首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transdermal naltrexone delivery is desirable in the treatment of narcotic dependence and alcoholism. The purpose of this study was to increase the delivery rate of naltrexone (NTX) across human skin by using a novel prodrug. A duplex "gemini" prodrug of naltrexone was synthesized and evaluated. In vitro human skin permeation rates of naltrexone and prodrug were measured using a flow-through diffusion cell system. Drug concentrations in the skin were quantitated at the end of the diffusion experiment. The prodrug was hydrolyzed on passing through the skin and appeared mainly as naltrexone in the receiver compartment. The prodrug provided a significantly higher naltrexone equivalent flux across human skin in vitro than naltrexone base. The naltrexone equivalent solubilities of naltrexone and the prodrug in the donor solution were not significantly different. No significant increase in drug concentration in the skin after prodrug treatment, as compared to naltrexone, was observed. The naltrexone equivalent permeability from the prodrug exceeded the permeability of naltrexone base by two-fold. Due to the design of this prodrug, toxicities associated with this compound should be nonexistent, because only naltrexone and carbon dioxide (carbonic acid) are released when the prodrug is cleaved.  相似文献   

2.
It has been shown for homologous series of prodrugs that those members who were the more water soluble ones gave the greatest enhancement in topical delivery of the parent drug and not the more lipophilic ones. However, until recently models for topical delivery and equations to predict topical delivery focused only on lipid solubility (S(LIPID)) or partition coefficient (K(OCT:AQ)) and molecular volume (or molecular weight, MW) as parameters. Now several equations (transformed Potts-Guy or Series/Parallel) have been developed which include aqueous solubility (SAQ) as a parameter for predicting flux through skin. Experimental fluxes, solubilities, and MW from seven series of prodrugs have been fit to the transformed Potts-Guy equation to give coefficients for log solubility in isopropyl myristate (log SIPM) and log solubility in water (log SAQ) (0.53 and 0.47, respectively) which show, for parent drugs delivered by prodrugs from IPM in vitro through hairless mouse skin, that water solubility is almost as important as lipid solubility. When the transformed Potts-Guy equation was fit to data for the delivery of NSAID from mineral oil (MO) in vivo through human skin, the coefficients were 0.72 log SMO and 0.28 log SAQ. When the transformed Potts-Guy equation was fit to data for the delivery of their parent drugs by three series of prodrugs from water in vitro through hairless mouse skin the coefficients were 0.66 log S(IPM) and 0.34 log SAQ. Numerous recent examples are also given where more water-soluble members of homologous series of prodrugs give higher flux values from water vehicles in vitro through human skin than the more lipid soluble ones.  相似文献   

3.
The objective of this work was to study the mechanisms of action of iontophoresis and electroporation and their interaction effects on delivery of tacrine hydrochloride in vitro across intact and stripped rat skin. Experiments were done according to a full factorial design, to quantify the effects of iontophoresis (X1), electroporation (X2) and stripped skin (X3) alone and in combination on cumulative drug delivery at 6 h. Mathematical model eliciting the main effects of the factors and their interaction on cumulative tacrine delivery in 6 h shows that all three techniques examined alone have a positive impact on the permeation of tacrine, the greatest enhancement in delivery achieved by iontophoresis. However, iontophoresis in combination with electroporation or skin stripping yielded no improvement in delivery compared to iontophoresis alone. The most significant enhancement is seen when all three methods of assisted delivery are done in combination. Iontophoresis appears to control drug delivery to the exclusion of other enhancement methods. Electroporation appears to cause formation of a large depot of tacrine in the skin.  相似文献   

4.
Naltrexone (NTX) is a potent competitive antagonist with high affinity for the mu-opioid receptor. Therapeutically, NTX is used for the treatment of alcohol dependence and opioid addiction; however, it does not have the ideal physicochemical properties necessary to achieve therapeutic plasma concentrations via the transdermal route. The aim of the present investigation was to evaluate the in vivo transdermal delivery of three 3-O-alkyl ester prodrugs of NTX, including NTX-3-O-acetate (ACE-NTX), NTX-3-O-propionate (PROP-NTX), and NTX-3-O-hexanoate (HEX-NTX) in hairless guinea pigs. The pharmacokinetic parameters for NTX and the 3-O-alkyl ester prodrugs of NTX were determined after intravenous drug administration and topical drug application of transdermal therapeutic systems (TTS) in guinea pigs. The results of the in vivo studies showed mean steady-state plasma concentrations of NTX from NTX, ACE-NTX, PROP-NTX and HEX-NTX at 4.2, 25.2, 16.0, and 8.3 ng/mL, respectively. These NTX plasma concentrations were maintained for 48 h. The results of these in vivo studies demonstrated that ACE-NTX and PROP-NTX prodrugs of NTX were the most promising drug candidates for transdermal delivery.  相似文献   

5.
The feasibility of transdermal iontophoretic delivery of a potent dopamine agonist 5-OH-DPAT was studied in vitro in side by side diffusion cells across human stratum corneum (HSC) and dermatomed human skin (DHS) according to the following protocol: 6 h of passive diffusion, 9 h of iontophoresis and 5 h of passive diffusion. The influences of the following parameters on the flux were studied: donor solution pH, NaCl concentration, drug donor concentration, current density and skin type. A current density of 0.5 mA cm(-2) was used, except for one series of experiments to study the current density effect. Probably due to the influence of the skin perm-selectivity and the competition with H(+), increase in pH from 3 to 5 resulted in a significant increase in flux. Further increase in pH to 6 did not further increase the flux. The iontophoretic transport was found to increase linearly with concentration and current density, providing a convenient way to manage dose titration for Parkinson's disease therapy. Increase in concentration of NaCl dramatically reduced the flux of 5-OH-DPAT as a result of ion competition to the transport. When DHS was used, the iontophoretic transport was less. Also, with DHS the response in flux profile, by switching the current on and off, was shallower than that with HSC. With the optimum condition, a delivery of 104 microg of 5-OH-DPAT per cm(2) patch per hour is feasible, indicating that the therapeutic level could be achieved with a smaller patch size than required in case of rotigotine. Thus, based on this in vitro study, transdermal iontophoretic delivery of 5-OH-DPAT is very promising.  相似文献   

6.
Controlled transdermal iontophoresis by ion-exchange fiber.   总被引:6,自引:0,他引:6  
The objective of this study was to assess the transdermal delivery of drugs using iontophoresis with cation- and anion-exchange fibers as controlled drug delivery vehicles. Complexation of charged model drugs with the ion-exchange fibers was studied as a method to achieve controlled transdermal drug delivery. Drug release from the cation-exchange fiber into a physiological saline was dependent on the lipophilicity of the drug. The release rates of lipophilic tacrine and propranolol were significantly slower than that of hydrophilic nadolol. Permeation of tacrine across the skin was directly related to the iontophoretic current density and drug concentration used. Anion-exchange fiber was tested with anionic sodium salicylate. The iontophoretic flux enhancement of sodium salicylate from the fiber was substantial. As the drug has to be released from the ion-exchange fiber before permeating across the skin, a clear reduction in the drug fluxes from the cationic and anionic fibers were observed compared to the respective fluxes of the drugs in solution. Overall, the ion-exchange fibers act as a drug reservoir, controlling the release and iontophoretic transdermal delivery of the drug.  相似文献   

7.
Recent studies have shown that ultrasound (US)-mediated transdermal drug delivery offers a promising potential for noninvasive drug administration. The purpose of this study was to improve low-frequency (20 kHz) US methods for enhancing the transport of insulin in vitro across human skin. The feasibility of using US produced by small, lightweight novel transducers was explored for enhancing the transport of insulin across skin. Previous investigators have used US devices such as large, heavy sonicators or commercially obtained transducers for this type of research. The experiments carried out in this study used two low-profile novel US transducer arrays, the stack and standard array, for improved transport of insulin. The stack array generated a spatial peak temporal peak intensity (I(SPTP)) of 15.4 +/- 0.6 mW/cm(2) and the standard array had an I(SPTP) of 173.7 +/- 1.2 mW/cm(2). Spectrophotometeric absorption techniques were used for determining insulin transport in vitro across human skin. Compared with passive transmission (4.1 +/- 0.5 U) over an exposure period of 1 h, the standard array facilitated over a sevenfold increase in the noninvasive transdermal transport of Humulin R insulin (45.9 +/- 12.9 U). Using Humalog insulin with the standard array, there was a fourfold increase in the US-facilitated transmission over that in the control. These promising results indicate that low-frequency US can be used in a practical device for enhanced transport across the stratum corneum.  相似文献   

8.
Rapid, controlled molecular transport across human skin is of great interest for transdermal drug delivery and minimally invasive chemical sensing. Short, high-voltage pulses have been shown previously to create localized transport regions in the skin. Here, we show that these regions can be constrained to occur at specific sites using electrically insulating masks that restrict the field lines. The increase in total ionic and molecular transport per area was comparable to the levels observed in unconstrained electroporation of human skin. Constraining the area of intervention to encompass small areas of interest, a primary feature in the design of microdevices for transdermal drug delivery, can provide the same levels of flux as the unconstrained case.  相似文献   

9.
The aim of this work was to study, in vitro and in vivo, the behavior of a skin bioadhesive film containing lidocaine. The film characterization included drug transport studies through skin in vitro and in vivo tape stripping with and without iontophoresis. We studied the effect of drug loading in order to identify the release mechanism. Finally, the release rate was compared with a lidocaine commercial gel, to assess the therapeutic value. From the data obtained it can be concluded that the monolayer film acts as a water-permeable transdermal/dermal patch on application to the skin. The permeation kinetics across the skin was not linear, but the patch acted as a matrix controlling drug delivery. Additionally, the permeation rate increased with drug loading. The in vivo experiments with tape stripping indicated that the presence of water during film application is essential to achieve not only the proper adhesion but also an effective accumulation. The application of electric current to the patch can further increase the amount of drug accumulated in the stratum corneum.  相似文献   

10.
The objective of this study was to explore the electrically assisted transdermal delivery of buprenorphine. Oral delivery of buprenorphine, a synthetic opiate analgesic, is less efficient due to low absorption and large first-pass metabolism. While transdermal delivery of buprenorphine is expected to avoid the first-pass effect and thereby be more bioavailable, use of electrical enhancement techniques (iontophoresis and/or electroporation) could provide better programmability. Another use of buprenorphine is for opiate addiction therapy. However, a patch type device is subject to potential abuse as it could be removed by the addict. This abuse can be prevented if drug particles are embedded in the skin. The feasibility of doing so was investigated by electro-incorporation. Buprenorphine HCl (1 mg/ml) in citrate buffer (pH 4.0) was delivered in vitro across human epidermis via iontophoresis using a current density of 0.5 mA/cm(2) and silver-silver chloride electrodes. Electroporation pulses were also applied in some experiments. For electro-incorporation, drug microspheres or particles were driven into full thickness human skin by electroporation. It was observed that the passive transdermal flux of buprenorphine HCl was significantly enhanced by iontophoresis under anodic polarity. The effectiveness of electro-incorporation seemed inconclusive, with pressure also playing a potential role. Delivery was observed with electro-incorporation, but the results were statistically not different from the corresponding controls.  相似文献   

11.
The aim of this study was to increase the skin penetration of two drugs, granisetron hydrochloride and diclofenac sodium, using a microelectronic device based on an ablation of outer layers of skin using radiofrequency high-voltage currents. These radiofrequency currents created an array of microchannels across the stratum corneum deep into the epidermis. The percutaneous penetration studies were first performed in vitro using excised full thickness porcine ear skin. An array of 100 microelectrodes/cm(2) was used in these studies. The skin permeability of both molecules was significantly enhanced after pretreatment with the radiofrequency microelectrodes, as compared to the delivery through the untreated control skin. Steady state fluxes of 41.6 micro g/cm(2)/h (r=0.997) and 23.0 micro g/cm(2)/h (r=0.989) were obtained for granisetron and diclofenac, respectively. The enhanced transdermal delivery was also demonstrated in vivo in rats. It was shown that diclofenac plasma levels in the pretreated rats reached plateau levels of 1.22+/-0.32 micro g/ml after 3 h to 1.47+/-0.33 micro g/ml after 6 h, as compared to 0.16+/-0.04 micro g/ml levels obtained after 6 h in untreated rats. Similarly, application of granisetron patches (3% in crosslinked hydrogel) onto rats' abdominal skin pretreated with radiofrequency electrodes resulted in an averaged peak plasma level of 239.3+/-43.7 ng/ml after 12 h, which was about 30 times higher than the plasma levels obtained by 24-h passive diffusion of the applied drug. The results emphasize, therefore, that the new transdermal technology is suitable for therapeutic delivery of poorly penetrating molecules.  相似文献   

12.
Melatonin is a good candidate for transdermal drug delivery considering its variable oral absorption, a short biological half-life and extensive first pass metabolism. The purpose of this study was to investigate the effect of various vehicles on the in vitro permeation of melatonin across porcine skin. The skin permeation studies were carried out with vertical diffusion cells using dermatomed porcine skin. The flux of melatonin from isopropyl myristate, Lauroglycol FCC and ethanol were respectively 1.5, 1.4 and 1.3 times higher than that observed with water (P<0.001). However, flux values of melatonin with Labrasol, propylene glycol and mineral oil were significantly lower than that of water (P<0.001). There was no significant difference between the flux of melatonin from the following vehicles: Transcutol, Phosol 50 PG, ethyl oleate, PEG 400 and water (F=0.2082, P>0.05). In general, vehicles with high melatonin solubility showed low permeability coefficient values. The flux had no correlation to the solubility data, suggesting that high solubility values do not translate to high drug permeation. The present study suggests that isopropyl myristate, Lauroglycol FCC and ethanol may be used as potential vehicles in the transdermal delivery of melatonin.  相似文献   

13.
BACKGROUND AND PURPOSE: Iontophoresis is a process that uses bipolar electric fields to propel molecules across intact skin and into underlying tissue. The purpose of this study was to describe and experimentally examine an iontophoresis drug delivery model. SUBJECTS AND METHODS: A mechanistic model describing delivery was studied in vitro using agarose gels and was further tested in vivo by evaluation of cutaneous vasoconstriction following iontophoresis in human volunteers. RESULTS: In vitro cathodic iontophoresis at 4 mA and 0.1 mA each delivered dexamethasone/dexamethasone phosphate (DEX/DEX-P) from a 4-mg/mL donor solution to a depth of 12 mm following a 40 mA minute stimulation dosage. Delivery of DEX/DEX-P to at least the depths of the vasculature in humans was confirmed by observation of cutaneous vasoconstriction. This cutaneous vasoconstriction was longer lasting and greater in magnitude when using low-current, long-duration (approximately 0.1 mA) iontophoresis compared with equivalent dosages delivered by higher-current, shorter-duration (1.5-4.0 mA) iontophoresis. DISCUSSION AND CONCLUSION: From data gathered with the gel model, the authors developed a model of a potential mechanism of drug depot formation following iontophoresis. The authors believe this drug depot formation to be due to exchange of drug ions for chloride ions as the ionic current carriers. Furthermore, diffusion, not magnitude of current, appears to govern the depth of drug penetration. Although the authors did not address the efficacy of the drug delivered, the results of human experiments suggest that current magnitude and duration should be considered as factors in treating musculoskeletal dysfunctions with iontophoresis using DEX/DEX-P at a concentration of 4 mg/mL.  相似文献   

14.
The influence of an erbium:YAG laser on the transdermal delivery of drugs across skin was studied in vitro. Indomethacin and nalbuphine, which have the same molecular weight, were selected as model lipophilic and hydrophilic drugs, respectively, to compare skin permeation by laser treatment. The results indicate a significant increase in the permeation of indomethacin and nalbuphine across skin pretreated with an erbium:YAG laser. The laser had a greater effect on the permeation of hydrophilic molecules which usually possess low permeability. The laser intensity and its spot size were found to play an important role in controlling transdermal delivery of drugs. Permeation of the hydrophilic drug increased following an increase of laser energy. On the other hand, a different result was observed for the lipophilic drug transported across laser-treated skin. The stratum corneum (SC) layer in skin could be partly ablated by the erbium:YAG laser. The barrier function of the SC may also be modulated by a lower intensity of the laser without affecting the viability and structure of the epidermis/dermis as determined by histological observations. However, ultrastructural alteration of the epidermis/dermis may be caused by laser treatment. Use of an erbium:YAG laser is a good method for enhancing transdermal absorption of both lipophilic and hydrophilic drugs, because it allows precise control of SC removal, and this ablation of SC can be reversible to the original normal status.  相似文献   

15.
High-voltage pulses have been shown to increase rates of transport across skin by several orders of magnitude on a time scale of minutes to seconds. Two main pulse protocols have been employed to promote transport: the intermittent application of short ( approximately 1 ms) high-voltage (approximately 100 V across skin) pulses and a few applications of long (=100 ms) medium-voltage (>30 V across skin) pulses. In order to better evaluate the benefits of each protocol for transdermal drug delivery, we compared these two protocols in vitro in terms of changes in skin electrical properties and transport of sulforhodamine, a fluorescent polar molecule of 607 g/mol and a charge of -1. Whereas both protocols induced similar alterations and recovery processes of skin electrical resistance, long pulses of medium-voltage appeared to be more efficient in transporting molecules across skin. Skin resistance decreased by three (short pulses) and two (long pulses) orders of magnitude, followed by incomplete recovery in both cases. For the same total transported charge, long pulses induced faster and greater molecular transport across skin than short pulses. In addition, a greater fraction of the aqueous pathways created by the electric field was involved in molecular transport when using long pulse protocols. Transport was concentrated in localized transport regions (LTRs) for both protocols but LTRs created by long pulses were an order of magnitude larger than those formed by short pulses and the short pulses created an order of magnitude more LTRs. Overall, this study is consistent with the creation of fewer, but larger aqueous pathways by long, medium-voltage pulses in comparison to short, high-voltage pulses.  相似文献   

16.
The objective of the present study was to evaluate the effect of oleic acid modified polymeric bilayered nanoparticles (NPS) on combined delivery of two anti-inflammatory drugs, spantide II (SP) and ketoprofen (KP) on the skin permeation. NPS were prepared using poly(lactic-co-glycolic acid) (PLGA) and chitosan. SP and KP were encapsulated in different layers alone or/and in combination (KP-NPS, SP-NPS and SP+KP-NPS). The surface of NPS was modified with oleic acid (OA) ('Nanoease' technology) using an established procedure in the laboratory (KP-NPS-OA, SP-NPS-OA and SP+KP-NPS-OA). Fluorescent dyes (DiO and DID) containing surface modified (DiO-NPS-OA and DID-NPS-OA) and unmodified NPS (DiO-NPS and DID-NPS) were visualized in lateral rat skin sections using confocal microscopy and Raman confocal spectroscopy after skin permeation. In vitro skin permeation was performed in dermatomed human skin and HPLC was used to analyze the drug levels in different skin layers. Further, allergic contact dermatitis (ACD) model was used to evaluate the response of KP-NPS, SP-NPS, SP+KP-NPS, KP-NPS-OA, SP-NPS-OA and SP+KP-NPS-OA treatment in C57BL/6 mice. The fluorescence from OA modified NPS was observed up to a depth of 240μm and was significantly higher as compared to non-modified NPS. The amount of SP and KP retained in skin layers from OA modified NPS increased by several folds compared to unmodified NPS and control solution. In addition, the combination index value calculated from ACD response for solution suggested an additive effect and moderate synergism for NPS-OA. Our results strongly suggest that surface modification of bilayered nanoparticles with oleic acid improved drug delivery to the deeper skin layers.  相似文献   

17.
Abstract

Context. Bupropion overdose commonly causes generalized seizures and central nervous system depression. Less commonly, cardiotoxicity has been reported. The toxicity of the parent drug compared to its active metabolite hydroxybupropion is uncertain. Case details. A 31-year-old man presented to the emergency department with altered mental status after an intentional overdose of bupropion. Three hours after admission he developed status epilepticus requiring intubation, and 13 h after admission he developed marked widening of the QRS complex and prolongation of the QTc interval. Serial serum bupropion levels peaked with the onset of cardiotoxicity (334 ng/mL) and fell into the therapeutic range within 24 h, which coincided with normalization of his ECG intervals. Levels of the metabolite hydroxybupropion peaked later (4302 ng/mL) and remained elevated even after neurological and cardiotoxic symptoms resolved. Discussion. Cardiotoxicity appears to be caused primarily by bupropion rather than its active metabolite hydroxybupropion.  相似文献   

18.
Because of the increasing bacterial resistance of uropathogens against standard antibiotics, such as trimethoprim (TMP), older antimicrobial drugs, such as nitroxoline (NTX), should be reevaluated. This randomized crossover study investigated the urinary concentrations of parent drugs and their metabolites and their antibacterial activities (urinary inhibitory titers [UITs] and urinary bactericidal titers [UBTs]) against uropathogens at three different urinary pH values within 24 h in six healthy volunteers after a single oral dose of NTX at 250 mg versus TMP at 200 mg. In three additional volunteers, urinary bactericidal kinetics (UBK) were studied after oral administration of NTX at 250 mg three times a day. The mean urinary concentrations of NTX and NTX sulfate in 24 h were 0.012 to 0.507 mg/liter and 0.28 to 27.83 mg/liter, respectively. The mean urinary concentrations of TMP were 18.79 to 41.59 mg/liter. The antibacterial activity of NTX was higher in acidic urine than in alkaline urine, and that of TMP was higher in alkaline urine than in acidic urine. The UITs and UBTs of NTX were generally lower than those of TMP except for a TMP-resistant Escherichia coli strain, for which NTX showed higher UITs/UBTs than did TMP. UBK showed mainly bacteriostatic activity of NTX in urine. NTX exhibits mainly bacteriostatic activity and TMP also shows bactericidal activity in urine against susceptible strains. NTX is a more active antibacterial in acidic urine, and TMP is more active in alkaline urine. The cumulative effects of multiple doses or inhibition of bacterial adherence could not be evaluated. (This study has been registered at EudraCT under registration no. 2009-015631-32.)  相似文献   

19.
The objective of this work was to demonstrate that the efficiency of iontophoretic transport across the skin (which is measured in terms of an ion's transport number), either for drug delivery or for therapeutic drug monitoring, depends implicitly on the molar fraction of the species of interest over a wide range of experimental conditions both in vitro and in vivo. Three sets of data from the literature were assessed to establish the direct relationship between transport number and mole fraction. Linear regression between these parameters yielded slopes which correlated with the charge-carrying efficiency of the ion considered. The latter, furthermore, was proportional to the corresponding aqueous mobility and to the transport number of the ion when it is the sole species available for migration from its electrode solution (the so-called "single-carrier" situation). Finally, the principles illustrated here were equally applicable to in vitro experiments and to in vivo data obtained in a clinically relevant study (specifically, the reverse iontophoretic monitoring of lithiemia in bipolar patients). Not only does this validate an in vitro model typically used in iontophoresis research, it also demonstrates the potential of this approach to predict the feasibility of iontophoretic transport across the skin.  相似文献   

20.
Microemulsions for topical delivery of 8-methoxsalen.   总被引:14,自引:0,他引:14  
8-Methoxsalen (8-MOP) and related furocumarins have been extensively used for the treatment of hyperproliferative skin diseases in association with long-wavelength UVA light. In order to develop alternative formulations for the topical administration of 8-MOP, microemulsions were evaluated as delivery vehicles. Six microemulsion formulations were prepared using water, isopropyl myristate (IPM) and Tween((R)) 80: Span((R)) 80: 1,2-Octanediol (3:1:1.2 w/w). The microemulsions were characterized using conductimetric and dynamic light scattering analyses. The ability of the systems to deliver 8-MOP into and through the skin was evaluated in vitro using newborn pig-skin. The in vitro permeation data showed that the novel microemulsions increased the 8-MOP total penetration through the skin by order of 1.9-4.5, as compared with IPM. In general, the accumulation of 8-MOP into the skin was increased by a factor of 1.5-4.5 by the microemulsion systems with respect to their total amount of drug delivered across the skin. These results suggest that the studied microemulsion systems may be appropriate vehicles for the topical delivery of 8-MOP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号