首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, sensitive and rapid liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method was developed and validated for the quantification of olanzapine, atypical antipsychotic drug, in human plasma using loratadine as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse phase C18 column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 313/256 for olanzapine and m/z 383/337 for the IS. The assay exhibited a linear dynamic range of 0.1-30 ng/mL for olanzapine in human plasma. The lower limit of quantification was 100 pg/mL with a relative standard deviation of less than 10%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The average absolute recovery of olanzapine from spiked plasma samples was 85.5+/-1.9%. A run time of 2.0 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

2.
Liu Y  Wang Z  Sun J  Wang Y  He Z 《Arzneimittel-Forschung》2011,61(12):674-680
A rapid, sensitive and selective ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantitative determination of nitrendipine (NTD, CAS 39562-70-4) in dog plasma. Using propranolol hydrochloride (CAS 318-98-9) as an internal standard (IS), plasma samples pretreatment adopted a simple liquid-liquid extraction process with diethyl ether. Separation was carried out by a gradient elution on an Acquity UPLC BEH C18 column with a mobile phase consisting of water (containing 0.1% formic acid) and acetonitrile. Detection was performed by a triple-quadrupole mass spectrometry with positive electrospray ionization (ESI) as source ionization in multiple-reaction monitoring (MRM) mode at m/z 361.0 --> 315.0 for NTD and m/z 260.2 --> 116.0 for IS. The method demonstrated good linearity at the concentrations ranged from 0.1-200 ng/mL and the lower limit of quantification (LLOQ) of NTD was 0.1 ng/mL. The intra- and inter-day relative standard deviations (RSD) were less than 10%. The mean extraction recoveries of NTD and IS were 90.2% and 82.4%, respectively. Finally, the method was successfully applied to a pharmacokinetic study of home-made solid self-emulsifying pellets and conventional NTD tablets in beagle dogs following a single oral administration.  相似文献   

3.
A rapid, sensitive and reliable high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated for the determination of propiverine hydrochloride (CAS 54556-98-8) in human plasma using cetirizine di-hydrochloride as internal standard (IS, CAS 8388-51-0). Following liquid-liquid extraction with ethyl acetate, the separation was performed on a reverse phase C18 column with a mobile phase consisted of methanol-ammonium acetate (pH 4.0; 10 mM) (70:30, v/v). The detection was performed by a triple-quadrupole mass spectrometer in the positive ion and multiple reaction monitoring (MRM) mode, m/z 368.3 --> 116.1 for propiverine and m/z 389.2 --> 201.0 for the IS. The calibration curve fitted well over the concentration range of 0.2-200 ng/mL (all the concentration data in this study are related to salt (propiverine hydrochloride)). The limit of detection (LOD) and lower limit of quantification (LLOQ) in human plasma were 0.05 and 0.2 ng/mL, respectively. The method was proved to be rapid, sensitive, specific, accurate and reproducible and has been successfully applied to a pharmacokinetic study of propiverine hydrochloride sustained release capsules (the 30 mg dose in this study is related to 30 mg of salt (propiverine hydrochloride)). The major pharmacokinetic parameters in healthy Chinese volunteers are given for the first time and the sustained release characteristics of the sustained release formulation are evaluated. [corrected].  相似文献   

4.
A sensitive and selective liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of domperidone (CAS number: 57808-66-9) in human plasma using paracetamol (CAS number: 103-90-2) as an internal standard (IS). Domperidone and paracetamol in plasma were extracted with ethyl acetate, separated on a C18 reversed phase column, eluted with mobile phase of acetonitrile-glacial acetic acid (0.3%) (40:60, v/v), ionized by positive ion pneumatically assisted electrospray and detected in the multi-reaction monitoring mode using precursor→product ions of m/z 426.2→175.1 for domperidone and 152→110 for the IS, respectively. The calibration curve was linear (r2≥0.99, n=5) over the concentration range of 0.2-80 ng/mL and with lower limit of detection and quantitation of 0.05 and 0.2 ng/mL. The speci?city, matrix effect, recovery, sensitivity, linearity, accuracy, precision, and stabilities were validated for domperidone in human plasma. In conclusion, the validation results showed that this method was sensitive, economical and less toxic and it can successfully ful?ll the requirement of clinical pharmacokinetic study of domperidone oral preparation in Chinese healthy volunteers.  相似文献   

5.
A simple, sensitive and rapid liquid chromatography/electrospray ionization tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of nimodipine, a calcium channel blocker, in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse phase C18 column and analyzed by MS in the multiple reaction monitoring mode using the respective [M + H]+ ions, m/z 419/343 for nimodipine and m/z 409/228 for the IS. The assay exhibited a linear dynamic range of 0.2-50 ng/mL for nimodipine in human plasma. The lower limit of quantification was 200 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 3 min for each sample made it possible to analyze more than 250 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

6.
A sensitive liquid chromatography-tandem mass spectrometry (LC/MS/MS) method was developed and validated for the determination of trimetazidine (CAS 13171-25-0) in human plasma, using pseudoephedrine as internal standard (IS). Plasma samples were simply pretreated with methanol for deproteinization. The chromatographic separation was performed on a C18 column with a mobile phase of 3 mmol/L ammonium acetate solution-methanol (15:85, v/v) at a flow rate of 0.3 mL/min. The chromatographic separation was achieved in less than 3.2 min. The linearity was established over the concentration range of 1-100 ng/mL. Both intra- and inter-batch standard deviations were less than 9.5%. The method was successfully applied to study the relative bioavailability of trimetazidine hydrochloride tablets in healthy Chinese volunteers and the pharmacokinetic parameters of the reference and test tablets were compared.  相似文献   

7.
A rapid, simple and sensitive LC-MS/MS method was developed for simultaneous determination of amoxicillin and ambroxol in human plasma using clenbuterol as internal standard (IS). The plasma samples were subjected to a simple protein precipitation with methanol. Separation was achieved on a Lichrospher C(18) column (150 mm x 4.6mm ID, dp 5 microm) using methanol (containing 0.2% of formic acid) and water (containing 0.2% of formic acid) as a mobile phase by gradient elution at a flow rate of 1.0 mL/min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring (MRM) mode by monitoring the ion transitions from m/z 365.9-->348.9 (amoxicillin), m/z 378.9-->263.6 (ambroxol) and m/z 277.0-->203.0 (IS). Calibration curves were linear in the concentration range of 5-20,000 ng/mL for amoxicillin, and 1-200 ng/mL for ambroxol, with the intra- and inter-run precisions of <9% and the accuracies of 100+/-7%. The method has been validated and applied to pharmacokinetic studies of compound amoxicillin and ambroxol hydrochloride tablets in healthy Chinese volunteers.  相似文献   

8.
A simple and sensitive liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of rosuvastatin in human plasma. After being treated with acetic acid and tetrabutyl ammonium hydroxide, the analyte was extracted by simple one-step liquid-liquid extraction with the internal standard (IS: estrone). The chromatographic separation was performed on a Phenomenex Luna C18 column with a mobile phase consisting of 2% formic acid/methanol (20:90, v/v) at a flow rate of 1.00 mL/min with a split of 200 microL to mass spectrometer. The retention time of rosuvastatin and internal standard was 2.3 and 3.4 min, respectively. Triple-quadrupole MS/MS detection was operated in positive mode by monitoring the transition of m/z 482-->258 for rosuvastatin and m/z 271-->253 for IS. Validation results indicated that the lower limit of quantification (LLOQ) was 0.1 ng mL(-1) and the assay exhibited a linear range of 0.1-20 ng mL(-1) and gave a correlation coefficient (r) of 0.9990 or better. Inaccuracy was less than 8.4% and imprecision less than 12.8% at all tested concentration levels. The analyte was stable in human plasma following three freeze/thaw cycles and for up to 8 weeks following storage at -20 degrees C. The assay was successfully applied to the analysis of rosuvastatin in human plasma samples derived from clinical pre-trials.  相似文献   

9.
A rapid, sensitive and selective HPLC-MS/ MS method was developed and validated for the quantification of cetirizine dihydrochloride (CAS 83881-51-0) in human plasma using mosapride citrate as internal standard (IS, CAS 112885-42-4). Following liquid-liquid extraction, the analytes were separated using a mobile phase consisting of methanol and aqueous ammonium acetate solution (10 mM) (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 398 --> 201 for cetirizine and m/z 422 --> 198 for mosapride. The analysis time for each run was 8.0 min. The assay exhibited a linear dynamic range of 0.5-500 ng/ml for cetirizine dihydrochloride in human plasma. The lower limit of quantification (LLOQ) was 0.5 ng/ml with a relative standard deviation of less than 15% (all the concentration data in this study related to the salt (cetirizine dihydrochloride)). Acceptable precision and accuracy were obtained for concentrations over the standard curve range. It is the first time that the validated HPLC-MS/MS method has been successfully applied to a bioequivalence study in 20 healthy male Chinese volunteers.  相似文献   

10.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of gabapentin, a new antiepileptic drug, in human plasma using its structural analogue, 1,1-cyclohexane diacetic acid monoamide (CAM) as internal standard. The method involved a simple protein precipitation by means of acetonitrile followed by a rapid isocratic elution with 10mM ammonium formate buffer/acetonitrile (20/80, v/v, pH 3.0) on Waters Symmetry C(18 reversed phase chromatographic column and analyzed by mass spectrometry in the multiple reaction monitoring mode. The precursor to product ion transitions of m/z 172-->154 and m/z 200-->182 were used to measure the analyte and the IS, respectively. The assay exhibited a linear dynamic range of 40-10000 ng/mL for gabapentin in human plasma. The limit of detection and lower limit of quantification in human plasma were 10 and 40 ng/mL, respectively. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2 min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

11.
A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated for the determination and pharmacokinetics of danshensu in rat plasma samples using ferulic acid as internal standard (IS). The plasma samples were treated by liquid-liquid extraction, and the analyses were determined using electrospray negative ionization mass spectrometry in selected reaction monitoring (SRM) mode. The signal intensity of the m/z 196.8 --> 134.8 transition of danshensu was found to relate linearly to danshensu concentrations in the plasma from 5-500 ng/mL. The lower limit of quantification (LLOQ) as determined by the LC/MS/MS method amounted to 5 ng/mL. The intra- and inter-day precision was below 10.82%, and the accuracy was between -3.51% and +11.92%. The validated LC/MS/MS method was applied to a pharmacokinetic study in which danshen extract (containing 40 mg/g danshensu) was administered orally to rats at a single dose of 200 mg/kg in 2% water.  相似文献   

12.
A simple, rapid, sensitive, and selective liquid chromatography-tandem mass spectrometry (MS) method was developed and validated for the quantification of metaxalone, a skeletal muscle relaxant, in human plasma using galantamine as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse phase C18 column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 222/161 for metaxalone and m/z 288/213 for the IS. The assay exhibited a linear dynamic range of 50-5000 microg/L for metaxalone in human plasma. The lower limit of quantification was 50 microg/L with a relative standard deviation of less than 10%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability, or bioequivalence studies.  相似文献   

13.
Xiong ZL  Yu J  He JF  Qin F  Li FM 《药学学报》2011,46(10):1246-1250
建立液相色谱串联质谱(LC-MS/MS)法测定人血浆中加巴喷丁的浓度并将其应用于人体药动学研究。取血浆样品经甲醇沉淀蛋白后,以甲醇0.2%甲酸水溶液(80∶20)为流动相,用Inertsil ODS-3 C18柱(50 mm×2.1 mm ID,3μm)分离,采用电喷雾离子源,以多反应监测(MRM)方式进行正离子检测,定量分析的离子反应分别为m/z 172→m/z 154(加巴喷丁)和m/z 130→m/z 71(内标二甲双胍)。加巴喷丁线性范围为40.8~8.16×103 ng.mL 1,定量限为40.8 ng.mL 1,每个样品测试时间仅2.2 min,日内、日间精密度(RSD)均小于12%,准确度(RE)在±6.4%范围内。应用此法研究了20名健康志愿者单剂量口服加巴喷丁胶囊600 mg后的药动学特点。该方法快速、专属、灵敏、适用性强,可应用于加巴喷丁的人体药动学研究。  相似文献   

14.
A fast and sensitive method of coupled high-performance liquid chromatography-electrospray tandem mass spectrometry for the assay of lorazepam in human plasma was developed. Plasma samples were simply treated with acetonitrile to precipitate and remove proteins and the isolated supernatants were directly injected into the HPLC/MS/MS system. Chromatographic separation was performed on a Zorbax C(18) (100 x 2.1 mm I.D.) column with a 65:35 (v/v) mixed solution of acetonitrile and 10mM aqueous formic acid being used as mobile phase. With diazepam as an internal standard, quantification was performed by selected reaction ion monitoring of the transitions of m/z 321--> m/z 275 for lorazepam and m/z 285--> m/z 193 for the internal standard. The assay was validated in the concentration range of 0.71-71.3 ng/ml in human plasma. A detection limit of 0.10 ng/ml for lorazepam was achieved, and inter- and intra-run precisions of better than 4.4% (R.S.D.) were observed. The developed method has been successfully applied for pharmacokinetic study of the drug in man.  相似文献   

15.
An LC/MS/MS method to quantify SN-38 in mouse plasma and tissue homogenates containing liposome entrapped SN-38 (LE-SN38) was developed. Camptothecin (CPT) was used as the internal standard (IS). Sample preparation consisted of simple protein precipitation by acetonitrile containing 0.5% acetic acid. SN-38 and IS were separated by a C18 HPLC column and detected using a mass spectrometer operating in the multiple reaction monitoring (MRM) mode. The peak area of the m/z 393.3-->349.1 transition of SN-38 and that of the m/z 349.1-->305.2 transition of the IS were measured and a standard curve was generated from their ratios. The method had a LLOQ of 0.5 ng/mL in mouse plasma, which corresponds to 2.5 pg for the 5 microL injection volume. The linear range was 0.5-1000 ng/mL of SN-38 in plasma sample spiked with LE-SN38. The LLOQ in tissue homogenates (5%, w/v) quantitation was 1 ng/mL (20 ng/g tissue) of SN-38 in kidney, liver, lung, and spleen homogenates, and 2 ng/mL (40 ng/g tissue) in heart homogenate containing LE-SN38. The assay was linear up to 400 ng/mL of SN-38 in tissue homogenates, and may be extended to 120 microg/mL by proper dilution of samples over the upper limit of quantitation. Acceptable precision and accuracy were obtained for concentrations over the entire standard curve range, both between-run and within-run for plasma and tissue homogenates. The method was successfully used to quantify SN-38 in plasma and tissues samples for pharmacokinetic and tissue distribution studies of LE-SN38 in mice.  相似文献   

16.
A simple, rapid, sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the quantification of rupatadine in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-ammonium acetate (pH 2.2; 5mM) (50:50, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the positive ion and multiple reaction monitoring (MRM) mode, m/z 416-->309 for rupatadine and m/z 295-->267 for the IS. The assay exhibited a linear dynamic range of 0.1-100 ng/ml for rupatadine in human plasma. The lower limit of quantification (LLOQ) was 0.1 ng/ml with a relative standard deviation of less than 20%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of rupatadine in healthy volunteers.  相似文献   

17.
A sensitive and rapid liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for simultaneous quantification of guanfu base A (GFA) and its metabolites guanfu base I (GFI) and guanfu alcohol-amine (AA) in human plasma with phenoprolamine hydrochloride (DDPH) as the internal standard. The analytes were extracted from human plasma by using liquid-liquid extraction with ethyl acetate and the LC separation was performed on a Diamonsil C(18) analytical column (150 mm x 2.1 mm i.d., 5 microm). The MS acquisition was performed in selected ion monitoring (SIM) mode of positive ions. Analysis was carried out in SIM mode at m/z 430.25 for GFA [M+H](+), m/z 388.25 for GFI [M+H](+), m/z 346.25 for AA [M+H](+) and m/z 344.20 for the IS DDPH [M+H](+). The calibration curves were linear over the range of 50-5000 ng/mL for GFA and 5-1000 ng/mL for GFI and AA, with coefficients of correlation above 0.999. The lower limit of quantification for GFA was 1 ng/mL, while for GFI and AA were both 5 ng/mL. The intra- and inter-day precisions (CV) of analysis were within 9%, and the accuracy ranged from 91% to 108%. The overall recoveries for GFA, GFI and AA were about 94.2%, 87.8% and 80.6%, respectively. The total LC-MS run-time was only 5.5 min. This quantitation method was successfully applied to the simultaneous determination of GFA and its metabolites in human plasma for the metabolic study and pharmacokinetic evaluation.  相似文献   

18.
A sensitive and specific high-performance liquid chromatography-tandem mass spectrometry method (LC/ESI/MS) was developed and validated for the identification and quantification of the novel lead compound of anticholinergic drug thiencynonate in rat plasma. The analytes were determined using positive electrospray ionization mass spectrometry in the selected reaction ion monitoring (SRM). The chromatography separation was on BetaBasic-18 column (150 mm x 2.1 mm i.d., 3 microm). The mobile phase was composed of methanol-water (70:30, v/v), containing 0.5 per thousand formic acid, which was pumped at a flow rate of 0.2 ml/min. Phencynonate was selected as the internal standard (IS). Simultaneous MS detection of thiencynonate and IS was performed at m/z 364.4 (thiencynonate), m/z 358 (phencynonate), and the SRM of the two compounds were both at 156. Thiencynonate eluted at approximately 2.8 min, phencynonate eluted at approximately 2.9 min and no endogenous materials interfered with their measurement. Linearity was obtained over the concentration range of 1-100 ng/ml in rat plasma. The lower limit of quantification (LLOQ) was reproducible at 1 ng/ml in rat plasma. The precision measured was obtained from 2.47 to 9.28% in rat plasma. Extraction recoveries were in the range of 67.63-76.76% in plasma. This method was successfully applied to the identification and quantification of thiencynonate in pharmacokinetic studies.  相似文献   

19.
建立测定人血浆中莫沙必利的高效液相色谱-质谱/质谱联用法。取血浆样品经液-液萃取后,以乙腈为有机相,0.3%甲酸水溶液为水相,采用梯度洗脱的方式,用C18柱分离,通过电喷雾离子化,以多反应监测(MRM)方式进行正离子检测。莫沙必利线性范围为0.17~68.00 ng·mL-1,定量下限为0.17 ng·mL-1,每个样品测试时间仅2.8 min,日内、日间精密度(RSD)均小于13%,准确度(RE)在±6.3%范围内。应用此法研究了20名志愿者单剂量口服枸橼酸莫沙必利片后的药代动力学特点。该方法、灵敏、准确、快速,适用于莫沙必利的药代动力学及生物等效性研究。  相似文献   

20.
In order to simultaneously determine in vivo P-glycoprotein (P-gp) and Cytochrome P450 3A (CYP3A) activity, a new, rapid and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and fully validated to simultaneously determine midazolam (MDZ, as CYP3A substrate), 1'-hydroxymidazolam (1'-OHMDZ) and digoxin (DG, as P-gp substrate) in rat plasma using digitoxin as the internal standard (IS). After a single step liquid-liquid extraction with tert-butyl methyl ether/dichloromethane (75:25, v/v), analytes were subjected to LC-MS/MS analysis using positive electro-spray ionization (ESI(+)) under selected reaction monitoring mode (SRM). Chromatographic separation was performed on an XTerra MS C18 column (50mm×2.1mm, i.d. 3.5μm). The MS/MS detection was conducted by monitoring the fragmentation of 326.05 → 244.00 (m/z) for MDZ, 342.02 →168.01 (m/z) for 1'-OHMDZ, 798.33 → 651.36(m/z) for DG and 782.67 → 635.24 (m/z) for IS. The method had a chromatographic running time of 3min and linear calibration curves over the concentrations of 2-400ng/mL for MDZ and 1'-OHMDZ and 0.5-100ng/mL for DG. The recoveries of the method were 86.8-96.3% for MDZ, 84.6-86.4% for 1'-OH MDZ, and 81.7-85.1% for DG. The lower limit of quantification (LLOQ) of the method was 2ng/mL for MDZ and 1'-OHMDZ and 0.5ng/mL for DG. The intra- and inter-batch precision were less than 15% for all quality control samples at concentrations of 5, 50 and 320ng/mL for MDZ and 1'-OHMDZ and 1, 10 and 80ng/mL for DG. The validated LC-MS/MS method has been successfully used to analyze the concentrations of MDZ, 1'-OH MDZ and DG in rat plasma for simultaneous measurement of in vivo P-gp and CYP 3A activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号