首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Pulmonary concentrations of aminoglycosides administered intravenously are usually low in the infected lung parenchyma. Nebulization represents an alternative to increase pulmonary concentrations, although the obstruction of bronchioles by purulent plugs may impair lung deposition by decreasing lung aeration. METHODS: An experimental bronchopneumonia was induced in anesthetized piglets by inoculating lower lobes with a suspension of 10(6) cfu/ml Escherichia coli. After 24 h of mechanical ventilation, 7 animals received two intravenous injections of 15 mg/kg amikacin, and 11 animals received two nebulizations of 40 mg/kg amikacin at 24-h intervals. One hour following the second administration, animals were killed, and multiple lung specimens were sampled for assessing amikacin pulmonary concentrations and quantifying lung aeration on histologic sections. RESULTS: Thirty-eight percent of the nebulized amikacin (15 mg/kg) reached the tracheobronchial tree. Amikacin pulmonary concentrations were always higher after nebulization than after intravenous administration, decreased with the extension of parenchymal infection, and were significantly influenced by lung aeration: 197 +/- 165 versus 6 +/- 5 microg/g in lung segments with focal bronchopneumonia (P = 0.03), 40 +/- 62 versus 5 +/- 3 microg/g in lung segments with confluent bronchopneumonia (P = 0.001), 18 +/- 7 versus 7 +/- 4 microg/g in lung segments with lung aeration of 30% or less, and 65 +/- 9 versus 2 +/- 3 microg/g in lung segments with lung aeration of 50% or more. CONCLUSIONS: In a porcine model of severe bronchopneumonia, the nebulization of amikacin provided 3-30 times higher pulmonary concentrations than the intravenous administration of an equivalent dose. The greater the lung aeration, the higher were the amikacin pulmonary concentrations found in the infected lung segments.  相似文献   

2.
Background: Lung deposition of intravenous cephalosporins is low. The lung deposition of equivalent doses of ceftazidime administered either intravenously or by ultrasonic nebulization using either nitrogen-oxygen or helium-oxygen as the carrying gas of the aerosol was compared in ventilated piglets with and without experimental bronchopneumonia.

Methods: Five piglets with noninfected lungs and 5 piglets with Pseudomonas aeruginosa experimental bronchopneumonia received 33 mg/kg ceftazidime intravenously. Ten piglets with noninfected lungs and 10 others with experimental P. aeruginosa bronchopneumonia received 50 mg/kg ceftazidime by ultrasonic nebulization. In each group, the ventilator was operated in half of the animals with a 65%/35% helium-oxygen or nitrogen-oxygen mixture. Animals were killed, and multiple lung specimens were sampled for measuring ceftazidime lung tissue concentrations by high-performance liquid chromatography.

Results: As compared with intravenous administration, nebulization of ceftazidime significantly increased lung tissue concentrations (17 +/- 13 vs. 383 +/- 84 [mu]g/g in noninfected piglets and 10 +/- 3 vs. 129 +/- 108 [mu]g/g in piglets with experimental bronchopneumonia; P < 0.001). The use of a 65%/35% helium-oxygen mixture induced a 33% additional increase in lung tissue concentrations in noninfected piglets (576 +/- 141 [mu]g/g; P < 0.001) and no significant change in infected piglets (111 +/- 104 [mu]g/g).  相似文献   


3.
BACKGROUND: Lung deposition of intravenous cephalosporins is low. The lung deposition of equivalent doses of ceftazidime administered either intravenously or by ultrasonic nebulization using either nitrogen-oxygen or helium-oxygen as the carrying gas of the aerosol was compared in ventilated piglets with and without experimental bronchopneumonia. METHODS: Five piglets with noninfected lungs and 5 piglets with Pseudomonas aeruginosa experimental bronchopneumonia received 33 mg/kg ceftazidime intravenously. Ten piglets with noninfected lungs and 10 others with experimental P. aeruginosa bronchopneumonia received 50 mg/kg ceftazidime by ultrasonic nebulization. In each group, the ventilator was operated in half of the animals with a 65%/35% helium-oxygen or nitrogen-oxygen mixture. Animals were killed, and multiple lung specimens were sampled for measuring ceftazidime lung tissue concentrations by high-performance liquid chromatography. RESULTS: As compared with intravenous administration, nebulization of ceftazidime significantly increased lung tissue concentrations (17 +/- 13 vs. 383 +/- 84 microg/g in noninfected piglets and 10 +/- 3 vs. 129 +/- 108 microg/g in piglets with experimental bronchopneumonia; P < 0.001). The use of a 65%/35% helium-oxygen mixture induced a 33% additional increase in lung tissue concentrations in noninfected piglets (576 +/- 141 microg/g; P < 0.001) and no significant change in infected piglets (111 +/- 104 microg/g). CONCLUSION: Nebulization of ceftazidime induced a 5- to 30-fold increase in lung tissue concentrations as compared with intravenous administration. Using a helium-oxygen mixture as the carrying gas of the aerosol induced a substantial additional increase in lung deposition in noninfected piglets but not in piglets with experimental bronchopneumonia.  相似文献   

4.
Background: High-dose intravenously administered methylprednisolone has been shown to improve outcome after spinal cord injury. The resultant glucocorticoid-induced immunosuppression, however, results in multiple complications including sepsis, pneumonia, and wound infection. These complications could be reduced by techniques that increase the spinal bioavailability of intravenously administered methylprednisolone while simultaneously decreasing plasma bioavailability. This study aimed to characterize the spinal and plasma bioavailability of methylprednisolone after intravenous and intrathecal administration and to identify barriers to the distribution of methylprednisolone from plasma into spinal cord.

Methods: The spinal and plasma pharmacokinetics of intravenous (30-mg/kg bolus dose plus 5.4 mg [middle dot] kg-1 [middle dot] h-1) and intrathecal (1-mg/kg bolus dose plus 1 mg [middle dot] kg-1 [middle dot] h-1) methylprednisolone infusions were compared in pigs. In addition, wild-type mice and P-glycoprotein knockout mice were used to determine the role of P-glycoprotein in limiting spinal bioavailability of methylprednisolone.

Results: Despite the greater intravenous dose, concentrations of methylprednisolone in pig spinal cord were far higher and plasma concentrations much lower after intrathecal administration. After intraperitoneal administration in the mouse, the concentrations of methylprednisolone in muscle were not different between mice expressing P-glycoprotein (2.39 +/- 1.79 [mu]g/g) and those lacking P-glycoprotein (2.83 +/- 0.46 [mu]g/g). In contrast, methylprednisolone was undetectable in spinal cords of wild-type mice, whereas concentrations in spinal cords of P-glycoprotein-deficient mice were similar to those in skeletal muscle (2.83 +/- 0.27 [mu]g/g).  相似文献   


5.
Background: Arginine vasopressin (AVP) and terlipressin were proposed as alternatives to catecholamines in shock states characterized by decreased plasma AVP concentrations. The endogenous plasma AVP profile in anaphylactic shock is unknown. In an ovalbumin-sensitized anesthetized anaphylactic shock rat model, the authors investigated (1) plasma AVP concentrations and (2) the dose versus mean arterial pressure response for exogenous AVP and terlipressin and compared them with those of epinephrine.

Methods: In a first series of rats (n = 12), endogenous plasma AVP concentrations were compared with a model of pharmacologically induced hypotension (nicardipine, n = 12). A second series was randomly assigned to three groups (AVP, n = 7; terlipressin, n = 7; epinephrine, n = 7) and dose (AVP: 8 doses, 0.03-100 U/kg; terlipressin: 7 doses, 0.03-30 [mu]g/kg; epinephrine: 7 doses, 0.3-300 [mu]g/kg)-response mean arterial pressure curves were plotted. Data are expressed as mean +/- SD.

Results: Endogenous plasma AVP concentrations were significantly lower in anaphylactic shock (57 +/- 26 pg/ml) than in the nicardipine group (91 +/- 43 pg/ml; P < 0.05). The ED50 was 10.6 [mu]g/kg (95% confidence interval, 7.1-15.9) for epinephrine and 4.1 U/kg (95% confidence interval, 3.0-5.6) for AVP. Terlipressin did not change mean arterial pressure, regardless of the dose used.  相似文献   


6.
Background: Severe pancreatitis is often complicated by shock and acute lung failure. Little is known about the pathophysiologic impact of the 16.6-kD lectine, named pancreatitis-associated protein (PAP), which is expressed during pancreatitis and which reduces mortality in a rat model with severe pancreatitis. Therefore, the aim of this study was to investigate the effects of PAP on the pulmonary vasculature after leukocyte activation with N-formyl-Met-Leu-Phe (fMLP).

Methods: The experiments were performed in buffer-perfused isolated rabbit lungs. Mean pulmonary artery pressure, weight gain, and thromboxane A2 synthesis of the lungs were monitored. PAP was obtained by affinity chromatography of pancreas juice from pancreatitic rats. The authors tested whether treatment with PAP (260 [mu]g/l, n = 9; or 500 [mu]g/l, n = 6) before fMLP injection (10-6 M) influences mean pulmonary artery pressure and edema formation. Lungs that were treated only with fMLP (n = 6) served as controls. Additional experiments in which PAP was applied were performed to study whether PAP (260 [mu]g/l, n = 3; 500 [mu]g/l, n = 3; 1,000 [mu]g/l, n = 3) itself effects lung vasculature.

Results: Application of fMLP resulted in an increase of mean pulmonary artery pressure (+/- SD) from 8 +/- 2 mmHg up to 26 +/- 13 mmHg (P < 0.01) at a flow of 150 ml/min. Pretreatment with PAP reduced the peak pressure developed after fMLP to 15 +/- 7 mmHg (PAP 260 [mu]g/l;P < 0.05) and to 9 +/- 4 mmHg (PAP 500 [mu]g/l), respectively. In addition, the fMLP-induced lung weight gain of 9 +/- 7 g in the controls was prevented by pretreatment with PAP after 150 min in either concentration. In parallel to the attenuated pressure increase, thromboxane A2 release was significantly suppressed in the 260-[mu]g/l (200 +/- 220 pmol [middle dot] ml-1 [middle dot] min-1;P < 0.01) and 500-[mu]g/l (285 +/- 70 pmol [middle dot] ml-1 [middle dot] min-1;P < 0.05) PAP groups compared with controls (1,138 +/- 800 pmol [middle dot] ml-1 [middle dot] min-1). Treatment with PAP alone in either concentration did not induce any changes in mean pulmonary artery pressure, weight gain, or thromboxane A2 release.  相似文献   


7.
Background: Epidural anesthesia potentiates sedative drug effects and decreases minimum alveolar concentration (MAC). The authors hypothesized that epidural anesthesia also decreases the general anesthetic requirements for adequate depth of anesthesia as measured by Bispectral Index (BIS).

Methods: After premedication with 0.02 mg/kg midazolam and 1 [mu]g/kg fentanyl, 30 patients aged 20-65 yr were randomized in a double-blinded fashion to receive general anesthesia with either intravenous saline placebo or intravenous lidocaine control (1-mg/kg bolus dose; 25 [mu]g [middle dot] kg-1 [middle dot] min-1). A matched group was prospectively assigned to receive epidural lidocaine (15 ml; 2%) with intravenous saline placebo. All patients received 4 mg/kg thiopental and 1 mg/kg rocuronium for tracheal intubation. After 10 min of a predetermined end-tidal sevoflurane concentration, BIS was measured. The ED50 of sevoflurane for each group was determined by up-down methodology based on BIS less than 50 (MACBIS50). Plasma lidocaine concentrations were measured.

Results: The MACBIS50 of sevoflurane (0.59% end tidal) was significantly decreased with lidocaine epidural anesthesia compared with general anesthesia alone (0.92%) or with intravenous lidocaine (1 %;P < 0.0001). Plasma lidocaine concentrations in the intravenous lidocaine group (1.9 [mu]g/ml) were similar to those in the epidural lidocaine group (2.0 [mu]g/ml).  相似文献   


8.
Background: Nonselective nitric oxide synthase (NOS) inhibition has detrimental effects in sepsis because of inhibition of the physiologically important endothelial NOS (eNOS). The authors hypothesized that selective inducible NOS (iNOS) inhibition would maintain eNOS vasodilation but prevent acetylcholine- and bradykinin-mediated vasoconstriction caused by lipopolysaccharide-induced endothelial dysfunction.

Methods: Rats were administered intraperitoneal lipopolysaccharide (15 mg/kg) with and without the selective iNOS inhibitors L-N 6-(1-iminoethyl)-lysine (L-NIL, 3 mg/kg), dexamethasone (1 mg/kg), or the nonselective NOS inhibitor N[omega]-nitro-L-arginine methylester (L-NAME, 5 mg/kg). Six hours later, the lungs were isolated and pulmonary vasoreactivity was assessed with hypoxic vasoconstrictions (3% O2), acetylcholine (1 [mu]g), Biochemical Engineering, and bradykinin (3 [mu]g). In additional lipopolysaccharide experiments, L-NIL (10 [mu]M) or 4-Diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, 100 [mu]M), a selective muscarinic M3 antagonist, was added into the perfusate.

Results: Exhaled nitric oxide was higher in the lipopolysaccharide group (37.7 +/- 17.8 ppb) compared with the control group (0.4 +/- 0.7 ppb). L-NIL and dexamethasone decreased exhaled nitric oxide in lipopolysaccharide rats by 83 and 79%, respectively, whereas L-NAME had no effect. In control lungs, L-NAME significantly decreased acetylcholine- and bradykinin-induced vasodilation by 75% and increased hypoxic vasoconstrictions, whereas L-NIL and dexamethasone had no effect. In lipopolysaccharide lungs, acetylcholine and bradykinin both transiently increased the pulmonary artery pressure by 8.4 +/- 2.0 mmHg and 35.3 +/- 11.7 mmHg, respectively, immediately after vasodilation. L-NIL and dexamethasone both attenuated this vasoconstriction by 70%, whereas L-NAME did not. The acetylcholine vasoconstriction was dose-dependent (0.01-1.0 [mu]g), unaffected by L-NIL added to the perfusate, and abolished by 4-DAMP.  相似文献   


9.
Background: This study was designed to assess the postoperative analgesic effect of low-dose intrathecal morphine after scoliosis surgery in children.

Methods: Thirty children, 9-19 yr of age, scheduled for spinal fusion, were randomly allocated into three groups to receive a single dose of 0 (saline injection), 2, or 5 [mu]g/kg intrathecal morphine. After surgery, a patient-controlled analgesia device (PCA) provided free access to additional intravenous morphine. Children were monitored for 24 h in the postanesthesia care unit.

Results: The three groups were similar for age, weight, duration of surgery, and time to extubation. The time to first PCA demand was dose-dependently delayed by intrathecal morphine. The first 24 h of PCA morphine consumption was 49 +/- 17, 19 +/- 10, and 12 +/- 12 mg (mean +/- SD) in the saline, 2 [mu]g/kg morphine, and 5 [mu]g/kg morphine groups, respectively. Pain scores at rest were significantly lower over the whole study period after 2 and 5 [mu]g/kg intrathecal morphine than after saline, but there was no difference between intrathecal doses. Pain scores while coughing and the incidence of side effects were similar in the three groups.  相似文献   


10.
Background: To determine the effect of age on the dose-response relation and infusion requirement of cisatracurium besylate in pediatric patients, 32 infants (mean age, 0.7 yr; range, 0.3-1.0 yr) and 32 children (mean age, 4.9 yr; range, 3.1-9.6 yr) were studied during thiopentone-nitrous oxide-oxygen-narcotic anesthesia.

Methods: Potency was determined using a single-dose (20, 26, 33, or 40 [mu]g/kg) technique. Neuromuscular block was assessed by monitoring the electromyographic response of the adductor pollicis to supramaximal train-of-four stimulation of the ulnar nerve at 2 Hz.

Results: Least-squares linear regression analysis of the log-probit transformation of dose and maximal response yielded median effective dose (ED50) and 95% effective dose (ED95) values for infants (29 +/- 3 [mu]g/kg and 43 +/- 9 [mu]g/kg, respectively) that were similar to those for children (29 +/- 2 [mu]g/kg and 47 +/- 7 [mu]g/kg, respectively). The mean infusion rate necessary to maintain 90-99% neuromuscular block during the first hour in infants (1.9 +/- 0.4 [mu]g [middle dot] kg-1 [middle dot] min-1; range: 1.3-2.5 [mu]g [middle dot] kg-1 [middle dot] min-1) was similar to that in children (2.0 +/- 0.5 [mu]g [middle dot] kg-1 [middle dot] min-1; range: 1.3-2.9 [mu]g [middle dot] kg-1 [middle dot] min-1).  相似文献   


11.
Background: Milrinone used for acute cardiac insufficiency could be of interest during cardiopulmonary resuscitation because of its positive inotropic effects. In this study, the combination of milrinone-vasopressin was compared with epinephrine and vasopressin, as well as with the combination of epinephrine-vasopressin, in reference to hemodynamics.

Methods: Thirty-two pigs underwent ligation of the circumflex coronary artery and induction of ventricular fibrillation lasting for 4 min. Cardiopulmonary resuscitation was performed after randomization to one of four groups: epinephrine (30-[mu]g/kg bolus), vasopressin (0.4-U/kg bolus), epinephrine-vasopressin (15-[mu]g/kg epinephrine bolus, 0.2-U/kg vasopressin bolus), or milrinone-vasopressin (0.4-U/kg vasopressin bolus, 50-[mu]g/kg milrinone bolus over 5 min and a continuous infusion of 0.4 [mu]g [middle dot] kg-1 [middle dot] min-1). The hemodynamic variables were measured before cardiopulmonary resuscitation as well as 4, 8, 15, and 30 min after return of spontaneous circulation.

Results: All animals were resuscitated successfully. The animals of the milrinone-vasopressin group displayed significantly (P < 0.05) higher cardiac index values (30 min after return of spontaneous circulation: epinephrine, 65.8 +/- 13.2; vasopressin, 70.7 +/- 18.3; epinephrine-vasopressin, 69.1 +/- 36.2; milrinone-vasopressin, 120.7 +/- 34.8 ml [middle dot] min-1 [middle dot] kg-1) without a decrease in mean arterial pressure or coronary perfusion pressure.  相似文献   


12.
Background: Intrathecal morphine infusion leads to intrathecal granulomas. In dogs, the authors examined time course of granuloma formation and the role of concentration in granuloma development.

Methods: Dogs were prepared with lumbar intrathecal catheters and vest-mounted pumps. To define the time course of granuloma formation, serial magnetic resonance imaging was performed in animals receiving 10 or 31 days of morphine infusion (12.5 mg/ml at 40 [mu]l/h). At these times, morphine was removed from the infusate, and further magnetic resonance images were acquired over 14-35 additional days. To assess dose versus concentration, dogs received 28-day infusions of vehicle, 12 mg morphine/day as 12.5 mg/ml at 40 [mu]l/h, or 1.5 mg/ml at 334 [mu]l/h (12 mg/day) for 28 days. Additional dogs received 3 mg/day as 12.5 mg/ml at 10 [mu]l/h.

Results: Serial magnetic resonance images in dogs receiving morphine (12.5 mg/ml at 40 [mu]l/h) revealed pericatheter-enhancing tissues as early as 3 days with a prominent signal by 10 days. Removal of morphine reduced the mass volume within 7 days. At a fixed infusion rate, the incidence of granuloma formation with the continuous intrathecal infusion of morphine ranged from 0 in vehicle-treated dogs to 100% in dogs treated with 12.5 mg/ml at 40 [mu]l/h (12 mg/day). Infusion of 12 mg/day at 1.5 mg/ml (334 [mu]l/h) resulted in granuloma in one of four animals. The authors found that infusion of morphine in different concentrations at a fixed rate resulted in a dose-dependent increase in concentration, with the granuloma-producing, dose-yielding lumbar cerebrospinal fluid morphine concentrations around 40 [mu]g/ml.  相似文献   


13.
Background: Inhaled perfluorohexan vapor has been shown to improve gas exchange and pulmonary mechanics in oleic acid- and ventilator-induced lung injury. However, in the clinical setting, lung injury frequently occurs in the context of systemic inflammation and consecutive lung injury, which may be induced experimentally by intravenous administration of endotoxin. The authors studied whether vaporized perfluorohexan is efficacious during endotoxin-induced lung injury in domestic pigs.

Methods: Twenty-two pigs (29 [23, 31] kg body weight [first, third interquartile]; tracheostomy) were anesthetized and mechanically ventilated. In the endotoxin (n = 8) and perfluorohexan groups (n = 7), we administered endotoxin of Escherichia coli 111:B4, 1 mg [middle dot] kg-1 [middle dot] h-1 for 1 h and 10 [mu]g [middle dot] kg-1 [middle dot] h-1 for 5 h in consecutive order. In the perfluorohexan group, inhalation of the test drug was started 2 h 30 min after the start of the intravenous endotoxin and terminated after 30 min. In a control group (n = 7), animals were instrumented and observed over time without further intervention. Oxygenation function was assessed from oxygen partial pressures (Po2, blood gases) and calculated shunt fraction. Respiratory compliance was calculated from airway pressure and tidal volume. Measurements were performed before and every hour during endotoxin infusion.

Results: After 6 h of endotoxin, gas exchange and pulmonary compliance were deteriorated in the endotoxin group (Pao2: 184 [114, 289] vs. 638 [615, 658] mmHg, pulmonary shunt fraction: 30 [23, 38] vs. 4 [3, 6]%, respiratory compliance: 12 [11, 14] vs. 22 [19, 23] ml/mbar; P < 0.05, endotoxin vs. control). Inhalation of vaporized perfluorohexan did not improve Pao 2 (107 [60, 221] mmHg), pulmonary shunt fraction (32 [26, 58]%), or respiratory compliance (14 [10, 17] ml/mbar) when compared with intravenous endotoxin (not significant, perfluorohexan vs. endotoxin).  相似文献   


14.
Postoperative Pain Facilitates Nonthermoregulatory Tremor   总被引:2,自引:0,他引:2  
Background: Spontaneous tremor is relatively common in normothermic patients after operation and has been attributed to many causes. The hypothesis that nonthermoregulatory shivering-like tremor is facilitated by postoperative pain was tested. In addition, the effects of intravenous lidocaine on nonthermoregulatory tremor were evaluated.

Methods: Patients undergoing knee surgery were anesthetized with 2 [mu]g/kg intravenous fentanyl and 0.2 mg/kg etomidate. Anesthesia was maintained with 1.7 +/- 0.8% (mean +/- SD) isoflurane. Intraoperative forced-air heating maintained normothermia. The initial 44 patients were randomly allocated to receive an intra-articular injection of 20 ml saline (n = 23) or lidocaine, 1.5% (n = 21). The subsequent 30 patients were randomly allocated to receive an intravenous bolus of 250 [mu]g/kg lidocaine followed by an infusion of 13 [mu]g [middle dot] kg-1 [middle dot] h-1 lidocaine or an equivalent volume of saline when shivering was observed. Patient-controlled analgesia was provided for all patients: 3.5 mg piritramide, with a lockout interval of 5 min, for an unlimited total dose. Shivering was graded by a blinded investigator using a four-point scale. Pain was assessed by a 100-mm visual analog scale (0 = no pain and 100 = worst pain). The arteriovenous shunt status was evaluated with forearm-minus-fingertip skin-temperature gradients.

Results: Morphometric characteristics and hemodynamic responses were similar in the four groups. Core and mean skin temperature remained constant or increased slightly compared with preoperative values, and postoperative skin-temperature gradients were negative (indicating vasodilation) in nearly all patients. After intra-articular injection of saline, pain scores for the first postoperative hour averaged 46 +/- 32 mm (mean +/- SD), and 10 of the 23 (43%) patients shivered. In contrast, the pain scores of patients who received intra-articular lidocaine were significantly reduced to 5 +/- 9 mm and shivering was absent in this group (P < 0.05). In the second portion of the study, neither intravenous lidocaine nor saline reduced the magnitude or duration of nonthermoregulatory tremor or the patients' pain scores.  相似文献   


15.
Pulmonary Disposition of Propofol in Surgical Patients   总被引:1,自引:0,他引:1  
Background: The lungs have been mentioned as a possible site contributing to the extrahepatic clearance of propofol. The objective of the present study was to clarify the pulmonary disposition of propofol directly in human lungs by investigating both the first-pass uptake and pulmonary extraction at pseudo-steady state.

Methods: Nine patients were enrolled in the first-pass uptake study. Propofol (5 mg) and indocyanine green (ICG; 15 mg) were simultaneously administered via a central venous catheter within 1 s, and sequential arterial blood samples were obtained from the radial artery at 1-s intervals up to 45 s. Eleven patients were included in the infusion study, and propofol was infused via the jugular vein at a rate of 50 [mu]g [middle dot] kg-1 [middle dot] min-1. Blood samples were simultaneously collected from pulmonary and radial arteries up to 60 min.

Results: A pronounced difference in the dilution curves between propofol and ICG was observed, and 28.4 +/- 11.6% (mean +/- SD) of propofol was taken up during the single passage through the human lung. The mean pulmonary transit time of propofol (31.3 +/- 6.0 s) was significantly longer than that of ICG (22.4 +/- 2.7 s;P < 0.01), indicating that some of the propofol trapped by lungs returned to the circulation by back diffusion. In the constant infusion study, no significant differences were observed with the plasma concentrations of propofol between pulmonary and radial arteries except for that at 2 min. The area under the curve of pulmonary and radial arterial concentration curves to 60 min were 59.1 +/- 14.8 and 56.8 +/- 12.5 [mu]g [middle dot] ml-1 [middle dot] min-1, respectively. No significant difference was observed with the area under the curve, suggesting that metabolism was not involved in the pulmonary uptake in human lungs.  相似文献   


16.
Background: The authors developed an indicator dilution technique for small animals to repeatedly determine cardiac output and blood volume without cardiac instrumentation or blood sampling.

Methods: Observations were made in the hamster (N = 32, 70 mg/kg pentobarbital) cremaster using in vivo fluorescence videomicroscopy. Fluorescein isothiocyanate-conjugated bovine serum albumin (10 mg/ml) was injected as a bolus dose (right jugular) while video recording the light intensity in a 20-[mu]m arteriole (intensified charge-coupled device [CCD] camera at fixed gain). The intensity signal was analyzed over time (background subtracted) and calibrated to the dye concentration. The ex vivo calibration was performed using a constant optical path length (20 [mu]m) and a range of dye and hematocrit concentrations. In vivo tube hematocrit was determined using standard methods with fluorescently labeled erythrocytes. Thus, quenching of the fluorescence signal by hemoglobin was corrected for the calibration, and the plasma space in the arteriole was determined. The steady state dye concentration measured by the light intensity at 2 min was not different from the dye concentration found by direct spectrophotometric analysis of the plasma.

Results: Cardiac index was calculated as milliliters of blood per minute per kilogram body weight. The calculated cardiac index was 359 +/- 18 ml [middle dot] min-1 [middle dot] kg-1, which is not different from the reported values for hamsters. Cardiac output was increased twofold when enough intravenous nitroprusside or nitroglycerine was injected to decrease mean arterial pressure from 90 to 70 mmHg. Cardiac output was elevated during dobutamine infusion (16 [mu]g [middle dot] kg-1 [middle dot] min-1) and decreased during esmolol infusion (50, 75 [middle dot] kg-1 [middle dot] min-1). Blood volume determined from the steady state dye concentrations was 6.2 +/- 0.5 ml/100 g body weight, within the normal range for hamsters.  相似文献   


17.
Background: Most patients with congestive heart failure (CHF) develop pulmonary venous hypertension, but right ventricular afterload is frequently further elevated by increased pulmonary vascular resistance. To investigate whether inhalation of a vasodilatory phosphodiesterase-3 inhibitor may reverse this potentially detrimental process, the authors studied the effects of inhaled or intravenous milrinone on pulmonary and systemic hemodynamics in a rat model of CHF.

Methods: In male Sprague-Dawley rats, CHF was induced by supracoronary aortic banding, whereas sham-operated rats served as controls. Milrinone was administered as an intravenous infusion (0.2-1 [mu]g [middle dot] kg body weight-1 [middle dot] min-1) or by inhalation (0.2-5 mg/ml), and effects on pulmonary and systemic hemodynamics and lung water content were measured.

Results: In CHF rats, intravenous infusion of milrinone reduced both pulmonary and systemic arterial blood pressure. In contrast, inhalation of milrinone predominantly dilated pulmonary blood vessels, resulting in a reduced pulmonary-to-systemic vascular resistance ratio. Repeated milrinone inhalations in 20-min intervals caused a stable reduction of pulmonary artery pressure. No hemodynamic effects were detected when 0.9% NaCl was administered instead of milrinone or when milrinone was inhaled in sham-operated rats. No indications of potentially adverse effects of milrinone inhalation in CHF, such as left ventricular volume overload, were detected. Moreover, lung edema was significantly reduced by repeated milrinone inhalation.  相似文献   


18.
Background: Inhaled prostacyclin and intravenous almitrine have both been shown to improve pulmonary gas exchange in acute lung injury (ALI). This study was performed to investigate a possible additive effect of prostacyclin and almitrine on pulmonary ventilation-perfusion (a/) ratio in ALI compared with inhaled prostacyclin or intravenous almitrine alone.

Methods: Experimental ALI was established in 24 pigs by repeated lung lavage. Animals were randomly assigned to receive either 25 ng [middle dot] kg-1 [middle dot] min-1 inhaled prostacyclin alone, 1 [mu]g [middle dot] kg-1 [middle dot] min-1 almitrine alone, 25 ng [middle dot] kg-1 [middle dot] min-1 inhaled prostacyclin in combination with 1 [mu]g [middle dot] kg-1 [middle dot] min-1 almitrine, or no specific treatment (controls) for 30 min. For each intervention, pulmonary gas exchange and hemodynamics were analyzed and a/ distributions were calculated using the multiple inert gas elimination technique. The data was analyzed within and between the groups by analysis of variance for repeated measurements, followed by the Student-Newman-Keuls test for multiple comparison when analysis of variance revealed significant differences.

Results: All values are expressed as mean +/- SD. In controls, pulmonary gas exchange, hemodynamics, and a/ distribution remained unchanged. With prostacyclin alone and almitrine alone, arterial oxygen partial pressure (Pao2) increased, whereas intrapulmonary shunt (S/T) decreased (P < 0.05). Combined prostacyclin and almitrine also increased Pao2 and decreased S/T (P < 0.05). When compared with either prostacyclin or almitrine alone, the combined application of both drugs revealed no additional effect in gas exchange or a/ distribution.  相似文献   


19.
Background: Because adenosine has been alleged to produce both anesthetic and analgesic sparing effects, a randomized, double-blinded study was designed to compare the perioperative effects of adenosine and remifentanil when administered as intravenous adjuvants during general anesthesia for major gynecologic procedures.

Methods: Thirty-two women were assigned randomly to one of two drug treatment groups. After premedication with 0.04 mg/kg intravenous midazolam, anesthesia was induced with 2 [micro sign]g/kg intravenous fentanyl, 1.5 mg/kg intravenous propofol, and 0.6 mg/kg intravenous rocuronium, and maintained with desflurane, 2%, and nitrous oxide, 65%, in oxygen. Before skin incision, an infusion of either remifentanil (0.02 [micro sign]g [middle dot] kg-1 [middle dot] min-1) or adenosine (25 [micro sign]g [middle dot] kg-1 [middle dot] min-1) was started and subsequently titrated to maintain systolic blood pressure, heart rate, or both within 10-15% of the preincision values.

Results: Adenosine and remifentanil infusions were effective anesthetic adjuvants during lower abdominal surgery. Use of adenosine (mean +/- SEM, 166 +/- 17 [micro sign]g [middle dot] kg-1 [middle dot] min-1) was associated with a significantly greater decrease in systolic blood pressure and higher heart rate values compared with remifentanil (mean +/- SEM, 0.2 +/- 0.03 [micro sign]g [middle dot] kg-1 [middle dot] min-1). Total postoperative opioid analgesic use was 45% and 27% lower in the adenosine group at 0-2 h and 2-24 h after surgery, respectively.  相似文献   


20.
Background: Clinically, patients require surprisingly low end-tidal concentrations of volatile agents during combined epidural-general anesthesia. Neuraxial anesthesia exhibits sedative properties that may reduce requirements for general anesthesia. The authors tested whether epidural lidocaine reduces volatile anesthetic requirements as measured by the minimum alveolar concentration (MAC) of sevoflurane for noxious testing cephalad to the sensory block.

Methods: In a prospective, randomized, double-blind, placebo-controlled trial, 44 patients received 300 mg epidural lidocaine (group E), epidural saline control (group C), or epidural saline-intravenous lidocaine infusion (group I) after premedication with 0.02 mg/kg midazolam and 1 [mu]g/kg fentanyl. Tracheal intubation followed standard induction with 4 mg/kg thiopental and succinylcholine 1 mg/kg. After 10 min or more of stable end-tidal sevoflurane, 10 s of 50 Hz, 60 mA tetanic electrical stimulation were applied to the fifth cervical dermatome. Predetermined end-tidal sevoflurane concentrations and the MAC for each group were determined by the up-and-down method and probit analysis based on patient movement.

Results: MAC of sevoflurane for group E, 0.52 +/- 0.18% (+/- 95% confidence interval [CI]), differed significantly from group C, 1.18 +/- 0.18% (P< 0.0005), and from group I, 1.04 +/- 0.18% (P< 0.001). The plasma lidocaine levels in groups E and I were comparable (2.3 +/- 1.0 vs. 3.0 +/- 1.2 [mu]g/ml +/- SD).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号