首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Ventricular tachycardia (VT) in arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVD) has been previously explored using entrainment mapping techniques but little is know about VT mechanisms and the characteristics of their circuits using an electroanatomical mapping system. METHODS AND RESULTS: Three-dimensional electroanatomical mapping was performed in 11 patients with well tolerated sustained VT and ARVD. Sinus rhythm mapping of the right ventricle was performed in eight patients showing areas of low bipolar electrogram voltage (<1.2 mV). In total 12 tachycardias (mean cycle length 382+/-62 ms) were induced and mapped. Complete maps demonstrated a reentry mechanism in eight VTs and a focal activation pattern in four VTs. The reentrant circuits were localized around the tricuspid annulus (five VTs), around the right ventricular outflow tract (one VT) and on the RV free lateral wall (two VTs). The critical isthmus of each peritricuspid circuit was bounded by the tricuspid annulus with a low voltage area close to it. The isthmus of tachycardia originating from the right ventricular outflow tract (RVOT) was delineated by the tricuspid annulus with a low voltage area localized on the posterior wall of the RVOT. Each right ventricular free wall circuit showed an isthmus delineated by two parallel lines of block. Focal tachycardias originated on the right ventricular free wall. Linear radiofrequency ablation performed across the critical isthmus was successful in seven of eight reentrant tachycardias. The focal VTs were successfully ablated in 50% of cases. During a follow-up of 9-50 months VT recurred in four of eight initially successfully ablated VTs. CONCLUSIONS: Peritricuspid ventricular reentry is a frequent mechanism of VT in patients with ARVD which can be identified by detailed 3D electroanatomical mapping. This novel form of mapping is valuable in identifying VT mechanisms and in guiding RF ablation in patients with ARVD.  相似文献   

2.
Ablation of Bidirectional VT. A 64‐year‐old recipient of implantable cardioverter defibrillator presenting with a 4.7 × 3.3 cm nonischemic, biventricular aneurysm developed multiple electrical storms due to ventricular tachycardia (VT) with 2 distinct QRS morphologies. Endocardial electroanatomical mapping revealed the presence of a low‐voltage area corresponding to the aneurysm, where multiple delayed potentials were recorded. Activation mapping and entrainment pacing of both VT revealed the, respectively, forward and reverse propagation of the wavefront across a single reentrant circuit inside the ventricular aneurysm. Delivery of 3 applications of radiofrequency energy to a critical segment of the reentrant pathway eliminated both VT and the electrical storms. (J Cardiovasc Electrophysiol, Vol. 22, pp. 467‐467)  相似文献   

3.
There are a number of limitations associated with conventional mapping for ablation of ventricular tachycardia (VT) in ischemic heart disease, such as the high recurrence rates after initially successful ablation. The development of a noncontact mapping system capable of producing high-resolution isopotential maps of the entire left ventricle has enabled rapid identification of diastolic activity that maintains VT for ablation. With this system it is possible to map nonsustained and fast unstable as well as stable VTs. In this article we review the historic background and concepts of noncontact mapping, its clinical application, and the results of ablations for human VT guided by this mapping system.  相似文献   

4.
Ventricular Tachycardia After Alcohol Septal Ablation. A 76‐year‐old female developed 2 different ventricular tachycardias (VTs) 5 years after alcohol septal ablation (ASA) for symptomatic hypertrophic obstructive cardiomyopathy. VT#1 was a small macroreentry at the anterior border of the low‐voltage zone, suggesting the ASA‐scar and eliminated by endocardial ablation at a site recording fractionated potentials covering the mid‐diastolic and presystolic periods. VT#2 was a focal VT and eliminated by epicardial cryoablation at the basal posterior left ventricle, suggesting the posterior border of the ASA‐scar. Using the electroanatomical mapping, we demonstrated that the mechanism of the VTs was reentry at the edge of the ASA‐scar. (J Cardiovasc Electrophysiol, Vol. 21, pp. 1296‐1299, November 2010)  相似文献   

5.
AIMS: The role of a novel non-contact mapping system (ESI 3000, Endocardial Solutions) to guide radiofrequency catheter ablation of untolerated ventricular tachycardia was investigated in 17 patients; 11 with prior myocardial infarction, three with arrhythmogenic right ventricular dysplasia, and three with idiopathic dilated cardiomyopathy. METHODS: Twenty-seven monomorphic ventricular tachycardias were induced (mean cycle 320+/-60 ms, range 230-450 ms), mapped for 15-20 s, and terminated by overdrive pacing or DC shock. Off-line analysis of isopotential activation mapping was performed to identify the diastolic pathway and/or the exit point of the ventricular tachycardia reentry circuit. Radiofrequency current was applied to create a line of block across the diastolic pathway or around the exit point. RESULTS: All 27 ventricular tachycardias were mapped with the non-contact system. The endocardial exit point (-7+/-15 ms before QRS onset) was defined in 21/21 postinfarction ventricular tachycardias, in 3/3 arrhythmogenic right ventricular dysplasia and in 1/3 idiopathic dilated cardiomyopathy ventricular tachycardias, respectively. The diastolic pathway (earliest endocardial diastolic activity: -65+/-49 ms before QRS onset) was identified in 17/21 postinfarction ventricular tachycardias, in 1/3 arrhythmogenic right ventricular dysplasia and in 1/3 idiopathic dilated cardiomyopathy ventricular tachycardias, respectively. Catheter ablation was performed in 25/27 ventricular tachycardias (93%) in 15/17 patients (88%): 16/25 ventricular tachycardias (64%) were successfully ablated in 10/17 patients (59%). Catheter ablation was not performed in two patients or proved unsuccessful in five patients. At a follow-up of 15+/-5 months, there was no recurrence of documented ventricular tachycardia in all 10 patients with successful catheter ablation; in two of them a previously non-documented ventricular tachycardia occurred. A high recurrence of ventricular tachycardia was observed in patients with a failed procedure (5/7: 71%). No major complication or death occurred. CONCLUSIONS: Non-contact mapping can be effectively used to map and guide radiofrequency catheter ablation of untolerated ventricular tachycardias. Given the favourable acute and clinical long-term results, this approach proves to be more effective in patients with postinfarction ventricular tachycardias, in comparison to patients with arrhythmogenic right ventricular dysplasia and idiopathic dilated cardiomyopathy.  相似文献   

6.
Identification of Ventricular Outflow Tract Tachycardia. Background: Reentrant ventricular outflow tract (OT) tachycardia is rare in patients with nonischemic heart disease. The mechanism of ventricular tachycardia (VT) arising from the region of the aortic sinus of Valsalva (ASOV) is usually focal, rather than reentrant. Consequently, less is known about reentrant circuits in the OT and the aortic sinuses. The purpose of this study was to evaluate existence of reentry circuits in these areas using entrainment mapping techniques. Methods: We performed electrophysiological study in 51 consecutive patients with idiopathic or nonischemic symptomatic VT arising from the OT. Six of these patients were found to have VT of reentrant mechanism with 8 VT morphologies. Entrainment mapping, electroanatomical mapping (in 2 patients), and radiofrequency catheter ablation were performed. Results: Pacing entrained the VT at 93 sites, 52 of which were determined to be in the reentry circuit based on matching of the postpacing interval and VT cycle length. Of the reentry circuit sites, 6 were in the aortic sinus, 43 were below the aortic valve, and 3 were in the right OT below the pulmonary valve. Classification of reentry circuit sites identified 7 as exit, 1 as central‐proximal, 19 as inner loop, and 25 as outer loop sites. Catheter ablation terminated VT at 4 of the 6 aortic sinus sites and 4 of the 46 OT sites (P = 0.0006). Conclusions: We definitively demonstrated involvement of the ASOV in OT reentrant tachycardia using entrainment mapping. It may be useful for successful VT ablation to identify reentry circuit localization. (J Cardiovasc Electrophysiol, Vol. 23, pp. 179‐187, February 2012)  相似文献   

7.
OBJECTIVES: The purpose of this study was to describe a computerized mapping system that utilizes a noncontact, 64 electrode balloon catheter to compute virtual electrograms simultaneously at 3,360 left ventricular (LV) sites and to assess the clinical utility of this system for mapping and ablating ventricular tachycardia (VT). BACKGROUND: Mapping VT in the electrophysiology laboratory conventionally is achieved by sequentially positioning an electrode catheter at multiple endocardial sites. METHODS: Fifteen patients with VT underwent 18 electrophysiology procedures using the noncontact, computerized mapping system. A 9F 64 electrode balloon catheter and a conventional 7F electrode catheter for mapping and ablation were positioned in the LV using a retrograde aortic approach. Using a boundary element inverse solution, 3,360 virtual endocardial electrograms were computed and used to derive isopotential maps. An incorporated locator system was used in conjunction with or instead of fluoroscopy to position the conventional electrode catheter. RESULTS: A total of 21 VTs, 12 of which were hemodynamically-tolerated and 9 of which were not, were mapped. Isolated diastolic potentials, presystolic areas, zones of slow conduction and exit sites during VT were identified using virtual electrograms and isopotential maps. Among 19 targeted VTs, radiofrequency ablation guided by the computerized mapping system and the locator signal was successful in 15. CONCLUSIONS: The computerized mapping system described in this study computes accurate isopotential maps that are a useful guide for ablation of hemodynamically stable or unstable VT.  相似文献   

8.
Introduction: The purpose of this study was to examine the reentrant circuit of ventricular tachycardias (VTs) involving the left anterior fascicle (LAF) in nonischemic cardiomyopathy.
Methods and Results: Six patients with nonischemic cardiomyopathy presented with VTs involving the LAF. Potentials in the diastolic or presystolic phase of the VT were identified close to the LAF in 3 patients and in the mid or inferior left ventricular (LV) septum in 3 patients. Superimposed on a CARTO or NavX 3-dimensional voltage map, the diastolic and presystolic potentials were recorded within or at the border of a low-voltage zone in the LV septum in all cases. In 2 patients, both left bundle fascicles participated in the reentrant circuit including a possible interfascicular VT in one case. Ablation targeting the diastolic or presystolic potentials near the LAF or in the midinferior LV septum eliminated the VTs in all patients with the occurrence of a left posterior fascicular block and the delayed occurrence of a complete atrioventricular block in each one patient. During the follow-up of 23 ± 20 months after ablation, 4 patients were free of ventricular tachyarrhythmias. Due to detoriation of heart failure, one patient died after 12 months and one patient underwent heart transplantation after 40 months.
Conclusions: Slow conduction in diseased myocardium close to the LAF or in the middle and inferior aspects of the LV septum may represent the diastolic pathway of VT involving the LAF.  相似文献   

9.
INTRODUCTION: A reentrant circuit within an area of abnormal myocardium is suspected as the origin of ventricular tachycardia (VT) in patients with arrhythmogenic right ventricular dysplasia (ARVD). OBJECTIVES: To examine the relationship between the reentrant circuits of VT and the abnormal electrograms in ARVD, and to assess the feasibility of a block line formation in the reentrant circuit isthmus utilizing electroanatomical mapping system (CARTO) guidance. METHODS AND RESULTS: An electrophysiological study and catheter ablation (CA) were performed in 17 ARVD patients (13 men, 47 +/- 17 year) using CARTO. Endocardial mapping during sinus rhythm demonstrated electrogram abnormalities extended from the tricuspid annulus (TA) or the right ventricular outflow tract in 16 of 17 patients. In 13 hemodynamically stable VTs, the reentrant circuits and critical slow conduction sites for the CA were investigated during VTs. The entire macro-reentrant pathway was identified in 6/13 stable VTs (figure-of-8 in 4, single loop in 2). In the remaining seven VTs, a focal activation pattern was found in four and an unidentifiable pattern in three. CA successfully abolished all the macro-reentrant and focal tachycardias, however, not effective in three unidentifiable VTs. In the 13 cases with unstable VT, the linear conduction block zone was produced between the sites with abnormal electrograms and the TA. Ultimately, 23/26 VTs (88%) became noninducible after the CA. During follow-up (26 +/- 15 months), 13/17 patients remained free from any VT episodes. CONCLUSIONS: CARTO is useful for characterizing the anatomical and electrophysiological substrates, and for identifying the optimal ablation sites for VT associated with ARVD.  相似文献   

10.
INTRODUCTION: New methods for electrogram analysis accurately estimated reentrant circuit isthmus location and shape in a canine model. It was hypothesized that these methods also would locate reentrant circuits causing clinical ventricular tachycardia (VT). METHODS AND RESULTS: Intracardiac electrogram recordings, obtained with a noncontact mapping system, were analyzed retrospectively from 14 patients with reentrant VT who had undergone successful radiofrequency ablation for prevention of VT initiation. Unipolar electrograms from 256 uniformly distributed endocardial sites were reconstructed by mathematical transformation. Twenty-seven tachycardias were mapped; 15 (in 11 patients) had a complete endocardial reentrant circuit with a figure-of-eight conduction pattern. During sinus rhythm, the location and axis of the slowest and most uniform conduction in the region of latest endocardial activation (the primary axis), the limits of which were defined as boundaries with >15 ms difference in electrogram duration between contiguous recordings, identified the location and shape of the reentrant circuit isthmus with a mean sensitivity compared with activation mapping of 79.3% and a mean specificity of 97.6%. The midpoint of a theoretical "estimated best ablation line" drawn perpendicular to the primary axis of activation, spanning the estimated isthmus location was within 1.3 +/- 0.2 cm (mean distance +/- SD) of the actual ablation site that terminated tachycardia. Analysis of VT electrograms, based on time shifts in the far-field component of the local electrogram when cycle length changed (piecewise linear adaptive template matching [PLATM] method) in 5 of the cases, accurately estimated the time interval between activation at the recording site and the circuit isthmus slow conduction zone where the effective ablation lesion had been placed, which is proportional to the distance between the two locations (mean difference compared with activation mapping: +/-37.3 ms). CONCLUSION: In selected patients with VT who have a complete endocardial circuit, isthmus location and shape can be discerned by analysis of sinus rhythm or tachycardia electrograms, and an effective ablation site can be predicted without the need to construct activation maps of reentrant circuits.  相似文献   

11.
This case report demonstrates the use of an automated voltage mapping algorithm to facilitate the rapid mapping of the low-voltage zone and isolate the critical diastolic pathway of an intra-atrial reentrant tachycardia circuit. Catheter ablation targeted to this pathway successfully terminated the arrhythmia.  相似文献   

12.
介绍非接触球囊导管标测系统 (EnSite 30 0 0系统 )指导难治性特发性左室室性心动过速的标测与射频消融的初步经验。 5例男性病人 ,年龄 33± 17(17~ 6 2 )岁 ,常规方法标测和导管消融失败 2 .4± 1.1(1~ 4)次。常规放置高位右房和右室电生理导管 ,运用置入左室的 6 4极球囊导管和大头电极 ,系统重建三维心内膜几何模型和等电势 ,经右室导管诱发VT ,心动过速周期为 32 3.8± 48.1ms。EnSite 30 0 0系统标测到VT的最早激动点分别位于左后间隔中下部、左侧间隔后下部左束支下方、后下间隔近心尖部、左室后壁近基底部和左后间隔中部。在最早激动点和关键峡部分别行点状、环状和线性消融。 2例患者在心动过速时放电、3例患者在窦性心律时消融 ,均获成功。成功消融靶点处的单极电图均为QS型。X线曝光时间为 2 5± 12min。随访 7.8± 4.6 (1~ 11)个月所有患者均未发作心动过速。结果表明 ,与常规方法比较 ,EnSite 30 0 0系统所建立的心腔三维模拟等电势图可直观地显示心动过速的起源点、传导途径和关键峡部 ,系统模拟的单极腔内电图的形态也有助于判断病灶起源部位及提高消融成功率 ,尤其适用于常规方法消融失败的室性心律失常的标测 ,其独特的导航系统可引导消融导管到达靶点部位指导射频消融 ,并可减少X?  相似文献   

13.
We report a case of a patient with nonischemic dilated cardiomyopathy and implantable cardioverter-defibrillator, in whom an upgrade to biventricular pacing triggered multiple episodes of ventricular tachycardias (VTs) of two morphologies. First VT presented as repetitive nonsustained arrhythmia of the same morphology as isolated ectopic beats, suggesting its focal origin. Second VT was reentrant and was triggered by the former ectopy, leading to a therapy from the device. Electroanatomical mapping of the left ventricle revealed relatively small low voltage area in the left ventricular outflow tract and identified both an arrhythmogenic focus as well as critical isthmus for reentrant VT. Radiofrequency catheter ablation successfully abolished both VTs. After the procedure, biventricular pacing was continued without any recurrences during a period of 24 months. The report emphasizes the role of catheter ablation in management of VTs triggered by cardiac resynchronization therapy.  相似文献   

14.
Noncontact Mapping of the Heart. The noncontact mapping system is a new tool for electrophysiologic study and radiofrequency ablation. The mode of operation includes single beat, three-dimensional, high-density mapping. Careful analysis of unipolar electrograms and isopotential maps are essential to understand the mechanism of the arrhythmia. Radiofrequency catheter ablation guided by this system is effective in curing patients of their tachycardias.  相似文献   

15.
Ultra High‐Density Multipolar Mapping With Double Ventricular Access . Background: Analogous to the use of circular loop catheters to guide ablation around the pulmonary veins, it may be advantageous to use a multipolar catheter in the ventricle for rapid mapping and to guide ablation. We describe a technique using double access into the left ventricle for multipolar electroanatomic mapping and ablation of scar‐mediated ventricular tachycardia (VT). Methods: Double access into the left ventricle was obtained via transseptal technique. Endocardial mapping was performed via the first transseptal sheath using a steerable duodecapolar catheter. Higher density mapping was performed in areas of dense scar (<0.5 mV) and border zone (0.5–1.5 mV). All late potentials (LPs) observed on the 20 poles were tagged and pacemapping was performed at these sites for comparison with the clinical or induced VT 12‐lead template. If VT was hemodynamically tolerated, entrainment mapping was attempted at sites demonstrating diastolic activity. Ablation was performed through the second transseptal sheath with an open‐irrigated catheter at target sites identified by LPs, pacemapping, and/or entrainment on the duodecapolar catheter. Results: Seventeen patients (88% ischemic cardiomyopathy) underwent electroanatomic mapping and ablation with double transseptal access. The mean number of endocardial mapping points was 819 ± 357 with an average mapping time of 31 ± 7 minutes. The mean number of VTs induced was 2.8 ± 1.6, mean cycle length 418 ms ± 101. LPs were seen in all patients during endocardial mapping with the duodecapolar catheter. Good (56%) and perfect (44%) pacemaps were seen in all patients when performed. Concealed entrainment, guided by the earliest diastolic activity seen on the duodecapolar catheter, was demonstrated in 4 patients (24%). Acute success was achieved in 94% of patients with complete success in 47% and partial success in 47%. The intermediate success rate (free of VT recurrence) was 69%, with an average follow‐up of 8 ± 3 months. Conclusion: Mapping and ablation of scar‐mediated VT using a multipolar catheter results in ultra high‐density delineation of the left ventricular substrate. A novel double ventricular access strategy has the potential to facilitate identification of LPs, pacemapping, and entrainment mapping. (J Cardiovasc Electrophysiol, Vol. 22, pp. 49‐56, January 2011)  相似文献   

16.
Toward MR‐Guided Electroanatomical Voltage Mapping for Catheter Ablation. Introduction: Integration of preprocedural delayed enhanced magnetic resonance imaging (DE‐MRI) with electroanatomical voltage mapping (EAVM) may provide additional high‐resolution substrate information for catheter ablation of scar‐related ventricular tachycardias (VT). Accurate and fast image integration of DE‐MRI with EAVM is desirable for MR‐guided ablation. Methods and Results: Twenty‐six VT patients with large transmural scar underwent catheter ablation and preprocedural DE‐MRI. With different registration models and EAVM input, 3 image integration methods were evaluated and compared to the commercial registration module CartoMerge. The performance was evaluated both in terms of distance measure that describes surface matching, and correlation measure that describes actual scar correspondence. Compared to CartoMerge, the method that uses the translation‐and‐rotation model and high‐density EAVM input resulted in a registration error of 4.32±0.69 mm as compared to 4.84 ± 1.07 (P <0.05); the method that uses the translation model and high‐density EAVM input resulted in a registration error of 4.60 ± 0.65 mm (P = NS); and the method that uses the translation model and a single anatomical landmark input resulted in a registration error of 6.58 ± 1.63 mm (P < 0.05). No significant difference in scar correlation was observed between all 3 methods and CartoMerge (P = NS). Conclusions: During VT ablation procedures, accurate integration of EAVM and DE‐MRI can be achieved using a translation registration model and a single anatomical landmark. This model allows for image integration in minimal mapping time and is likely to reduce fluoroscopy time and increase procedure efficacy. (J Cardiovasc Electrophysiol, Vol. 23, pp. 74‐80, January 2012)  相似文献   

17.
New Endpoint for Ablation of Ventricular Tachycardia. Introduction: Endpoints confirming block in the critical isthmus in sinus rhythm and with pace mapping have not been established. Methods and Results: A 44‐year‐old man with a history of Tetralogy of Fallot presented with recurrent ventricular tachycardia (VT). Entrainment mapping was consistent with a macroreentrant circuit rotating in a clockwise fashion under the pulmonic valve. After termination of the VT in a critical isthmus located on the conal free wall, a pace map proximal to the site of successful ablation was consistent with a change in QRS morphology. This change in QRS morphology suggested critical isthmus block and successful ablation, which was confirmed by noninducibility with programmed stimulation. Conclusion: Evidence of conduction block can be used as an additional endpoint for successful ablation of VT. (J Cardiovasc Electrophysiol, Vol. 21, pp. 320–324, March 2010)  相似文献   

18.
目的探讨非接触球囊标测在指导血流动力学不稳定性或非持续性室性心动过速(室速)射频消融中的作用。方法17例室速患者,年龄50岁±9岁,经心室刺激诱发血流动力学不稳定性或非持续性室速后,使用非接触标测系统ENSITE3000标测室速的出口和(或)慢传导区,然后使用温控大头导管在室速出口作环形消融或横跨慢传导区进行线性消融。结果17例患者共诱发18次室速,周长为336MS±58MS。15例患者可确定室速的出口,为QRS波前10MS±16MS;其中5例是心肌梗死后室速,9例为右室流出道室速。5例心肌梗死后室速均可确定舒张期慢传导区,最早的心内膜舒张期电活动在QRS波前60·1MS±42·6MS。3例非持续性室速均可确定最早的心室激动点。18次室速中15次消融成功,1例没有进行消融,2例消融失败。结论非接触球囊心内膜标测能成功指导血流动力学不稳定性或非持续性室速的射频消融。  相似文献   

19.
Identification of the Slow Conduction Zone in a Macroreentry. Background: Although idiopathic left ventricular tachycardia (ILVT) has been shown to possess a slow conduction zone (SCZ), the details of the electrophysiological and anatomic aspects are still not well understood. Objective: We hypothesized that the SCZ can be identified using a 3‐dimensional electroanatomic (EA) mapping system. Methods : Ten patients with ILVT were mapped using a 3‐dimensional electroanatomic (EA) mapping system. After a 3‐dimensional endocardial geometry of the left ventricular was created, the conduction system with left Purkinje potential (PP) and the SCZ with diastolic potential (DP) in LV were mapped during sinus rhythm (SR) and ventricular tachycardia (VT) and were tagged as special landmarks in the geometry. The electrophysiological and anatomic aspects of it were investigated. Results: EA mapping during SR and VT was successfully performed in 7 patients, during VT in 3 patients. The SCZ with DPs located at the inferoposterior septum was found in 7 patients during SR and all patients during VT. The length of the SCZ was 25.2 ± 2.3 mm with conduction velocity 0.08 ± 0.01 m/s. No differences in these parameters were found between patients during SR and VT (P > 0.05). An area with PP was found within the posterior septum. A crossover junction area with DP and PP was found in 7 patients during SR and VT. This area with DP and PP during SR coincided or were in proximity to such area during VT and radiofrequency ablation targeting the site within the area abolished VT in all patients. Conclusion: The ILVT substrate within the junction area of the SCZ and the posterior fascicular can be identified and can be used to guide the ablation of ILVT. (J Cardiovasc Electrophysiol, Vol. 23, pp. 840‐845, August 2012)  相似文献   

20.
探讨非接触心内膜激动标测系统(NMS)指导消融右室流出道室性心动过速 (RVOT VT)的临床使用价值。选择 12例RVOT VT患者在NMS EnSite 3000TM指导下进行电生理标测和消融治疗, 经股静脉将 9F64极球囊电极(Array)和普通 7F消融电极送至RVOT采集信号,计算机将采集到的 3 360个点的实时心内膜电图通过逆运算法处理后显示分析RVOT三维立体图上彩色等电势图,确定心动过速时心内膜最早激动点。在脱离X线时,由导航和定位系统实时跟踪导管位置变化,并实施靶点消融。9例能诱发出持续性或非持续性VT, 3例仅能诱发RVOT早搏。与以往传统方法消融的 19例结果相比较,心内膜最早激动时间 (EEAT)较体表心电图QRS波的起点提前(29. 4±12. 3msvs18. 7±8. 1ms,P<0. 01),放电部位减少 ( 5. 7±3. 4vs8. 2±3. 1,P<0. 05 )个,手术时间延长(246. 9±53. 0minvs190. 2±74. 6min,P<0. 05);X线曝光时间(44. 3±17. 5minvs57. 5±20. 1min)、即刻成功率(100% vs84. 2% )、6个月随访成功率(100% vs73. 7% ),没有显著性差异,P均>0. 05。结论:NMS指导消融RV OT VT安全可靠,靶点定位准确,且在提高远期成功率方面有优于传统标测方法的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号