首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of heparin on osteoclastic bone resorption was studied in vitro using the disaggregated osteoclast resorption assay. Bone resorption was assessed by counting the resorption lacunae on bone slices by light microscopy. Low concentrations of heparin (5 micrograms/ml) increased bone resorption by isolated chick and rat osteoclasts. Among other glycosaminoglycans tested at 5 micrograms/ml, only dextran sulfate showed a small but significant stimulation of resorption. Chondroitin sulfates A, B, and C were without effect at 25 and 100 micrograms/ml, whereas resorption was increased by 100 micrograms/ml of heparan sulfate. With chick osteoclasts, which could be maintained in serum-free conditions, a stimulatory effect of heparin was found both in the presence of 5% fetal calf serum and in serum-free media containing insulin, transferrin, and selenium. The magnitude of the heparin-induced increase in resorption was similar in the presence or absence of serum. The stimulation of resorption was associated with an increase in the number of osteoclasts on bone slices. Pretreatment of the bone slices with heparin also enhanced resorption. In time course experiments, 5 micrograms/ml of heparin caused a doubling of chick osteoclast activity index (number of resorption pits per number of osteoclasts) at 12 and 24 h. In 24 h cultures, treatment with 10 micrograms/ml of the arginine-rich basic protein, protamine, 1 microgram/ml of the immunosuppressant, cyclosporine A, or 5 micrograms/ml of the cysteine-proteinase inhibitor, leupeptin, negated the heparin effect on bone resorption. Leupeptin also inhibited basal resorption.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Transforming growth factor (TGF) beta 1 is a multifunctional cytokine with powerful effects on osteoblastic cells. Its role in the regulation of osteoclast generation and function, however, is unclear. It has been reported both to stimulate and to inhibit resorption in organ culture and to inhibit multinuclear cell formation in bone marrow cultures. We tested the effects of TGF-beta 1 on bone resorption by osteoclasts isolated from neonatal rat long bones. We found potent stimulation of osteoclastic bone resorption, mediated by osteoblastic cells, with an EC50 of 10 pg/ml, considerably lower than that of well-documented osteotropic hormones. Stimulation was not mediated by Swiss mouse 3T3 cells, a nonosteoblastic cell line. TGF-beta 1 strongly inhibited the generation of calcitonin receptor (CTR)-positive cells in mouse bone marrow cultures, but as for isolated osteoclasts, bone resorption per CTR-positive cell was increased. The inhibition of CTR-positive cell formation was associated with suppression of maturation of other bone marrow derivatives and may be related more to the known ability of TGF-beta 1 to suppress the proliferation of primitive hematopoietic cells than to a specific role of TGF-beta 1 in osteoclast generation.  相似文献   

3.
We studied the effect of various synthetic diacylglycerols (DAGs) on bone resorption by rat and chick osteoclasts. l-stearoyl-2-arachidonoyl-sn-glycerol (DAG IV), at a concentration of 100 ΜM, caused a significant reduction in resorption pit number in both species at 6 and 24 hours without any toxic effect. Over a 6-hour incubation period, a significant inhibition was seen at 10 and 100 ΜM in both species. 1,2-dioctanoyl-sn-glycerol (DAG I) and 1, 2-dihexanoyl-sn-glycerol (DAG III) caused a marked inhibition of resorption by rat osteoclasts at 6 hours, but there was recovery of bone-resorptive ability over a 24-hour incubation period. DAGs with the -rac conformation failed to have any effect on bone resorption. In time-lapse video studies, osteoclast motility was not influenced by any of the DAGs at any of the concentrations used. Our results indicate that DAGs with the -sn conformation inhibit bone resorption, and DAGs with the -rac conformation do not. The finding that DAGs, the physiological activators of protein kinase C (PKC), inhibit bone resorption provides further evidence for an important role of the PKC pathway in the regulation of osteoclast activity.  相似文献   

4.
Summary We have studied the effects of cyclosporine A (CsA) on basal and bovine parathyroid hormone (1–34) (bPTH)-stimulated bone resorption by osteoclasts in 24-hour cultures of chick long bone cells. At a high concentration (10 μg/ml), CsA had a cytotoxic effect on both osteoclasts and mononuclear cells in the culture. At 1 μg/ml, CsA inhibited basal and bPTH-stimulated bone resorption but was not cytotoxic over 24 hours. We also studied the binding of bPTH to the osteoblastic cell line, Saos-2, and chick long bone cells in suspension culture. CsA inhibited bPTH binding in Saos-2 in a dose-dependent manner; inhibition of binding was also observed in chick bone cells. The effects of CsA on osteoclast viability and resorptive function may be due to a direct effect on the osteoclasts and/or to an interaction with the nonosteoclastic cell population in the culture.  相似文献   

5.
R J Murrills  D W Dempster 《BONE》1990,11(5):333-344
The aim of this study was to investigate whether a cyclic AMP-mediated inhibitory mechanism is present in embryonic chick osteoclasts and to extend data implicating cyclic AMP in the inhibition of neonatal rat osteoclasts. Dibutyryl cyclic AMP ((Bu)2cAMP) (5 x 10(-4) M and above) and isobutylmethylxanthine (IBMX) (10(-4) M and above) reduced the number of pits made in slices of devitalized bovine cortical bone by chick osteoclasts over 24 h. The effect of forskolin (FSK) on chick osteoclasts was biphasic, 10(-5) M producing a weak and variable reduction in pit number while 10(-6) M and 10(-7) M stimulated resorption. Doses of FSK (10(-5) M) and (Bu)2cAMP (3 x 10(-4) M), which individually produced no consistent significant effect, produced a synergistic and highly significant reduction in pit number when used in combination, implying that these agents were acting through a common mechanism, presumably cyclic AMP. Stimulatory doses of FSK were associated with increased osteoclast numbers, implicating cyclic AMP in the formation of osteoclasts. In comparative experiments using neonatal rat osteoclasts, (Bu)2cAMP (10(-4) M and above), IBMX (10(-3) M) and FSK (10(-7) M and above) all reduced the number of pits excavated. Strongly inhibitory doses of these agents caused contraction of chick osteoclasts into a hemispherical shape; contraction of rat osteoclasts into a stellate shape occurred with (Bu)2cAMP and FSK, but not with IBMX. Our results implicate cyclic AMP in the inhibition of both rat and chick osteoclasts, and show that pit counting in the light microscope is a valid method of analyzing the disaggregated osteoclast resorption assay.  相似文献   

6.
Chicken osteoclasts do not possess calcitonin receptors   总被引:1,自引:0,他引:1  
Osteoclasts freshly isolated from embryonic chicks have been examined for calcitonin receptors using radio-iodine-labeled salmon calcitonin. Calcitonin binding to chick osteoclasts could not be shown by either autoradiography or biochemical binding studies. Furthermore, calcitonin did not stimulate cyclic AMP production. By contrast, rat osteoclasts have abundant calcitonin receptors, and a sensitive cyclic AMP response to calcitonin has been shown previously. It is concluded that chick osteoclasts do not possess calcitonin receptors, a finding which could explain the lack of calcitonin responsiveness observed in other avian osteoclast culture systems.  相似文献   

7.
The question of whether any of the agents known to activate bone resorption in vivo or in organ cultures acts directly on the osteoclast or via intermediate target cells that secondarily secrete locally paracrine factors is important for our understanding of bone remodeling. In an attempt to clarify this issue for some of the agents, we have taken advantage of the recent progress in obtaining and culturing relatively pure populations of osteoclasts. We performed an in vitro bone-resorbing assay in which isolated and partially purified chick osteoclasts were cultured on devitalized, paired and standardized bone disks prepared from rat calvaria prelabeled with both 45Ca and 3H-proline. Some of the isolated osteoclasts attached to the devitalized bone matrix, formed a ruffled border, and acidified the bone-resorbing compartment that they established with the matrix, thereby indicating that they resorbed bone in a physiologic manner. Salmon calcitonin added to these cultures (0.3 U/ml = 60 ng/ml) and prostaglandin E2 (PGE2) (10(-6) M) inhibited both basal and stimulated 45Ca and 3H-proline release. Neither parathyroid hormone (PTH) 1-34 (1 U/ml), 1,25-(OH)2-D3 (10(-8) and 10(-9) M), nor interleukin 1 (IL-1) (purified from P388D1 macrophage culture supernatant fluids or recombinant murine IL-1-alpha) (100 ng/ml) stimulated bone resorption in these cultures. In contrast, supernatant fluids from concanavalin A (Con-A)-activated murine spleen cell cultures (murine osteoclast-activating factor; OAF) consistently and significantly induced a 3- to 5-fold stimulation of bone resorption in this system.  相似文献   

8.
The adenylate cyclase activator forskolin (1-10 mumol/L) inhibited 45Ca release from parathyroid hormone (PTH; 10 nmol/L) stimulated prelabeled neonatal mouse calvaria in short term culture (24 h). This effect of forskolin was potentiated by rolipram, Ro 20-1724, and isobutyl-methylxanthine, three structurally different inhibitors of cyclic AMP phosphodiesterase. Forskolin (10 mumol/L) and calcitonin (30 mU/mL) inhibited the mobilization of stable calcium and inorganic phosphate as well as the release of the lysomal enzymes beta-glucuronidase and beta-N-acetylglucosaminidase from PTH-stimulated unlabeled bones. Osteoclasts in PTH-stimulated calvaria showed active ruffled borders with numerous membrane infoldings. Treatment of PTH-stimulated bones with forskolin and calcitonin resulted in a rapid (2 h) loss of the active ruffled border. In addition, forskolin and calcitonin induced similar changes with respect to the number and size distribution of cytoplasmic vesicles in PTH-activated osteoclasts. After 24 h, all signs of osteoclast inactivation were still prominent, whereas after 48 h of treatment with forskolin or calcitonin, the reappearance of a ruffled border on a number of osteoclasts signaled an escape from the inhibitory action of both calcitonin or forskolin. These data indicate that forskolin inhibits bone resorption by a cyclic AMP dependent mechanism and that the effect of forskolin and calcitonin on bone resorption and osteoclast morphology are comparable. These observations lend further support to the view that cyclic AMP may be an intracellular mediator of the inhibitory action of calcitonin on multinucleated osteoclasts.  相似文献   

9.
Several reports indicate that macrophage colony stimulating factor (MCSF) is one of the major factors required for osteoclast proliferation and differentiation. Paradoxically, it has also been reported that MCSF inhibits osteoclastic activity. We therefore decided to investigate in detail the effects of MCSF on resorption and osteoclast formation to try and clarify this issue. Osteoclast-containing cultures were obtained from rabbit long bones and cultured on plastic culture dishes or devitalized bovine bone slices. MCSF (4-400 ng/ml) stimulated osteoclastic bone resorption in a time-dependent manner and at all doses examined. After 48 h of culture in the presence of MCSF, we observed a 2-fold increase in the total area of bone resorbed, as well as a significant increase in the area of bone resorbed per osteoclast and the number of resorption pits per osteoclast. This effect was paralleled by an increase in the number of larger osteoclasts (as determined by the number of nuclei per cell) and an increase in the size and depth of the resorption pits. Since the total number of osteoclasts remained the same, the MCSF-induced increase in resorptive activity appeared to be related to an increase in the average size of the osteoclasts. When resorption was expressed as the amount of bone resorbed per osteoclast nucleus, larger osteoclasts resorbed more per nucleus, suggesting that large osteoclasts, as a population, are more effective resorbers than small osteoclasts. Interestingly, when osteoclasts were plated at one-fifth the standard density, the amount of bone resorbed per osteoclast decreased considerably, indicating that resorptive activity is also affected by cell density of osteoclasts and/or of other cells present. However, at this lower density MCSF still increased osteoclast size and resorption by the same fold increase over control, suggesting that the effect of MCSF was independent of factors related to cell density.  相似文献   

10.
The present study provides a novel assay system to examine the differentiation of osteoclast progenitors on devitalized bone slices. We used the population of bone cells liberated enzymatically from 14-day-old mouse embryonal calvariae as a source of osteoclast progenitors. The analysis of differentiation of osteoclast progenitors into preosteoclasts and mature osteoclasts was assessed in terms of the formation of TRAP-positive cells and pits or resorption lacunae, respectively, on devitalized bone slices. Osteoclasts having bone-resorbing activity appeared when the calvarial cell population was cultured in the presence of 1 alpha,25-(OH)2D3 on devitalized bone slices. The resorbing activity increased in a 1 alpha,25-(OH)2D3 dose-related manner. However, calcitonin, a potent inhibitor of differentiation and activation of osteoclast lineage cells, reduced the area of the resorption lacunae in a dose-dependent fashion. The bone-resorbing cells on the bone slices expressed an obvious ruffled border and clear zone, structures specific to mature osteoclasts. These results suggest that osteoclast progenitors in the mouse calvarial population examined differentiated into mature osteoclasts in the presence of 1 alpha,25-(OH)2D3 on devitalized bone slices. Further, using this assay system we assessed the effect of some other osteotropic factors on the differentiation of osteoclast progenitors to mature osteoclasts. IL-1, IL-6, and PTH increased the formation of TRAP-positive cells and pits and the area of resorption lacunae in a dose-dependent fashion. However, prostaglandin E2 was unable to induce the formation of resorption lacunae, although a significant appearance of TRAP-positive cells was observed at a concentration of 200 ng/ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Oxygen-derived free radicals are produced by osteoclasts. Oxygen radical formation occurs at the osteoclast/bone surface interface. This location next to bone implies that oxygen radicals, including but not limited to superoxide, are needed for bone resorption. Compounds that scavenge superoxide are being developed as pharmaceutical agents to inhibit the damaging effects of oxygen radical formation on tissues. One such scavenger is the Desferal-manganese complex (DMnC). DMnC reduced the amount of formazan staining produced by the interaction of oxygen radicals with nitroblue tetrazolium (NBT) in both individual mouse calvarial osteoclasts in tissue explants and isolated osteoclasts. As a result of the reduced concentrations of oxygen radicals, DMnC inhibited bone resorption by calvarial explants and isolated osteoclasts. Superoxide dismutase (SOD) inhibited NBT reduction and bone resorption by isolated osteoclasts but to a lesser degree than DMnC. Inhibition of bone resorption in the isolated osteoclast system increased in parallel to the concentration of DMnC in cultures. Desferal without Mn had no effect on bone resorption by isolated osteoclasts. These results support the hypothesis that osteoclasts produce oxygen radicals as part of the process of bone resorption.  相似文献   

12.
We have previously shown that dichlorodiamine platinum (DDP), or cisplatin, a cancer chemotherapeutic agent, is effective in the treatment of malignancy-associated hypercalcemia. In the present studies, we evaluated its effects on bovine parathyroid hormone (PTH)- or tumor-induced bone resorption in vitro in the neonatal mouse calvarial bone resorption assay. PTH alone or tumor extract (TE) of a human squamous cell lung cancer alone caused a significant increase in the bone resorption and in the number of osteoclasts in the calvaria. The addition of 3 and 10 micrograms/ml DDP inhibited the PTH- or TE-induced bone resorption. Lower doses of 1 and 2 micrograms/ml DDP, although not effective in inhibiting the PTH-induced bone resorption, were effective in lowering the TE-induced bone resorption. The number of osteoclasts was also reduced by DDP treatment. We therefore conclude that DDP is effective in the treatment of malignancy-associated hypercalcemia by virtue of its inhibitory effects on osteoclast numbers and on bone resorption.  相似文献   

13.
Cornish J  Callon KE  Bava U  Kamona SA  Cooper GJ  Reid IR 《BONE》2001,29(2):162-168
Amylin and calcitonin gene-related peptide (CGRP) are homologous 37 amino acid peptides that are found in the circulation. Both peptides belong to the calcitonin family. Similar to calcitonin, amylin and CGRP inhibit osteoclast activity, although they are much less potent than calcitonin. Calcitonin is known to act on the latter stages of osteoclast development, inhibiting the fusion of committed preosteoclasts to form mature multinucleated cells; however, whether or not calcitonin acts earlier in the formation of the precursor osteoclasts is controversial. The question of osteoclast development has never been examined with respect to amylin and CGRP. These issues are addressed in the present study. We studied the effects of calcitonin (salmon and rat), amylin (human and rat), and CGRP (human and rat) in mouse bone marrow cultures stimulated to generate osteoclasts using 1alpha,25-dihydroxyvitamin D3. Calcitonin dose-dependently decreased the numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells as well as TRAP-positive mono-/binucleated cells at concentrations >10(-13) mol/L. Amylin and CGRP showed similar effects at concentrations >10(-9) mol/L. In addition, calcitonin substantially reduced the ratio of TRAP-positive multinucleated to mono-binucleated cells, indicating an effect on fusion of osteoclast precursors. The present data establish that this family of peptides not only acts on mature osteoclasts but also inhibits their development in bone marrow cultures. This activity is shared by amylin and CGRP. The much greater potency of calcitonin than amylin and CGRP is consistent with the action of these peptides being mediated by calcitonin receptors.  相似文献   

14.
Osteoclasts are multinucleated bone-resorbing cells that use multiple pH regulation mechanisms to create an acidic pH in the resorption lacuna. Carbonic anhydrase II and vacuolar H(+)-ATPases produce and transport protons, while chloride channels provide a Cl(-) flux into the resorption site. These activities are required for inorganic matrix dissolution that precedes enzymatic removal of organic bone matrix. In other cell types it has become evident that carbonic anhydrase isoenzymes interact with AE proteins to form transport metabolons that regulate intracellular pH. Membrane-bound carbonic anhydrase isoenzymes may also compensate for the lack of cytoplasmic carbonic anhydrase II. Therefore, our goal was to explore the expression of membrane-bound carbonic anhydrase (CA) isoenzymes CA IV, CA IX, CA XII and CA XIV in bone-resorbing osteoclasts. Immunohistochemistry and confocal microscopy showed expression of CA IV, CA XII and CA XIV in cultured rat and human osteoclasts. To confirm these results, RT-PCR was used. Immunohistochemistry revealed distinct staining patterns for CA IV, CA XII and CA XIV in rat trabecular bone specimens. A plasma membrane staining was observed in bone lining cells with the CA XII antibody while osteoclast plasma membranes were stained with CA IV and CA XIV antibodies. Confocal microscopy of cultured human osteoclasts showed a punctated intracellular CA IV staining and a perinuclear CA XIV staining while no CA IX or CA XII staining was observed. To evaluate the physiological role of membrane-bound CAs in osteoclasts, we used PCS, a novel membrane-impermeable CA inhibitor. Increased osteoclast number and bone resorption activity was observed in rat osteoclast cultures exposed to a low concentration of PCS while higher concentrations affected cell survival. PCS treatment also disturbed intracellular acidification in osteoclasts, as determined by live cell microscopy. In conclusion, our data shows that membrane-bound carbonic anhydrase isoenzymes CA IV and CA XIV are expressed both at mRNA and protein levels in osteoclasts in vivo and in vitro. In addition, the inhibitor experiments provide novel evidence to support the hypothesis that intracellular pH regulation in osteoclasts may indeed involve transport metabolons.  相似文献   

15.
Amphotericin B is a polyene antifungal agent that binds to membrane sterols, creating aqueous pores that permit ion fluxes sufficient to cause cell lysis. It has also been shown to alter ion transport in mammalian cells, including proton secretion from renal tubular cells. The latter effect can lead to distal renal tubular acidosis in patients treated for systemic fungal infections. Based on the understanding that osteoclast-mediated bone resorption is dependent on proton secretion, we examined the effect of amphotericin B on calcium efflux from neonatal mouse calvariae in organ culture. Amphotericin B (5 micrograms/ml) stimulated net calcium efflux from calvariae within 24 h to a level almost as great as that produced by a maximally effective concentration of parathyroid hormone. The stimulated calcium efflux was completely inhibited by both 10 ng/ml salmon calcitonin, a physiologic inhibitor of osteoclast activity, and 4 x 10(-4) M acetazolamide, a specific inhibitor of carbonic anhydrase, the enzyme necessary for substantial proton generation by osteoclasts. These results indicate a direct effect of amphotericin B on bone in vitro to stimulate osteoclast-mediated calcium efflux.  相似文献   

16.
The role of protein kinase C in the regulation of osteoclast function is not known. We therefore compared the effect of phorbol myristate acetate (PMA), which activates protein kinase C, on the resorptive function, motility, and morphology of osteoclasts from rat and chick. PMA caused a significant reduction in resorption pit number in both species; rat osteoclasts were more sensitive, being significantly inhibited at doses of 10(-9)-10(-6) M compared with 10(-7)-10(-6) M for chick osteoclasts. The inactive analog PMA-alpha was without significant effect, and inhibition was not blocked by 10(-6) M indomethacin. In time course experiments, inhibition at 24 h was similar to or greater than inhibition at 6 h, indicating a persistent or progressive effect on bone resorption. Removal of PMA after 6 h prompted partial recovery of bone-resorptive ability in chick osteoclasts but not rat, at least over a 48 h incubation. In time-lapse video studies of rat osteoclasts, 10(-6) M PMA produced an immediate but transient cessation of motility and retraction of the cell margin into prominent filopodia. Motility resumed within 2.5 h after addition, but the osteoclasts remained partially contracted. Chick osteoclasts behaved similarly but showed no formation of filopodia at the cell periphery and a more rapid recovery of motility than rat osteoclasts; chick osteoclasts also underwent a transient vacuolation following PMA exposure, whereas rat osteoclasts did not. Despite differences in the sensitivity of rat and chick osteoclasts to PMA, these results suggest a fundamental role for protein kinase C in the inhibition of osteoclasts from both species.  相似文献   

17.
To clarify what kind of process participates in bone resorption, time course of indices of bone resorption was investigated using 13-day-old embryonic chick calvaria. When calvariae were cultured with parathyroid hormone (PTH) at 0.01 U/ml for 8 days, hydroxyproline (Hyp) release was already stimulated by PTH in cultures by 1 to 2 days but stimulation of45Ca release was not observed even in cultures by 6 to 8 days. Furthermore, stimulation of collagenase release by PTH was observed prior to that of Hyp release. These results indicate that collagenase release precedes Hyp release, which is followed by45Ca release. The release of tartrate-resistant acid phosphatase (TrACP), a marker enzyme of osteoclast, was stimulated by PTH at 0.1 U/ml and above to a greater extent in cultures by 5 to 8 days (phase 11) than in cultures by 0 to 4 days (phase 1). E-64, an inhibitor of cysteine proteinase, inhibited PTH-stimulated45Ca release strongly in phase 11 but showed a slight decrease in Hyp release in the same phase. These results suggest that first PTH stimulates collagenase production from osteoblasts, secondly collagenase degrades uncalcified collagen and lastly osteoclasts resorb mineralized bones.  相似文献   

18.
Bisphosphonates are the important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Although their molecular mechanism of action has not been fully elucidated, recent studies have shown that the nitrogen-containing bisphosphonates can inhibit protein prenylation in macrophages in vitro. In this study, we show that the nitrogen-containing bisphosphonates risedronate, zoledronate, ibandronate, alendronate, and pamidronate (but not the non nitrogen-containing bisphosphonates clodronate, etidronate, and tiludronate) prevent the incorporation of [14C]mevalonate into prenylated (farnesylated and geranylgeranylated) proteins in purified rabbit osteoclasts. The inhibitory effect of nitrogen-containing bisphosphonates on bone resorption is likely to result largely from the loss of geranylgeranylated proteins rather than loss of farnesylated proteins in osteoclasts, because concentrations of GGTI-298 (a specific inhibitor of geranylgeranyl transferase I) that inhibited protein geranylgeranylation in purified rabbit osteoclasts prevented osteoclast formation in murine bone marrow cultures, disrupted the osteoclast cytoskeleton, inhibited bone resorption, and induced apoptosis in isolated chick and rabbit osteoclasts in vitro. By contrast, concentrations of FTI-277 (a specific inhibitor of farnesyl transferase) that prevented protein farnesylation in purified rabbit osteoclasts had little effect on osteoclast morphology or apoptosis and did not inhibit bone resorption. These results therefore show the molecular mechanism of action of nitrogen-containing bisphosphonate drugs in osteoclasts and highlight the fundamental importance of geranylgeranylated proteins in osteoclast formation and function.  相似文献   

19.
Osteoclasts are multinucleated cells that carry out bone resorption. Analysis of the direct effect of hormones on the bone-resorbing activity of human osteoclasts has been limited by difficulties in isolating these cells from the human skeleton. In this study, human osteoclasts formed from cultures of peripheral blood mononuclear precursors (PBMCs) on a Type-I collagen gel were isolated by collagenase treatment for investigating their resorptive activity. PBMCs were cultured in the presence of M-CSF, soluble RANKL, dexamethasone, and 1,25(OH)2D3. The isolated multinucleated cells expressed the osteoclast markers, TRAP, VNR, cathepsin K, calcitonin receptors and were capable of extensive lacunar resorption. Calcitonin inhibited the motility and resorptive activity of osteoclasts. RANKL significantly stimulated osteoclast resorption, but 1,25(OH)2D3, PTH, and OPG did not. These findings indicate that calcitonin and RANKL act directly on human osteoclasts to inhibit and stimulate osteoclast bone-resorbing activity, respectively, and that PTH, 1,25(OH)2D3, and OPG are more likely to influence osteoclast activity indirectly. This technique of human osteoclast isolation should permit the effects of cellular and hormonal/humoral factors on the bone-resorbing activity of mature human osteoclasts to be assessed independently of any effect such factors have on osteoclast formation. It should also make it possible to examine directly the resorptive activity and other characteristics of osteoclasts in specific bone disorders such as Paget's disease.  相似文献   

20.
目的探讨低分子量褐藻糖胶(LMWF)对小鼠单核细胞RAW264.7诱导成熟破骨细胞凋亡的影响。方法通过100ng/m L RANKL诱导RAW264.7细胞株分化为破骨细胞,经TRAP特异性染色和骨吸收陷窝对诱导后的细胞进行鉴定。鉴定成功后,用100 ng/m L RANKL诱导RAW264.7细胞株5 d后,使用含有LMWF的培养基继续培养3 d,通过对TRAP阳性细胞计数和分析骨吸收面积来观察低分子量褐藻糖胶对破骨细胞的抑制和骨吸收功能情况;采用流式细胞术检测LMWF对破骨细胞凋亡的影响,capsase-3活性测试试剂盒检测LMWF对capsase-3活性进行测定;RT-PCR检测LMWF对成熟破骨细胞BAX与BCL-2基因表达的影响。结果单纯采用100 ng/m L的RANKL可成功诱导成熟的、有功能的破骨细胞。LMWF可以明显抑制RANKL诱导成熟破骨细胞的形成以及成熟破骨细胞的骨吸收功能;流式细胞术显示LMWF可增加成熟破骨细胞的早期凋亡率;并且能升高capsase-3的活性;PCR显示LMWF可明显下调破骨细胞凋亡相关的BCL-2和上调BAX基因mRNA表达,降低BCL-2/BAX的比值。结论低分子量褐藻糖胶可抑制破骨细胞的活性与骨吸收能力,促进破骨细胞凋亡,其主要机制是通过下调BCL-2和上调BAX mRNA基因表达实现的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号