首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In goldfish and frog, optic nerve regeneration is successful, with restoration of retinotopic projections in visual brain centres and the return of functional vision within 1-2 months. By contrast, at 1 year after unilateral optic nerve crush in the ornate dragon lizard (Ctenophorus ornatus), the regenerated retinotectal projections lack topographic order, presumably explaining why the lizards are blind via the experimental eye (Beazley et al. [1997] J. Comp. Neurol. 377:105-120). To determine whether other abnormalities are associated with the inability to restore topographic projections in the lizard, we charted anatomically the time course, accuracy, and stability of optic nerve regeneration by examining visual projections with the lipophillic dye 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate (DiI) applied to the optic disk at intervals up to 1 year after optic nerve crush; in addition, DiI tracing of small groups of axons was used to examine the topicity of axons projecting to the tectum. Axons re-innervated visual centres from between 1 and 2 months, a time frame comparable with that in goldfish and frog. However, the projections in lizard were found to differ from those in goldfish and frog in three major ways. First, there was considerable variability within the projection patterns both between individual lizards at any one stage and with time. Second, the projections were inaccurate. As in normal lizards, the major projection was to the contralateral optic tectum, although it lacked detectable retinotopic axon order throughout. Furthermore, misrouting occurred such that regenerating axons formed a persistent projection to the ipsilateral side of the brain that was considerably stronger and more widespread than normal. Minor visual centres also became re-innervated but, in addition, regenerating axons formed persistent projections into the opposite optic nerve and to non-retino-recipient regions such as the nucleus rotundus, hypothalamus, and olfactory nerve, as well as the posterior and tectal commissures. Third, the projections appeared unstable. Projections to both tecta were strongest between 3 and 5 months, but they diminished thereafter. The results suggest that, compared with goldfish and frog, in lizards both pathway and target cues are degraded and/or cannot be read adequately; as a consequence, regenerating axons are unable to navigate exclusively to visual centres and cannot re-form stable connections.  相似文献   

2.
Following complete optic nerve injury in a lizard, Ctenophorus ornatus, retinal ganglion cell (RGC) axons regenerate but fail to restore retinotectal topography unless animals are trained on a visual task (Beazley et al. [ 1997] J Comp Neurol 370:105-120, [2003] J Neurotrauma 20:1263-1270). Here we show that incomplete injury, which leaves some RGC axons intact, restores normal topography. Strict RGC axon topography allowed us to preserve RGC axons on one side of the nerve (projecting to medial tectum) while lesioning those on the other side (projecting to lateral tectum). Topography and response properties for both RGC axon populations were assessed electrophysiologically. The majority of intact RGC axons retained appropriate topography in medial tectum and had normal, consistently brisk, reliable responses. Regenerate RGC axons fell into two classes: those that projected topographically to lateral tectum with responses that tended to habituate and those that lacked topography, responded weakly, and habituated rapidly. Axon tracing by localized retinal application of carbocyanine dyes supported the electrophysiological data. RGC soma counts were normal in both intact and axotomized RGC populations, contrasting with the 30% RGC loss after complete injury. Unlike incomplete optic nerve injury in mammals, where RGC axon regeneration fails and secondary cell death removes many intact RGC somata, lizards experience a "win-win" situation: intact RGC axons favorably influence the functional outcome for regenerating ones and RGCs do not succumb to either primary or secondary cell death.  相似文献   

3.
Regulation of neurotrophin-induced axonal responses via Rho GTPases   总被引:4,自引:0,他引:4  
Nerve growth factor (NGF) and related neurotrophins induce differential axon growth patterns from embryonic sensory neurons (Lentz et al. [1999] J. Neurosci. 19:1038-1048; Ulupinar et al. [2000a] J. Comp. Neurol 425:622-630). In wholemount explant cultures of embryonic rat trigeminal ganglion and brainstem or in dissociated cell cultures of the trigeminal ganglion, exogenous supply of NGF leads to axonal elongation, whereas neurotrophin-3 (NT-3) treatment leads to short branching and arborization (Ulupinar et al. [2000a] J. Comp. Neurol. 425:622-630). Axonal responses to neurotrophins might be mediated via the Rho GTPases. To investigate this possibility, we prepared wholemount trigeminal pathway cultures from E15 rats. We infected the ganglia with recombinant vaccinia viruses that express GFP-tagged dominant negative Rac, Rho, or constitutively active Rac or treated the cultures with lysophosphatitic acid (LPA) to activate Rho. We then examined axonal responses to NGF by use of the lipophilic tracer DiI. Rac activity induced longer axonal growth from the central trigeminal tract, whereas the dominant negative construct of Rac eliminated NGF-induced axon outgrowth. Rho activity also significantly reduced, and the Rho dominant negative construct increased, axon growth from the trigeminal tract. Similar alterations in axonal responses to NT-3 and brain-derived neurotrophic factor were also noted. Our results demonstrate that Rho GTPases play a major role in neurotrophin-induced axonal differentiation of embryonic trigeminal axons.  相似文献   

4.
In the frog Hyla moorei we have estimated there to be between approximately 450,000 and 750,000 cells in the retinal ganglion cell layer. Optic axon counts and retrograde transport of horseradish peroxidase (HRP) indicated that 72-76% of these were ganglion cells. Cells of this type were distributed as a temporally situated area centralis within a horizontal visual streak. Cell and optic axon counts showed that there was an approximately 40% loss of ganglion cells during optic nerve regeneration. Ganglion cells appeared chromatolysed by 6-8 days after an extracranial nerve crush but there was no indication of cell death until 15 days. By this stage anterograde transport of HRP indicated that axons had reached the chiasma. Death was first seen in the area centralis, extended along the streak, and finally was observed in the periphery by 65 days; cell counts demonstrated that at this time the wave of death was almost complete. We have previously shown by electrophysiological visual mapping (Humphrey and Beazley, '82) and confirmed in this study that visuotectal projections were retinotopically organized during regeneration. Multiunit receptive fields were initially large but progressively refined starting in nasal field (temporal retina) to restore a normal projection. The similar sequences whereby the visuotectal projection became refined and death took place in the retinal ganglion cell layer suggested that death may be related to a process of organization within the regenerating projection. In normal animals primary visual pathways revealed by anterograde transport of HRP were essentially similar to those of Rana pipiens and R. esculenta. Regenerating axons generally remained within optic pathways. Exceptions were a retinoretinal projection which was not completely withdrawn even after 1,028 days and a direct projection to the ipsilateral tectum via an inappropriate part of the optic tract.  相似文献   

5.
The Drosophila E-cadherin homolog, DE-cadherin, is expressed postembryonically by brain neuroblasts and their lineages of neurons ("secondary lineages"). DE-cadherin appears in neuroblasts as soon as they can be identified by their increase in size and then remains expressed uninterruptedly throughout larval life. DE-cadherin remains transiently expressed in the cell bodies and axons of neurons produced by neuroblast proliferation. In general, axons of neurons belonging to one lineage form tight bundles. The trajectories of these bundles are correlated with the location of the neuronal lineages to which they belong. Thus, axon bundles of lineages that are neighbors in the cortex travel parallel to each other and reach the neuropile at similar positions. It is, therefore, possible to assign coherent groups of neuroblasts and their lineages to the individual neuropile compartments and long axon tracts introduced in the accompanying articles (Nassif et al. [2003] J Comp Neurol 455:417-434; Younossi-Hartenstein et al. [2003] J Comp Neurol 455:435-450). In this study, we have reconstructed the pattern of secondary lineages and their projection in relationship to the compartments and Fasciclin II-positive long axon tracts. Based on topology and axonal trajectory, the lineages of the central brain can be subdivided into 11 groups that can be followed throughout successive larval stages. The map of larval lineages and their axonal projection will be important for future studies on postembryonic neurogenesis in Drosophila. It also lays a groundwork for investigating the role of DE-cadherin in larval brain development.  相似文献   

6.
We monitored biosynthetic activity of optic tract glia during regeneration of retinal ganglion cell axons in the goldfish and found that the greatest level of incorporated [3H]thymidine and [3H]leucine occurred in glia by 10-15 days after axotomy. During this period there was a marked increase in the number of oligodendroglia and multipotential glia near the site of injury with no change occurring in the astroglial population. Electron microscopic autoradiography showed that oligodendroglia and multipotential cells incorporated 5-7-fold more thymidine than did cells of intact control preparations. Though all glial cell types incorporated more [3H]leucine during axonal regeneration, oligodendroglia and multipotential cells together accounted for more than 90% of measured radioactivity. In order to characterize glial-stimulating events specific to axonal regeneration, we produced axonal degeneration in the optic tract by removal of the retina. Optic tract glia during axonal degeneration incorporated less amino acid when compared to glia associated with regenerating axons. The degenerating optic tract also had less 2',3'-cyclic nucleotide 3'-phosphohydrolase, an enzyme produced by oligodendroglia, than that found in the regenerating visual system. Our results suggest that in response to ganglion cell axotomy oligodendroglia and multipotential glia of the goldfish optic tract proliferate. Moreover, regenerating axons provide one type of stimulant for glial protein biosynthesis.  相似文献   

7.
In cerebral cortex of rat and monkey, the neuropeptide somatostatin (SOM) marks a population of nonpyramidal cells (McDonald et al. [1982] J. Neurocytol. 11:809-824; Hendry et al. [1984] J. Neurosci. 4:2497:2517; Laemle and Feldman [1985] J. Comp. Neurol. 233:452-462; Meineke and Peters [1986] J. Neurocytol. 15:121-136; DeLima and Morrison [1989] J. Comp. Neurol. 283:212-227) that represent a distinct type of gamma-aminobutyric acid (GABA) -ergic neuron (Gonchar and Burkhalter [1997] Cereb. Cortex 7:347-358; Kawaguchi and Kubota [1997] Cereb. Cortex 7:476-486) whose synaptic connections are incompletely understood. The organization of inhibitory inputs to the axon initial segment are of particular interest because of their role in the suppression of action potentials (Miles et al. [1996] Neuron 16:815:823). Synapses on axon initial segments are morphologically heterogeneous (Peters and Harriman [1990] J. Neurocytol. 19:154-174), and some terminals lack parvalbumin (PV) and contain calbindin (Del Rio and DeFelipe [1997] J. Comp. Neurol. 342:389-408), that is also expressed by many SOM-immunoreactive neurons (Kubota et al. [1994] Brain Res. 649:159-173; Gonchar and Burkhalter [1997] Cereb. Cortex 7:347-358). We studied the innervation of pyramidal neurons by SOM neurons in rat and monkey visual cortex and examined putative contacts by confocal microscopy and determined synaptic connections in the electron microscope. Through the confocal microscope, SOM-positive boutons were observed to form close appositions with somata, dendrites, and spines of intracortically projecting pyramidal neurons of rat area 17 and pyramidal cells in monkey striate cortex. In addition, in rat and monkey, SOM boutons were found to be associated with axon initial segments of pyramidal neurons. SOM axon terminals that were apposed to axon initial segments of pyramidal neurons lacked PV, which was shown previously to label axo-axonic terminals provided by chandelier cells (DeFelipe et al. [1989] Proc. Natl. Acad. Sci. USA 86:2093-2097; Gonchar and Burkhalter [1999a] J. Comp. Neurol. 406:346:360). Electron microscopic examination directly demonstrated that SOM axon terminals form symmetric synapses with the initial segments of pyramidal cells in supragranular layers of rat and monkey primary visual cortex. These SOM synapses differed ultrastructurally from the more numerous unlabeled symmetric synapses found on initial segments. Postembedding immunostaining revealed that all SOM axon terminals contained GABA. Unlike PV-expressing chandelier cell axons that innervate exclusively initial segments of pyramidal cell axons, SOM-immunoreactive neurons innervate somata, dendrites, spines, and initial segments, that are just one of their targets. Thus, SOM neurons may influence synaptic excitation of pyramidal neurons at the level of synaptic inputs to dendrites as well as at the initiation site of action potential output.  相似文献   

8.
The myelin‐associated protein Nogo‐A contributes to the failure of axon regeneration in the mammalian central nervous system (CNS). Inhibition of axon growth by Nogo‐A is mediated by the Nogo‐66 receptor (NgR). Nonmammalian vertebrates, however, are capable of spontaneous CNS axon regeneration, and we have shown that retinal ganglion cell (RGC) axons regenerate in the lizard Gallotia galloti. Using immunohistochemistry, we observed spatiotemporal regulation of Nogo‐A and NgR in cell bodies and axons of RGCs during ontogeny. In the adult lizard, expression of Nogo‐A was associated with myelinated axon tracts and upregulated in oligodendrocytes during RGC axon regeneration. NgR became upregulated in RGCs following optic nerve injury. In in vitro studies, Nogo‐A‐Fc failed to inhibit growth of lizard RGC axons. The inhibitor of protein kinase A (pkA) activity KT5720 blocked growth of lizard RGC axons on substrates of Nogo‐A‐Fc, but not laminin. On patterned substrates of Nogo‐A‐Fc, KT5720 caused restriction of axon growth to areas devoid of Nogo‐A‐Fc. Levels of cyclic adenosine monophosphate (cAMP) were elevated over sustained periods in lizard RGCs following optic nerve lesion. We conclude that Nogo‐A and NgR are expressed in a mammalian‐like pattern and are upregulated following optic nerve injury, but the presence of Nogo‐A does not inhibit RGC axon regeneration in the lizard visual pathway. The results of outgrowth assays suggest that outgrowth‐promoting substrates and activation of the cAMP/pkA signaling pathway play a key role in spontaneous lizard retinal axon regeneration in the presence of Nogo‐A. Restriction of axon growth by patterned Nogo‐A‐Fc substrates suggests that Nogo‐A may contribute to axon guidance in the lizard visual system. J. Comp. Neurol. 525:936–954, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
In the adult goldfish visual pathway, expression of the neuronal intermediate filament (nIF) protein plasticin is restricted to differentiating retinal ganglion cells (RGCs) at the margin of the retina. Following optic nerve injury, plasticin expression is elevated transiently in all RGCs coincident with the early stages of axon regeneration. These results suggest that plasticin may be expressed throughout the nervous system during the early stages of axonogenesis. To test this hypothesis, we analyzed plasticin expression during zebrafish (Danio rerio) neuronal development. By using immunocytochemistry and in situ hybridization, we found that plasticin is expressed in restricted subsets of early zebrafish neurons. Expression coincides with axon outgrowth in projection neurons that pioneer distinct axon tracts in the embryo. Plasticin is expressed first in trigeminal, Rohon-Beard, and posterior lateral line ganglia neurons, which are among the earliest neurons to initiate axonogenesis in zebrafish. Plasticin is expressed also in reticulospinal neurons and in caudal primary motoneurons. Together, these neurons establish the first behavioral responses in the embryo. Plasticin expression also coincides with initial RGC axonogenesis and progressively decreases after RGC axons reach the tectum. At later developmental stages, plasticin is expressed in a subset of the cranial nerves. The majority of plasticin-positive neurons are within or project axons to the peripheral nervous system. Our results suggest that plasticin subserves the changing requirements for plasticity and stability during axonal outgrowth in neurons that project long axons. J. Comp. Neurol. 399:561–572, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Expression of the extracellular matrix molecule thrombospondin (TSP) was examined following retrobulbar crush injury of the goldfish and mouse optic nerve. TSP was present within the glia limitans and surrounding axon fascicles of the control normal goldfish optic nerve, but was absent from the normal mouse optic nerve. Following crush injury of the goldfish optic nerve, TSP expression increased dramatically along the path of regenerating axons and returned to near normal levels following axonal outgrowth. In contrast, during the unsuccessful attempt at regeneration following crush injury of the mouse optic nerve, TSP expression was present only in glial fibrillary acidic protein (GFAP)-negative, macrophage-rich regions distal to ganglion cell axons. These results indicate that TSP expression is increased in a temporal pattern along the path of regenerating goldfish optic nerve axons and therefore may be involved in successful central nervous system regeneration. The absence of TSP in the environment encountered by damaged mouse optic nerve axons may correlate with the lack of regeneration observed in the mouse optic nerve.  相似文献   

11.
Current studies support the morphological classification of oligodendrocytes proposed by Del Rio Hortega ([1922] Bol. R. Soc. Esp. Hist. Nat. 10:25–29; [1924] C.R. Soc. Biol. 91:818–820), in which cells either myelinate multiple internodes that are associated with small axons, or they myelinate restricted/single internodes of large-diameter axons. The reasons why an oligodendrocyte myelinates a particular calibre of axon are unknown. Because progenitors are generated in restricted, subventricular zones, an intrinsic program would imply that germinal centres contain a mixture of cells, each committed to myelinate axons of a particular size. Conversely, each cell could have the potential ability to myelinate any size axon. We tested this latter hypothesis that oligodendrocyte progenitors are uncommitted in their ability to myelinate a particular axon size. We introduced oligodendrocyte lineage cells from the optic nerve, which normally encounter only small-diameter axons, to a myelin-deficient environment containing a large range of axon sizes. Dissociated, mixed glial cells from the optic nerve were characterised immunocytochemically and were grafted into the spinal cord ventral column of neonatal, myelin-deficient rat mutants. Examination of the patches of myelin produced by these cells at different times after transplantation revealed that optic nerve oligodendrocytes were capable of producing a widespread, nonselective myelination of axons that were destined to have both small or large calibres. Thus, an axonal or local signal, and not an intrinsic program, is probably responsible for the previously described oligodendrocyte diversity. J. Comp. Neurol. 399:94–100, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Tectal efferent axons, located adjacent to the optic tract, fail to regenerate past diencephalic lesions in Rana pipiens even though optic axons regenerate after the same injury (M. J. Lyon and D. J. Stelzner, J. Comp. Neurol. 255: 511-525). We tested the possibility that tectal efferent axons can regenerate within peripheral nerve implants. A 6- to 8-mm segment of autologous sciatic nerve was implanted into the anterolateral (N = 23) or centrolateral (N = 22) portion of the dorsal surface of the tectum. Frogs survived for 6 (N = 16) or 12 weeks (N = 29) before the free end of the nerve was recut and HRP applied. A control group had the nerve crushed prior to the HRP application. Neurons within the tectum, near and medial to the implant site, were retrogradely labeled from the nerve graft in most experimental operates but no neurons were labeled in controls. In addition, neurons were also labeled in nuclei which projected to the tectum in a number of cases. Three times as many neurons were labeled in 12-week operates (42 +/- 46) as in 6-week operates (15 +/- 12). The morphology and location of labeled neurons in the tectum was similar to tectal efferent neurons except that the somal area of neurons labeled from the graft was significantly larger (41%) than normal tectal efferent neurons. The basic finding is similar to experiments using the same paradigm in the mammalian central nervous system (CNS). One difference is the minimal glial reaction at the graft insertion site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The E587 antigen (Ag) is a 200-Kd membrane glycoprotein originally identified by a monoclonal antibody on new and regenerating retinal ganglion cell axons in the adult goldfish. We report the isolation of cDNAs encoding the E587 Ag and identify it as a member of the L1 family of cell adhesion molecules (CAMs). The predicted amino acid sequence of E587 Ag shows an approximately equal identity (40%) to mouse L1, chick neuron-glia CAM, and chick neuron-glia-related CAM. Although the overall similarity is low, there is a high conservation of structural domains and specific sequence motifs. Wholemount in situ hybridizations were performed on goldfish between 34 hours and 3 days postfertilization (pf). A dramatic increase in E587 Ag mRNA was observed between 34 and 48 hours pf. The expression of E587 Ag mRNA in neurons shortly precedes axonogenesis. A marked decrease in expression occurs by 3 days pf, when the axonal scaffold has already been established. Wholemount immunohistochemistry on embryos demonstrates expression of E587 Ag on all major tracts. E587 Ag is absent from mature retinal ganglion cell axons, but its expression is induced by optic nerve transection. A corresponding induction of E587 Ag mRNA in retinal ganglion cells is shown by in situ hybridization. Furthermore, E587 Ag mRNA was detected in the optic nerve, which suggests that nonneuronal cells also express this molecule. E587 Ag was previously shown to promote retinal axon fasciculation and outgrowth in young fish and to mediate axon-glial interactions in vitro. The expression pattern and developmental regulation of E587 Ag in the central nervous system, its reexpression in retinal ganglion cells following optic nerve transection, and its relation to the L1 family indicate that E587 Ag functions as a cell recognition molecule important during axonal growth and regeneration. J. Comp. Neurol. 377:286–297, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
15.
In adult fish and amphibians, the severed optic nerve regenerates and visual behaviour is restored. By contrast, optic axons do not regenerate in the more recently evolved birds and mammals. Here we have investigated optic nerve regeneration in a member of the class Reptilia, phylogenetically intermediate between the fish and amphibians and the birds and mammals. We assessed visual recovery anatomically and behaviourally one year after unilateral optic nerve crush in the adult ornate dragon lizard, Ctenophorus ornatus. Ganglion cell densities and numbers of axons in the optic nerve on either side of the crush site indicated that two-thirds of ganglion cells survived axotomy and regrew their axons. However, myelination fell from a mean of 21% in normals to 5.5% and 3%, proximal and distal to the crush, respectively. Anterograde labelling of the entire optic nerve showed that axons regenerated along essentially normal pathways and that the major projection, as in normals, was to the superficial one-third of the contralateral optic tectum. However, localised retinal injections indicated that regenerated projections lacked retinotopic order. Any one retinal region projected to the entire tectum. This feature presumably explains why the experimental lizards consistently appeared blind to stimuli via the regenerated nerve. Our findings indicate that although axons regenerate along essentially normal pathways in adult lizards, conditions within the visual centres do not allow regenerating optic axons to select appropriate central connections. In a wider context, the result suggests that the ability for regenerating central axons to form topographic maps may also have been lost in the more recently evolved vertebrate classes. J. Comp. Neurol. 377:105-120, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
How is axonal transport in regenerating neurons affected by contact with their synaptic target? We investigated whether removing the target (homotopic) lobe of the goldfish optic tectum altered the incorporation of 3H-proline into fast axonally transported proteins in the regenerating optic nerve. Regeneration was induced either by an optic tract lesion (to reveal the changes in the original axon segment that remained connected to the cell body) or by an optic nerve lesion (to reveal the changes in the newly formed axon segment). Of 26 proteins analyzed by 2-dimensional gel electrophoresis and fluorography, all but one showed increased labeling as a result of tectal lobe ablation. By 2 d after the lesion, significantly increased labeling of some proteins was seen with a 6-hr labeling interval, but not with a 24-hr labeling interval. This is probably indicative of an increased velocity of transport, which may have been a nonspecific consequence of the surgery. Otherwise, tectal lobe removal had relatively little effect until 3 weeks, when there was a transitory increase in labeling of transported proteins in the new axon segments of the tectum-ablated animals. Beginning at 5 weeks, tectal lobe ablation caused considerably higher labeling of many of the proteins in the original axon segments. Because this was seen with both 6-hr and 24-hr labeling intervals, it is probably indicative of increased protein synthesis. The increased synthesis lasted until at least 12 weeks, though some proteins were beginning to show a diminished effect at this time. In the late stages of regeneration (8-12 weeks), there was also increased labeling of proteins in the new axon segments as a result of the absence of the target tectal lobe. This included a disproportionately large increase in the relative contribution of cytoskeletal proteins and of protein 4, which is the goldfish equivalent of the growth-associated protein GAP-43 (neuromodulin). We conclude that, after the regenerating axons begin to innervate the tectum, the expression of most of the proteins in fast axonal transport is down-regulated by interaction between the axons and their target. However, the changes in expression may be preceded by a modulation of the turnover and/or deposition of proteins in the newly formed axon segment.  相似文献   

17.
We have studied the early stages (4-14 days) of axonal regeneration following intraorbital optic nerve crush in the goldfish. We used 3H-proline autoradiography to anterogradely label and visualize the growing axons and wheat germ agglutinin-conjugated horseradish peroxidase (WGA:HRP) for retrograde labeling to determine the cells of origin of the earliest projections. The first retinal ganglion cells (RGCs) that could be retrogradely filled from the optic tract, following optic nerve crush, were in the central retina and were seen at 8 days postoperative. More peripheral cells were only labeled with longer postcrush survival periods. Thus, the first axons to regenerate past the lesion were from central RGCs. The axons of these cells extended into the cranial nerve stump between 4 and 5 days postcrush and entered the nerve as a fascicle, which travelled just beneath its surface. Studies of nerve cross sections from animals at 5-8 days postoperative demonstrated that initial outgrowth was not confined to any particular locale within the nerve although the early fibers appeared to avoid its temporal aspect. When the regenerating axons reached the optic tract they remained in fascicles but left the surface to run along the medial, deep portion of the tract, immediately adjacent to the diencephalon and pretectum. The positions occupied by the earliest-regenerating axons in the optic nerve were variable and not always appropriate for their central retinal origin. However, the abrupt change in growth trajectory as the fibers entered the optic tract brought them into the areas of the visual paths that are occupied by central axons in intact animals. We suggest that this change in position is related to both changes in the structural organization of the intracranial visual paths and to possible axon guidance signals in the region of the nerve-tract juncture.  相似文献   

18.
Regeneration of frog sympathetic neurons (B-cells) was found to be accompanied by sprouting of neurites within the ganglion. Neurons whose axons had been crushed and allowed to regenerate exhibited sprouts that arose mainly from the axon hillock and initial segment of the axon. Sprouting was apparent by 5-7 days and reached maximal values by 14-21 days, but had decreased to control levels by 42-49 days after injury. In contrast, neurons whose axons were prevented from regenerating (by cut and proximal ligation of nerves) exhibited sprouts which did not retract by 42-49 days. These results suggest that successful regeneration to targets may dictate the recovery of normal B-cell morphology in bullfrog sympathetic ganglia.  相似文献   

19.
Birds are almost always said to have two visual pathways from the retina to the telencephalon: thalamofugal terminating in the Wulst, and tectofugal terminating in the entopallium. Often ignored is a second tectofugal pathway that terminates in the nidopallium medial to and separate from the entopallium (e.g., Gamlin and Cohen [1986] J Comp Neurol 250:296–310). Using standard tract‐tracing and electroanatomical techniques, we extend earlier evidence of a second tectofugal pathway in songbirds (Wild [1994] J Comp Neurol 349:512–535), by showing that visual projections to nucleus uvaeformis (Uva) of the posterior thalamus in zebra finches extend farther rostrally than to Uva, as generally recognized in the context of the song control system. Projections to “rUva” resulted from injections of biotinylated dextran amine into the lateral pontine nucleus (PL), and led to extensive retrograde labeling of tectal neurons, predominantly in layer 13. Injections in rUva also resulted in extensive retrograde labeling of predominantly layer 13 tectal neurons, retrograde labeling of PL neurons, and anterograde labeling of PL. It thus appears that some tectal neurons could project to rUva and PL via branched axons. Ascending projections of rUva terminated throughout a visually responsive region of the intermediate nidopallium (NI) lying between the nucleus interface medially and the entopallium laterally. Lastly, as shown by Clarke in pigeons ([1977] J Comp Neurol 174:535–552), we found that PL projects to caudal cerebellar folia. J. Comp. Neurol. 524:963–985, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
In contrast to injuries in the central nervous system, injured peripheral neurons will regenerate their axons. However, axotomized motoneurons progressively lose their ability to regenerate their axons, following peripheral nerve injury often resulting in very poor recovery of motor function. A decline in neurotrophic support may be partially responsible for this effect. The initial upregulation of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) by Schwann cells of the distal nerve stump after nerve injury has led to the speculation that they are important for motor axonal regeneration. However, few experiments directly measure the effects of exogenous BDNF or GDNF on motor axonal regeneration. This study provided the first direct and quantitative evidence that long-term continuous treatment with exogenous GDNF significantly increased the number of motoneurons which regenerate their axons, completely reversing the negative effects of chronic axotomy. The beneficial effect of GDNF was not dose-dependent. A combination of exogenous GDNF and BDNF on motor axonal regeneration was significantly greater than either factor alone, and this effect was most pronounced following long-term continuous treatment. The ability of GDNF, either alone or in combination with BDNF, to increase the number of motoneurons that regenerated their axons correlated well with an increase in axon sprouting within the distal nerve stump. Thus long-term continuous treatment with neurotrophic factors, such as GDNF and BDNF, can be used as a viable treatment to sustain motor axon regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号