首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The angiotensin II (AII) sensitivity of neurons in the supraoptic nucleus (SON), subfornical organ (SFO) and the region near the anteroventral part of the third ventricle (AV3V) was investigated using extracellular recording in the rat brain slice preparation by adding AII (10(-10)-10(-6) M) to the perfusion medium. Forty seven (44%) of 106 SON neurons, 62 (66%) of 94 SFO neurons and 28 (33%) of 86 AV3V neurons were excited by AII. One cell was inhibited by AII in the SON and one in the SFO. The threshold concentration to evoke responses in the SON neurons was approximately 10(-9) M, but neurons in the SFO and AV3V showed clear excitatory responses to AII at 10(-10) M. In the SON, 18 (40%) of 45 phasic firing neurons (putative vasopressin neurons) and 29 (48%) of 61 nonphasic firing neurons (including putative oxytocin neurons) were excited by AII. The excitatory effect of AII was reversibly antagonized by a specific antagonist saralasin and persisted after synaptic blockade in medium with low [Ca2+] and high [Mg2+]. We conclude that AII can stimulate both vasopressin and oxytocin release, acting directly upon SON neurons and also that both the SFO and AV3V are important receptive sites for AII (although the SFO is relatively more sensitive) which contributes SON input and modulates release of these hormones.  相似文献   

2.
The activity of neurons in the region of the nucleus of the solitary tract (NTS) that were antidromically identified by electrical stimulation of the rat subfornical organ (SFO) was tested for a response to microiontophoretic application of gamma-aminobutyric acid (GABA), hemorrhage (10 ml/kg b.w.t.), or local administration of the chemical neurotoxin, 6-hydroxydopamine (6-OHDA), into the SFO stimulation site. Microiontophoretically (MIPh) applied GABA caused a decrease excitability in 22 out of 24 neurons tested, and the inhibition was blocked by MIPh-applied bicuculline, a GABAA antagonist, but not by phaclofen, a GABAB antagonist. Of these neurons that responded to GABA, 17 displayed an increase in neural firing in response to hemorrhage, while 5 were unresponsive. The occurrence of both antidromic spikes and post-stimulus inhibition of 9 out of 13 neurons tested was completely abolished by the injection of 6-OHDA into the SFO. These results suggest that neurons in the region of the NTS, which carry peripheral baroreceptor information to the SFO, receive GABAergic inhibitory inputs via a GABAA receptor mechanism, and imply that part of these neurons are catecholaminergic.  相似文献   

3.
The polydipsic inbred mice, STR/N, are known to possess an extremely strong appetite for drinking but no abnormality in the vasopressin system and renal functions. In brain slice preparations the sensitivity of neurons in the anteroventral region of the third ventricle (AV3V) and the subfornical organ (SFO) to angiotensin II (ANG II) was investigated using extracellular recordings in the STR/N and its control, Swiss/Webster (S/W) mice. In the AV3V, less proportion of neurons (15 out of 168; 9%) of the STR/N than that in the S/W (49/206; 24%) was excited by ANG II added to the medium. In the SFO, a proportion of neurons excited by ANG II was again lower in the STR/N (27/104; 26%) than in the S/W mice (64/118; 54%). The threshold concentration of ANG II for excitation of the AV3V and SFO neurons was, however, similar for both strains, 10−9 M or less. Only one neuron in the SFO of a S/W mouse was inhibited by ANG II application. The excitatory effect of ANG II on AV3V and SFO neurons of both strains of mice persisted under synaptic blockade and was reversibly antagonized by an ANG II antagonist, saralasin. Such differences in sensitivity to ANG II of neurons in the SFO and AV3V, the regions thought to be involved in drinking behavior, suggest the involvement, at least in part, of the central angiotensin system in the polydipsia of the STR/N mice.  相似文献   

4.
Twenty-five neurons in the region of the nucleus of the solitary tract (NTS) were antidromically activated by electrical stimulation of the subfornical organ (SFO) in male rats under urethane anesthesia. Microiontophoretically applied bicuculline, a gamma-aminobutyric acid (GABA)(A) antagonist, but not phaclofen, a GABA(B) antagonist, attenuated the post-antidromic inhibitory response evoked by SFO stimulation of approximately two-third (n=17) of identified neurons, indicating the existence of recurrent inhibitory systems through GABA(A) receptors. Iontophoretically applied GABA decreased the spontaneous activity of all identified neurons, and the GABA-induced inhibition was prevented by simultaneously applied bicuculline, but not by phaclofen. Activation of peripheral baroreceptors, achieved by rising arterial blood pressure with an intravenous infusions of phenylepherine, suppressed the activity of the majority (n=20) of identified neurons. The inhibitory response of identified neurons (n=7) to baroreceptor activation was partially antagonized by iontophoretically applied bicuculline, but not by phaclofen. These results imply that GABAergic mechanisms may modulate the baroreceptor reflex acting on GABA(A) receptors of NTS neurons with ascending projections to the SFO in the region of the NTS.  相似文献   

5.
Endothelin (ET), a peptide consisting of 21 amino-acid residues was recently isolated from the culture supernatant of porcine aortic endothelial cells. ET has been reported to be a more potent vasoconstrictor than angiotensin II. Other studies suggest that ET is involved in central control of the autonomie nervous system and body water regulation. Extracellular recordings were made from neurons in the anteroventral third ventricle (AV3V) and supraoptic nucleus (SON) in rat hypothalamic slice preparations. ET-3 was applied at concentrations of 10?10 M to 3x 10?7 M. Of 226 AV3V neurons tested, 48 (21%) were excited, 8 (4%) were inhibited, and 170 (75%) were unaffected by ET-3 at 10?7 M. The threshold concentration to evoke the responses was approximately 10?9 M. Of 144 SON neurons tested, 64 had a phasic firing pattern and 80 had a non-phasic firing pattern. Of 64 phasic neurons tested, 39 (61%) were inhibited by ET-3 at 10?7 M, 25 (39%) were non-responsive and none was excited. Of 80 non-phasic neurons tested, 14 (17.5%) were inhibited by ET-3 at 10?7 M, 66 (82.5%) were non-responsive and none was excited. The effects of ET-1 were compared with those of ET-3. The number of neurons responding to ET-1 and their responsiveness were almost the same as for ET-3. To investigate whether the ET responses are dependent on Ca2+ influx, a Ca2+ free medium and the Ca2+ antagonist, nicardipine, were used. The excitatory responses of AV3V neurons to ET were maintained in the Ca2+ free medium. Nicardipine at 10?5 M suppressed neither the excitatory responses of AV3V neurons nor the inhibitory responses of SON neurons to ET-3. After 8 to 12 h preincubation of slices with islet activating peptide (IAP: pertussis toxin) at 10?7 M, none of the 48 AV3V neurons tested was excited by either ET-3 or ET-1. On the other hand, inhibitory responses were still observed in 12 (52%) out of 23 phasic SON neurons tested after IAP treatment. These results suggest that ET has a direct action as a neuropeptide on hypothalamic neurons through the ETB receptor and that the mechanisms underlying the responses may be different in the AV3V and the SON.  相似文献   

6.
The response of two populations of neurones in the substantia nigra (nigro-striatal compacta neurones and reticulata neurones) to microelectrophoretically administered putative neurotransmitters and stimulation of the ipsilateral striatum has been investigated in anaesthetized rats. There were marked differences between compacta and reticulata neurones in respect to their action potential configurations, spontaneous firing rates and their responses to striatal stimulation. However, both compacta and reticulata neurones were excited and/or inhibited by striatal stimulation, although inhibition was usually the predominant response in both neuronal populations. Compacta neurones were strongly inhibited by noradrenaline (NA) and dopamine (DA) but were unaffected by acetylcholine (ACh) and 5-hydroxytryptamine (5-HT). Reticulata neurones were excited by ACh and showed mixed responses to 5-HT, DA and NA. Excitant amino acids overdepolarized compacta neurones preventing them from firing rapidly, but induced large increases in reticulata neurone firing rate; effects that were readily antagonized by D-alpha-aminoadipate. Compacta neurones were less sensitive than reticulata neurones to GABA and glycine. The action of these inhibitory amino acids were selectively and reversibly antagonized by bicuculline methochloride and strychnine, respectively. The striatal-evoked inhibition of both compacta and reticulata neurones was reversibly reduced by bicuculline methochloride and irreversibly reduced by tetanus toxin, but was unaffected by strychnine. These results demonstrate that nigrostriatal-compacta neurones and reticulata neurones are physiologically and pharmacologically distinct neuronal populations and both receive inhibitory GABAergic and excitatory striatal inputs.  相似文献   

7.
The effect of GABA (gamma-aminobutyric acid), its agonists (muscimol, baclofen) and antagonist (bicuculline) on pineal ganglion cells of the luminosity type were studied in the isolated, superfused pineal organ of the rainbow trout, Oncorhynchus mykiss. Extracellular recordings revealed that GABA added through the superfusion medium caused a clear alteration of the activity of projecting neurons, which transmit luminosity responses to the brain. Spontaneous discharges of ganglion cells were predominantly suppressed by GABA (33 neurons out of 48), but 10 neurons were clearly excited. Similar effects were observed after addition of muscimol, but not of baclofen. Bicuculline reversed the GABA and muscimol induced inhibition or excitation. In 4 neurons of the luminosity type, GABA caused bidirectional, inhibitory and excitatory responses depending on the state of light- or dark-adaptation. These observations suggest a role of a GABAergic mechanism in the generation and transmission of luminosity responses in the trout pineal organ. It appears that GABA participates in the modulation of light sensitivity during light- and dark-adaptation processes and that this action is mediated by GABAA receptors.  相似文献   

8.
Previously, we have demonstrated that lateral habenula (LH) modulates the bioelectric activity of the hippocampus through the dorsal raphe nucleus functional involvement. In this study we have, preliminarily, electrophysiologically identified two types of raphe neurons: “slow” (S cells, serotonergic in nature); and “fast” (F cells, presumably GABAergic in nature). Then, we have shown that LH electrical stimulation at lower frequency induced an excitation of S and F neurons. LH stimulation at higher frequency inhibited only S neurons. Furthermore, iontophoretic NMDA excited S and F neurons. The excitatory effects of LH stimulation were antagonized by the iontophoretic 2-APV (NMDA antagonist). Iontophoretic GABA inhibited only S neurons. Iontophoretic bicuculline antagonized the LH-induced inhibition of S neurons. The data suggested a direct (NMDA-mediated) and indirect (through the F GABAergic inhibitory interneuron) influence of the LH on the serotonergic efferent neuron.  相似文献   

9.
The effect of GABA (γ-aminobutyric acid), its agonists (muscimol, baclofen) and antagonist (bicuculline) on pineal ganglion cells of the luminosity type were studied in the isolated, superfused pineal organ of the rainbow trout,Oncorhynchus mykiss. Extracellular recordings revealed that GABA added through the superfusion medium caused a clear alteration of the actvity of projecting neurons, which transmit luminosity responses to the brain. Spontaneous discharges of ganglion cells were predominantly suppressed by GABA (33 neurons out of 48), but 10 neurons were clearly excited. Similar effects were observed after addition of muscimol, but not of baclofen. Bicuculline reversed the GABA and muscimol induced inhibition or excitation. In 4 neurons of the luminosity type, GABA caused bidirectional, inhibitory and excitatory responses depending on the state of light- or dark-adaptation. These observations suggest a role of a GABAergic mechanism in the generation and transmission of luminosity responses in the trout pineal organ. It appears that GABA participates in the modulation of light sensitivity during light- and dark-adaptation processes and that this action is mediated by GABAA receptors.  相似文献   

10.
The subfornical organ (SFO) has been suggested to be important for water intake and secretion of vasopressin (AVP). However, the role of the SFO cholinergic mechanism in the control of body fluid regulation is not clear. This study determined the effects of local cholinergic stimulation in the SFO produced by administration of physostigmine on drinking and cellular excitation in the anterior third ventricle (AV3V) region and in the supraoptic and paraventricular nuclei (SON and PVN). The results showed that injection of physostigmine into the SFO induced water intake and c-fos expression in the AV3V area as well as in the AVP containing neurons in the hypothalamus. Pretreatment of the SFO with mecamylamine, a nicotinic receptor antagonist, had no effect on physostigmine induced behavioral and c-fos responses. The muscarinic receptor blocker atropine, however, abolished both drinking and cellular activation after injection of physostigmine into the SFO. Immunostaining experiments demonstrated positive acetyltransferase (ChAT) in the SFO. Intensive ChAT immunoreactivity was located in the cholinergic fibers in the SFO. Together, the results indicate that SFO cholinergic mechanisms are important in co-operation with the AV3V and hypothalamic neurons in the control of thirst and AVP-mediated body fluid homeostasis.  相似文献   

11.
The electrical activity of neurons from the red nucleus, a mesencephalic structure involved in motor control, is under the influence of several neurotransmitters released from afferent fibers and/or from local interneurons. We have investigated the combined effects of gamma-aminobutyric acid (GABA) and noradrenaline (NA), both present at high levels in the red nucleus, on the firing activity of single rubral neurons recorded extracellularly in vivo on anesthetized adult rats. NA inhibited the firing activity of a large part of rubral neurons and induced excitatory or biphasic inhibitory/excitatory effects in a smaller group of cells. Neuronal firing was also inhibited by GABA in all the cells studied. When the effect of GABA was tested during continuous applications of NA, the magnitude of GABA response was modified in 58% of the cells: the effect of GABA was potentiated by NA in half of the responding neurons and was decreased in the remaining half. NA-induced potentiation of GABA response was mimicked by the alpha(2)-adrenoceptor agonist clonidine and was abolished by the alpha(2)-adrenoceptor antagonist yohimbine. On the other side, the decrease of GABA response was reproduced by the beta-adrenoceptor agonist isoprenaline and was blocked by timolol, an antagonist of beta-adrenoceptors. Neuronal firing activity was reduced by nipecotic acid, an inhibitor of GABA reuptake mechanism, and was instead increased during application of the GABA(A) receptor antagonist bicuculline, suggesting that rubral neurons in vivo were under tonic control by endogenous GABA. Both the inhibitory and the excitatory effects of NA were reduced in the presence of nipecotic acid and were instead potentiated during application of bicuculline, suggesting that NA responses were modified by endogenous GABA. Taken together, our results indicate a reciprocal modulation between the effects of GABA and NA on neuronal firing activity in the red nucleus of the rat: GABA depresses the responsiveness of rubral neurons to NA, whereas NA is able either to potentiate or to decrease the effects of GABA by activation of alpha(2)- and beta-adrenoceptors, respectively. The functional significance of such interaction, as well as the possible implication in diseases affecting motor control, will be discussed.  相似文献   

12.
Xue B  Hay M 《Brain research》2003,976(1):41-52
The effects of 17beta-estradiol (17betaE2) on spontaneous and excitatory amino acid (EAA) induced nucleus tractus solitarius (NTS) neuronal activity were investigated by electrophysiological and immunohistochemical experiments in ovariectomized female Sprague-Dawley rats. Out of 62 NTS neurons tested, 42 were inhibited (68%) following iontophoretic application of 17betaE2 in a current-dependent manner. The averaged firing rate decreased from 3.06+/-0.40 to 0.78+/-0.17 Hz. The inhibitory responses were rapid in onset (within 1 min) and variable in duration (2-4 min). The inhibitory effects of 17betaE2 were blocked by simultaneously applied 17betaE2 antagonist ICI182,780, but not by GABA antagonist, bicuculline and phaclofen. L-Glutamate, AMPA or NMDA enhanced the activity of 71, 73 or 69% of NTS cells tested, respectively. The excitatory effects of EAA were significantly inhibited in the presence of 17betaE2. Fluorescent immunohistochemistry revealed that all subnuclei of the NTS contained high levels of estrogen receptors (ERs) immunoreactivity. These results suggest that 17betaE2 inhibits spontaneous and EAA-induced NTS neuronal activity through 17betaE2 activation of ERs.  相似文献   

13.
Extracellular recordings were made from 467 anti-dromically identified neurosecretory neurons and 148 non-neurosecretory neurons in the paraventricular nucleus of the hypothalamus of hemispherectomized cats under pentobarbital anesthesia. Stimulation of the dorsal, median, and pontine raphe nuclei excited 31%, 26%, and 12% of neurosecretory neurons tested, respectively, and inhibited 9%, 7%, and 8%. The excitatory responses in 13 of 14 neurons tested were blocked by either of two intravenously administered 5-HT2 antagonists, cyproheptadine or methysergide. The 5-HT1A antagonist, (-)pindolol, partially blocked the excitatory responses elicited by raphe stimulation in three of five neurons tested. The inhibitory responses to raphe stimulation were not affected by application of these antagonists. More non-neurosecretory neurons than neurosecretory neurons were excited in response to raphe stimulation and these excitatory responses were also blocked by these antagonists. We conclude that most electrically stimulated synaptic inputs from the midbrain raphe nuclei to the hypothalamic paraventricular nucleus are excitatory and are mainly mediated by 5-HT2 receptors.  相似文献   

14.
Synaptic transmission to pyramidal cells was studied in slices of neocortex resected from infants and children (n = 10, age 8 months to 13 years) undergoing surgical treatment for intractable epilepsy. Most specimens were from the least abnormal area of the resection. Stable intracellular recordings could be obtained for up to 8 hours. Most of the recorded neurons had electrophysiological characteristics similar to those of regular-firing pyramidal cells and were in layers III to V, which was confirmed by intracellular staining with Lucifer yellow. Local extracellular stimulation evoked a sequence of excitatory and inhibitory postsynaptic potentials. After application of the gamma-aminobutyric acid antagonist, bicuculline (10-30 microM), extracellular stimulation induced large excitatory postsynaptic potentials and epileptiform bursts. Spontaneous bursts occasionally occurred in bicuculline. This effect of bicuculline was observed in all the tissue samples, even those from infant patients (n = 4, age 8-16 months). Kynurenic acid depressed or abolished both spontaneous and stimulation-induced bursts. The competitive antagonist for N-methyl-D-aspartate receptors, DL-2-amino-5-phosphonopentanoic acid decreased the duration of bicuculline-induced bursts. These data provide evidence that, similar to rat and cat neocortex, excitatory and inhibitory amino acids are important transmitters to pyramidal cells in immature human neocortex.  相似文献   

15.
It is not entirely clear whether or not atrial natriuretic peptide (ANP) directly inhibits vasopressin neurons in the supraoptic nucleus (SON) and paraventricular nucleus. Recently, a novel peptide, brain natriuretic peptide (BMP), which has been isolated from the brain, has been shown to have a similar action to ANP on the regulation of vasopressin release. Intracerebroventricular injection of both BNP and ANP inhibits stimulus-evoked increases of plasma vasopressin level. The present study was undertaken: 1) to investigate whether BNP affects the activity of neurons in the region of the anteroventral third ventricle (AV3V) and SON which are involved in the control of body fluid homeostasis and blood pressure regulation, 2) to reassess effects of ANP on SON neurons, and 3) to test whether BNP exerts its effects by mechanisms which are different from those of ANP. Extracellular recordings were made from 213 AV3V and 110 SON spontaneously firing neurons in the rat coronal hypothalamic slice preparation. Of the AV3V neurons tested, BNP inhibited 86 (40%) and excited 2 (1%) while 125 neurons remained unaffected. A dose-response relationship was obtained for 7 AV3V neurons at different BNP concentrations ranging from 10?11 M to 10?6 M; the firing rates of all 7 neurons decreased. The threshold concentration to evoke inhibitory responses was approximately 10?10M in the AV3V. When BNP and ANP were applied to the same neuron, most AV3V neurons which were inhibited by BNP were also inhibited by ANP and the neurons which were unaffected by BNP were also unaffected by ANP. Thus, these two peptides probably have a similar action on AV3V neurons. When BNP and angiotensin II were applied to a group of 60 neurons in the AV3V, most of the responsive neurons showed either inhibitory responses to BNP or excitatory responses to angiotensin II. Both BNP and ANP were applied to a group of 110 SON neurons: BNP (10 ?7 M) inhibited 52 (75%) of 69 phasic (putative vasopressin) neurons, while BNP affected none of the 41 non-phasic (putative oxytocin) neurons. By contrast, ANP inhibited only 20 (29%) of 69 phasic neurons tested but it also had no effect on 41 non-phasic neurons tested. Our results are consistent with the suggestion that BNP is involved in the regulation of vasopressin release by acting on SON neurons and AV3V neurons.  相似文献   

16.
Previous studies suggested that angiotensinergic stimulation in the subfornical organ (SFO) has effects on the anterior third ventricle (AV3V) region and the hypothalamus for dipsogenic response and vasopressin release. In this study, Angiotensin I (ANG I) was directly injected into the SFO and this stimulated drinking. Injection of ANG I into the SFO also induced Fos-immunoreactivity (Fos-ir) in the AV3V region and in the vasopressin neurons of the supraoptic and paraventricular nuclei (SON and PVN). Pretreatment of the SFO with either captopril, an ANG converting enzyme inhibitor, or losartan, an AT1 receptor antagonist, abolished both drinking and Fos-ir induced by ANG I. Water intake partially decreased ANG I-induced Fos-ir in the SON and PVN, but not in the other areas. These results indicate that there is an ANG converting system in the SFO and suggest that neurons in the AV3V region and vasopressin cells in the hypothalamus can be regulated by angiotensinergic components in the SFO.  相似文献   

17.
The effects of 5-hydroxytryptamine (5-HT) on the inhibitory responses evoked by gamma-aminobutyric acid (GABA) in neurons of the red nucleus (RN) were studied using a microiontophoretic technique. Extracellular unitary recordings performed in anesthetized rats demonstrated that 5-HT ejection influenced GABA-evoked inhibition in 94% of RN neurons, enhancing them in 52% and depressing them in 46% of cases. Both effects were specific and dose-dependent,although enhancements or depressions of the GABA responses were respectively inversely and directly related to the doses of 5-HT applied. The type of modulation exerted by 5-HT on the GABA responses was independent of the action of the amine on background firing. In fact, 5-HT induced an enhancement of the GABA responses in neurons mostly located in the rostral RN and a depression in those in the caudal RN. The application of 8-hydroxy-2(di-n-propylamino)tetralin, a specific 5-HT(1A) receptor agonist, enhanced GABA responses, whereas alpha-methyl-5-hydroxytryptamine, a 5-HT(2A) receptor agonist, depressed them. Both the 5-HT(2) antagonist methysergide and the 5-HT(2A) selective antagonist ketanserin were able to block partially or totally the depressive action of 5-HT on GABA responses. In contrast, the same 5-HT antagonists mimicked the enhancing action of 5-HT on the GABA responses or were ineffective. Application of bicuculline, a GABA(A) receptor antagonist, enhanced the excitatory action of 5-HT on the background firing and slightly reduced the inhibitory action. It is concluded that 5-HT is able to modulate GABA-evoked responses in RN neurons by acting on both 5-HT(1A) and 5-HT(2A) receptors. The functional significance of a serotonergic control on GABAergic inhibitory effects in RN is discussed.  相似文献   

18.
Anatomical evidence indicates the presence of projections from the lateral hypothalamus to serotonergic (5-hydroxytryptamine, 5-HT) neurons of the dorsal raphe nucleus (DR). Using dual probe microdialysis and extracellular recordings in the DR, we show that the application of GABAergic agents in the lateral hypothalamus modulates the activity of 5-HT neurons in the DR. GABA and bicuculline or baclofen, applied in the lateral hypothalamus significantly reduced and increased, respectively, the 5-HT output in the DR. Likewise, the intrahypothalamic application of GABA and bicuculline reduced (14/20 neurons) and increased (8/12 neurons), respectively, the firing rate of 5-HT neurons in the DR. A smaller percentage of neurons, however, were excited by GABA (3/20) and inhibited by bicuculline (1/12). Application of tetrodotoxin in the lateral hypothalamus suppressed the local 5-HT output and reduced that in the DR. The 5-HT output in the DR increased transiently soon after darkness. The hypothalamic application of GABA attenuated and that of bicuculline potentiated this spontaneous change with an efficacy similar to that seen in light conditions. These results indicate that the lateral hypothalamus is involved in the control of 5-HT activity in the DR, possibly through excitatory (major) and inhibitory (minor) inputs.  相似文献   

19.
We recorded extracellular responses from rat amygdaloid neurons in vivo after electrical stimulation of the basal forebrain and hippocampal formation. Iontophoretic application of the GABAA receptor antagonist, bicuculline, lead to the appearance of short latency evoked bursts after stimulation of either region. This occurred whether the baseline response was inhibitory or excitatory. Bicuculline only affected an early phase of inhibition, leaving a longer latency, longer duration phase unchanged or even increased. By contrast, the GABAB receptor antagonist, phaclofen, never produced such short latency evoked bursts. Both bicuculline and phaclofen increased the spontaneous rate of firing of amygdaloid neurons. The excitatory burst response to hippocampal formation stimulation of an amygdaloid candidate inhibitory neuron was blocked by CNQX (an antagonist of the AMPA subtype of glutamate receptor). Based on these and prior studies, it seems likely that the effects of hippocampal formation stimulation are mediated by feed-forward inhibition, in which GABAergic amygdaloid inhibitory neurons are excited by glutamatergic projections from the hippocampal formation. The effects of basal forebrain stimulation may be mediated by both feed-forward inhibition and direct, GABAergic inhibition.  相似文献   

20.
The purpose of the present study was to determine whether modulation of the trigeminal spinal nucleus oralis (TSNO) neurons related to tooth-pulp (TP)-evoked jaw-opening reflex (JOR) after electrical stimulation of the sciatic nerve (SN) is mediated by the descending serotonergic (5-HT(3)) inhibitory system activated by inhibitory GABAergic interneurons. In 30 anesthetized rats, the activity of TSNO neurons (87.5%, 35/40) and all digastric muscle electromyograms (dEMG, n=30) in response to TP stimulation (at an intensity of 3.5 times the threshold for JOR) were inhibited by conditioning stimulation of the SN (5.0 mA x 0.5 ms, 1 Hz, conditioning-test intervals; 50 ms). The inhibitory effects were significantly attenuated after intravenous administration of the 5-HT(3) receptor antagonist ICS 205-930 (n=6). Using multibarrel electrodes, iontophoretic application of ICS 205-930 into the TSNO significantly reduced the SN stimulation-induced inhibition of TP-evoked TSNO neuronal excitation (n=6), and in the same neurons, iontophoretic application of the GABA(A) receptor antagonist bicuculline into the TSNO greatly inhibited their effect. On the other hand, we found the expression of 5-HT(3) receptor immunoreactive neurons in the TSNO. These results suggest that SN stimulation may activate the descending serotonergic (5-HT(3)) inhibitory system through activation of inhibitory GABAergic interneurons, which inhibit excitatory responses of the TSNO neurons to TP stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号