocnemii muscle stiffness were found (P?0.05). In contrast, no significant change in gastrocnemii tendon stiffness, or in muscle and tendon geometry, was determined (P?>?0.05). Considering the lack of change in gastrocnemii muscle geometry, the change in the gastrocnemii muscle stiffness may be mainly due to a change in the intrinsic mechanical properties of the muscular tissues. 相似文献
17.
This study evaluated the compliance and stiffness of decellularized canine common carotid artery as well as decellularized canine ureter and compared it with that of polytetrafluoroethylene, elastin gel combined with polylactic acid tube, and canine common carotid artery. To calculate the compliance and stiffness, internal diameters and cross-sectional areas were measured according to changes in the intraluminal pressures using intravascular ultrasound in a closed circuit system equipped with a syringe pump. The pressure-area curve, stiffness parameter beta, and diameter compliance were evaluated. Canine common carotid artery and decellularized canine common carotid artery, as well as decellularized canine ureter, showed a compliant response, a J-shaped curve. However, the latter evidenced different characteristics in the low pressure range. Although the cross-sectional area of the elastin gel combined with polylactic acid tube showed some changes, it did not present a J-shape curve. Polytetrafluoroethylene exhibited a noncompliant response.The results in this study have shown that the compliance in the decellularized matrices was maintained after cell extraction, which demonstrated the importance of the remaining matrix structure in the mechanical properties of decellularized tissue. A clear difference between the decellularized matrices and synthetic materials was noted in terms of the compliance, even in materials composed of relatively elastic materials. 相似文献
19.
Passive stretching is commonly used to increase limb range of movement prior to athletic performance but it is unclear which component of the muscle-tendon unit (MTU) is affected by this procedure. Movement of the myotendinous junction (MTJ) of the gastrocnemius medialis muscle was measured by ultrasonography in eight male participants (20.5 +/- 0.9 years) during a standard stretch in which the ankle was passively dorsiflexed at 1 deg s(-1) from 0 deg (the foot at right angles to the tibia) to the participants' volitional end range of motion (ROM). Passive torque, muscle fascicle length and pennation angle were also measured. Standard stretch measurements were made before (pre-) and after (post-) five passive conditioning stretches. During each conditioning stretch the MTU was taken to the end ROM and held for 1 min. Pre-conditioning the extension of the MTU during stretch was taken up almost equally by muscle and tendon. Following conditioning, ROM increased by 4.6 +/- 1.5 deg (17%) and the passive stiffness of the MTU was reduced (between 20 and 25 deg) by 47% from 16.0 +/- 3.6 to 10.2 +/- 2.0 Nm deg(-1). Distal MTJ displacement (between 0 and 25 deg) increased from 0.92 +/- 0.06 to 1.16 +/- 0.05 cm, accounting for all the additional MTU elongation and indicating that there was no change in tendon properties. Muscle extension pre-conditioning was explicable by change in length and pennation angle of the fascicles but post-conditioning this was not the case suggesting that at least part of the change in muscle with conditioning stretches was due to altered properties of connective tissue. 相似文献
|