首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The metabolism of the flavonoids quercetin and kaempferol by rat hepatocytes was investigated using liquid chromatography coupled with electrospray mass spectrometry (LC-ESI MS). Quercetin and kaempferol were extensively metabolized (98.8 ± 0.1% and 81.0 ± 5.1% respectively, n = 4), with four glucuronides of quercetin and two of kaempferol being detected after incubation. 2. The glucuronides of quercetin and kaempferol formed upon incubation with rat hepatocytes were identified as the same ones formed after incubation with the UDP-glucuronosyltransferase isoform UGT1A9. 3. In addition, plasma samples from human volunteers taken after consumption of capsules of Ginkgo biloba, a plant rich in flavonoid glycosides, were analysed by LC-MS for the presence of flavonoid glucuronides and flavonoid glycosides. Reported is evidence for the presence of flavonoid glycosides in samples of plasma. 4. The results suggest that UGT1A9 is a key UDP-glucuronosyltransferase isoform for the metabolism of flavonoids, and that absorption of intact flavonoid glycosides is possible.  相似文献   

2.
The interplay between phase II enzymes and efflux transporters leads to extensive metabolism and low bioavailability for flavonoids. To investigate the simplest interplay between one UDP-glucuronosyltransferase isoform and one efflux transporter in flavonoid disposition, engineered HeLa cells stably overexpressing UGT1A9 were developed, characterized, and further applied to investigate the metabolism of two model flavonoids (genistein and apigenin) and excretion of their glucuronides. The results indicated that the engineered HeLa cells overexpressing UGT1A9 rapidly excreted the glucuronides of genistein and apigenin. The kinetic characteristics of genistein or apigenin glucuronidation were similar with the use of UGT1A9 overexpressed in HeLa cells or the commercially available UGT1A9. Small interfering (siRNA)-mediated UGT1A9 silencing resulted in a substantial decrease in glucuronide excretion (>75%, p < 0.01). Furthermore, a potent inhibitor of breast cancer resistance protein (BCRP), 3-(6-isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1',2':1,6]pyrido[3,4-b]indol-3-yl)-propionic acid tert-butyl ester (Ko143), caused, in a dose-dependent manner, a substantial and marked reduction of the clearance (74-94%, p < 0.01), and a substantial increase in the intracellular glucuronide levels (4-8-fold, p < 0.01), resulting in a moderate decrease in glucuronide excretion (19-59%, p < 0.01). In addition, a significant, albeit moderate, reduction in the fraction of genistein metabolized (f(met)) in the presence of Ko143 was observed. In contrast, leukotriene C? and siRNA against multidrug resistance protein (MRP) 2 and MRP3 did not affect excretion of flavonoid glucuronides. In conclusion, the engineered HeLa cells overexpressing UGT1A9 is an appropriate model to study the kinetic interplay between UGT1A9 and BCRP in the phase II disposition of flavonoids. This simple cell model should also be very useful to rapidly identify whether a phase II metabolite is the substrate of BCRP.  相似文献   

3.
UDP-glucuronosyltransferase 1A3 (UGT1A3) contributes to glucuronidation of many important endogenous compounds and xenobiotics, including some flavonoids. Recently, a total of six single nucleotide polymorphisms (SNPs) have been identified in the human UGT1A3 gene. Among them, four SNPs (A17G, Q6R; T31C, W11R; C133T, R45W; and T140C, V47A) cause amino acid substitutions. Variants caused by these SNPs showed an activity change in estrone metabolism, whereas their activities toward other substrates were not examined. In the present study, three common flavonoids, quercetin, luteolin, and kaempferol, were used as substrates for glucuronidation by wild-type and variant UGT1A3s. Our results demonstrated that the activities of three variants, UGT1A3.2, UGT1A3.3, and UGT1A3.5, were remarkably lower than that of UGT1A3.1. In contrast, UGT1A3.4 exhibited an increase in glucuronidation efficiency of approximately 4 times and a clear preference to quercetin 7- and 3-hydroxyl groups. The frequency distributions of UGT1A3 alleles and SNPs in UGT1A3 in a Chinese Han population were statistically different from the reported value in German-Caucasians (p < 0.05). UGT1A3 variants have an altered glucuronidation activity toward quercetin, luteolin, and kaempferol and may alter human susceptibility to flavonoid exposure.  相似文献   

4.
Flavonoids are highlighted for their potential roles in the prevention of oxidative stress-associated diseases. Their metabolisms in vivo, such as glucuronidation, are the key points to determine their health beneficial properties. In this paper, we tested the glucuronidation of nineteen flavonoids by both recombinant human UGT1A3 and UGT1A9. Eleven compounds could be catalyzed by both enzymes. In general, both enzymes showed moderate to high catalyzing activity to most flavonoid aglycones, while the catalyzing efficiency changed with structures. Each flavonoid produced more than one monoglucuronide with no diglucuronide detected by liquid chromatography-mass spectrometry (LC-MS). Enzymatic kinetic analysis indicated that the catalyzing efficiency (Vmax/Km) of UGT1A9 was higher than that of UGT1A3, suggesting its important role in flavonoid glucuronidation. Both human UGT1A3 and UGT1A9 preferred flavonoid aglycone to flavonoid glycoside, and their metabolism to arabinoside was stronger than to other glycosides. Of the flavonoids studied, it is the first time to report isorhamnetin, morin, silybin, kaempferol, daidzein, quercetin-3',4'-OCHO-, quercetin xylopyranoside and avicularin as substrates of UGT1A3. Apigenin, morin, daidzein, quercetin-3',4'-OCHO-, quercetin xylopyranoside and avicularin were the newly reported substrates of UGT1A9.  相似文献   

5.
In a previous study, we used human liver microsomes for the first time to study cytochrome P450 (P450)-mediated oxidation of the flavonoid galangin. The combination of CYP1A2 and CYP2C9 produced a V(max)/K(m) value of 13.6 +/- 1.1 microl/min/mg of protein. In the present extended study, we determined glucuronidation rates for galangin with the same microsomes. Two major and one minor glucuronide were identified by liquid chromatography/mass spectrometry. The V(max)/K(m) values for the two major glucuronides conjugated in the 7- and 3-positions were 155 +/- 30 and 427 +/- 26 microl/min/mg of protein, thus, exceeding that of oxidation by 11 and 31 times, respectively. This highly efficient glucuronidation appeared to be catalyzed mainly by the UDP-glucuronosyltransferase (UGT)1A9 isoform but also by UGT1A1 and UGT2B15. Sulfation of galangin by the human liver cytosol, mediated mainly but not exclusively by sulfotransferase (SULT) 1A1, also appeared to be efficient. These conclusions were strongly supported by experiments using the S9 fraction of the human liver, in which all three metabolic pathways could be directly compared. When galangin metabolism was examined in fresh plated hepatocytes from six donors, glucuronidation clearly predominated followed by sulfation. Oxidation occurred only to a minor extent in two of the donors. This study for the first time establishes that glucuronidation and sulfation of galangin, and maybe other flavonoids, are more efficient than P450-mediated oxidation, clearly being the metabolic pathways of choice in intact cells and therefore likely also in vivo.  相似文献   

6.
The regioselectivity of phase II conjugation of flavonoids is expected to be of importance for their biological activity. In the present study, the regioselectivity of phase II biotransformation of the model flavonoids luteolin and quercetin by UDP-glucuronosyltransferases was investigated. Identification of the metabolites formed in microsomal incubations with luteolin or quercetin was done using HPLC, LC-MS, and (1)H NMR. The results obtained demonstrate the major sites for glucuronidation to be the 7-, 3-, 3'-, or 4'-hydroxyl moiety. Using these unequivocal identifications, the regioselectivity of the glucuronidation of luteolin and quercetin by microsomal samples from different origin, i.e., rat and human intestine and liver, as well as by various individual human UDP-glucuronosyltransferase isoenzymes was characterized. The results obtained reveal that regioselectivity is dependent on the model flavonoid of interest, glucuronidation of luteolin and quercetin not following the same pattern, depending on the isoenzyme of UDP-glucuronosyltransferases (UGT) involved. Human UGT1A1, UGT1A8, and UGT1A9 were shown to be especially active in conjugation of both flavonoids, whereas UGT1A4 and UGT1A10 and the isoenzymes from the UGTB family, UGT2B7 and UGT2B15, were less efficient. Due to the different regioselectivity and activity displayed by the various UDP-glucuronosyltransferases, regioselectivity and rate of flavonoid conjugation varies with species and organ. Qualitative comparison of the regioselectivities of glucuronidation obtained with human intestine and liver microsomes to those obtained with human UGT isoenzymes indicates that, in human liver, especially UGT1A9 and, in intestine, UGT1A1 and UGT1A8 are involved in glucuronidation of quercetin and luteolin. Taking into account the fact that the anti-oxidant action as well as the pro-oxidant toxicity of these catechol-type flavonoids is especially related to their 3',4'-dihydroxyl moiety, it is of interest to note that the human intestine UGT's appear to be especially effective in conjugating this 3',4' catechol unit. This would imply that upon glucuronidation along the transport across the intestinal border, the flavonoids loose a significant part of these biological activities.  相似文献   

7.
1. The effect of the flavonoids genistein (3-100 microM), kaempferol (3-60 microM) and quercetin (1-100 microM) on KCl (60 mM)-induced tonic contraction in rat smooth muscle was assayed. In the same way, the modification of these effects in the presence of an inhibitor of protein kinase (PKA) (Rp-cAMPS), an inhibitor of phosphodiesterase (papaverine) and beta-adrenoreceptor blocking agents (propranolol and atenolol) was studied. 2. The flavonoids totally relaxed the KCl-induced tonic contraction (IC50: genistein 20.2 +/- 2.0 microM, n = 11; kaempferol 10.1 +/- 1.6 microM, n = 8; quercetin 13.2 +/- 1.2 microM, n = 8). 3. The incubation with Rp-cAMPS (10 and 100 microM) 30 min prior to KCl shifted the dose-response curve of the flavonoids to the right, increasing their IC50 up to 27.8 +/- 3.8 and 31.9 +/- 7.3 microM, respectively, for genistein; 24.7 +/- 0.2 and 19.6 +/- 4.9 microM, respectively, for kaempferol; 18.8 +/- 2.2 and 18.4 +/- 1.5 microM, respectively, for quercetin. 4. Papaverine (3-100 microM) also relaxed the contraction induced by KCl and this effect was significantly displaced to the right with Rp-cAMPS (10 microM) (IC50 12.1 +/- 2.2 vs. 16.5 +/- 3.1 microM). Papaverine (3 microM) added to the organ bath 15 min before the contractile agent increased the relaxing effect of the flavonoids and significantly decreased their IC50 (genistein 20.2 +/- 2.0 vs. 9.8 +/- 1.4 microM; kaempferol 10.1 +/- 1.6 vs. 6.6 +/- 0.7 microM; quercetin 13.2 +/- 1.2 vs. 7.8 +/- 1.4 microM). 5. The incubation with atenolol (10 microM) did not alter the relaxing effect of the flavonoids. In the same experimental conditions, propranolol (10 microM) did not modify the effect of genistein and kaempferol, but shifted the response curve of quercetin significantly to the right (13.2 +/- 1.2 vs. 17.7 +/- 3.4 microM). 6. The results suggest that genistein, kaempferol and quercetin produced the relaxation of uterine smooth muscle by increasing intracellular cAMP. Beta-adrenoceptors could also be involved in the effect of quercetin.  相似文献   

8.
Based on reactions with five flavonoids, the regioselectivities of twelve human UDP-glucuronosyltransferase (UGT) isozymes were elucidated. The various flavonoid glucuronides were differentiated based on LC–MS/MS fragmentation patterns of [Co(II)(flavonoid-H)(4,7-diphenyl-1,10-phenanthroline)2]+ complexes generated upon post-column complexation. Glucuronide distributions were evaluated to allow a systematic assessment of the regioselectivity of each isozyme. The various UGT enzymes, including eight UGT1A and four UGT2B, displayed a remarkable range of selectivities, both in terms of the positions of glucuronidation and relative reactivity with flavanones versus flavonols.  相似文献   

9.
As a natural flavonoid, kaempferol is widely distributed in natural medicines. Our study was aimed at analyzing and comparing the pharmacokinetic differences of kaempferol between normoxia and hypoxia in rats, to further explore the effect of hypoxia on drug metabolism enzymes. A sensitive UPLC-MS/MS method was established and validated for the determination of kaempferol in rat plasma. The results indicated that AUC, MRT, t1/2 and Cmax of kaempferol significantly increased and the clearance reduced in hypoxic rats. Based on the comparison of pharmacokinetics, the metabolites of kaempferol in hypoxic rats were identified by using UPLC-QTOF-MS and UNIFI 1.8 software. Then we explored the effect of hypoxia on the mRNA and protein expression of CYP1A2 and UGT1A9. The study revealed that hypoxia could markedly reduce the mRNA and protein expression of CYP1A2 and UGT1A9, resulting in the reduction of metabolic rate and enhancement of systematic exposure. Our data also indicated that we should pay attention to adjusting the dosage regimen and reducing drug interactions when drugs metabolized by CYP1A2 and UGT1A9 are used in combination with kaempferol. Our findings suggested the potential requirement for dose adjustment of kaempferol or its structural analogs in hypoxic condition.  相似文献   

10.
Objectives This study tries to find structure–metabolism relationships between flavonoids and human UGT1A3 and UGT1A9. Methods The glucuronidation of flavonoids was studied with recombinant UGT1A3 and UGT1A9, and the glucuronidation activity was determined by HPLC. Key findings Of the flavonoids studied, it was shown for the first time that baicalein, quercetin‐3‐OCH2OCH3, quercetin‐4′‐CH3, quercetin‐3′‐OCH3 and quercetin‐3′‐Br are substrates of UGT1A3. Wogonin, baicalein, quercetin‐4′‐Cl, quercetin‐3‐OCH2OCH3, quercetin‐3‐O‐arabinoside, quercetin‐4′‐CH3, quercetin‐3′‐OCH3 and quercetin‐3′‐Br are the newly reported substrates of UGT1A9. The preferred substrates for UGT1A3 and UGT1A9 contain the hydroxyl group at the C7‐position. The glycon and the position of the B ring have conspicuous influences on the glucuronidation activity, and other chemical structures of flavonoids have minor effects. Conclusions From the quantitative study, UGT1A9 in general has higher glucuronidation efficiency than UGT1A3.  相似文献   

11.
(-)-Epicatechin (EC) is one of the flavonoids present in green tea, suggested to have chemopreventive properties in cancer. However, its bioavailability is not clearly understood. In the present study, we determined the metabolism of EC, focusing on its glucuronic acid and sulfate conjugation using human liver and intestinal microsomes and cytosol as well as recombinant UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) isoforms in comparison with that occurring in the rat. Surprisingly, EC was not glucuronidated by the human liver and small intestinal microsomes. There was also no evidence of glucuronidation by human colon microsomes or by recombinant UGT1A7, which is not present in the liver or intestine. Interestingly, in the rat liver microsomes EC was efficiently glucuronidated with the formation of two glucuronides. In contrast, the human liver cytosol efficiently sulfated EC mainly through the SULT1A1 isoform. For the intestine, both SULT1A1 and SULT1A3 contributed. Other SULT isoforms contributed little. High-performance liquid chromatography of the sulfate conjugates showed one major sulfatase-sensitive peak with all tissues. An additional minor sulfatase-resistant peak was formed by the liver and intestinal cytosol as well as with SULT1A1 but not by the Caco-2 cytosol and SULT1A3. In the rat, EC sulfation was considerably less efficient than in the human liver. These results indicate that sulfation is the major pathway in EC metabolism in the human liver and intestine with no glucuronidation occurring. There was also a large species difference both in glucuronidation and sulfation of EC between rats and humans.  相似文献   

12.
Kombal R  Glasl H 《Planta medica》1995,61(5):484-485
Roots/rhizomes and aerial parts of Potentilla anserina L. (Rosaceae) contain two flavan-3-ols: (+)-catechin and (+)-gallocatechin. The flavonol glycosides and glucuronides isolated from the herb were kaempferol 3- O-beta- D-glucoside, kaempferol 3- O-beta- D-(6'- O-( E)- P-coumaroyl)glucopyranoside, quercetin 3- O-beta- D-glucoside, quercetin 3- O-beta- D-xyloside, quercetin 3- O-alpha- L-rhamnoside, quercetin 3- O-beta- D-sambubioside, quercetin 3- O-beta- D-glucuronide, isorhamnetin 3- O-beta- D-glucuronide, myricetin 3- O-alpha- L-rhamnoside, and myricetin 3- O-beta- D-glucuronide. Herbacetin 8-methyl ether-3- O-beta- D-sophoroside (8-methoxykaempferol 3-sophoroside) was identified in the flowers. The 6'-methyl ester of quercetin 3- O-beta- D-galacturonide, which may be an artifact, was isolated from the herb. The total flavonoid content calculated as quercetin-3- O-beta- D-glucuronide was 1% in the lyophilized herb used in this study and 0.5% in a commercial drug, meeting DAC standards.  相似文献   

13.
Two new flavonol glycosides, kaempferol 3-O-beta-D-galacturonopyranoside and quercetin 3-O-(2"-O-galloyl)-beta-D-glucoronopyranoside, were isolated, from leaves of Callistemon lanceolatus DC, as well as eighteen known polyphenols (phenolic acids, flavonoids and three tannins). All structures were established mainly on the basis of chemical and spectroscopic analysis (UV, 1D NMR and negative ESI-MS) and finally confirmed by 2D NMR experiments (HMQC and HMBC), in the case of flavonoid glycosides and tannins.  相似文献   

14.
Quercetin, one of the most widely distributed flavonoids in plants, possesses strong free radical scavenging ability and potent hepatoprotective effects. However, the protective effect and mechanism of quercetin on ethanol-induced oxidative damage in hepatocytes remain unclear. In this study, primary rat hepatocytes were incubated with ethanol and quercetin in the presence or absence of ZnPP 9, an antagonist of HO-1 induction. The ethanol-induced hepatotoxicity was found to be greatly diminished by pre-treatment of quercetin and this hepatoprotective effect could be partly blocked by ZnPP 9. This study also showed that quercetin significantly stimulated HO-1 expression at both mRNA and protein levels, then subsequently induced HO-1 activity. To further study the signaling pathways underlying quercetin-induced HO-1 up-regulation, HO-1 expression and activity in cytosolic microsomal fractions and Nrf2 expression in nuclear fractions were analyzed following quercetin or/and MAPK inhibitor(s) as well as PI3K inhibitor incubation for primary rat hepatocytes. These results indicated that ERK was required to induce HO-1 expression in rat hepatocytes. In summary, these data suggested that quercetin attenuates ethanol-induced oxidative stress through a pathway which involves ERK activation and HO-1 upregulation.  相似文献   

15.
Effect of flavonoids on MRP1-mediated transport in Panc-1 cells   总被引:5,自引:0,他引:5  
The purpose of this study was to identify the effects of dietary flavonoids, which are present in fruits, vegetables, and plant-derived beverages, on the transport of daunomycin (DNM) and vinblastine (VBL) in Panc-1 cells. Panc-1 is a human pancreatic adenocarcinoma cell line, which expresses Multidrug Resistance-Associated Protein1 (MRP1). The 2-h accumulation of (3)H-DNM and (3)H-VBL was determined in the presence and absence of 22 flavonoids. Biochanin-A, genistein, quercetin, chalcone, silymarin, phloretin, morin, and kaempferol, at 100 microM concentrations, all significantly increased the accumulation of both DNM and VBL in Panc-1 cells, with morin increasing DNM and VBL accumulation by 546 +/- 50% (mean +/- SE, n = 9) and 553 +/- 37% (n = 9), respectively. Fisetin treatment significantly decreased the accumulation of both DNM and VBL. Concentration-dependent studies demonstrated significant effects on VBL accumulation at 50 microM, but not at 10 microM concentrations, except for chalcone that was effective at a 10 microM concentration. Following a 24-h incubation, there were no changes in MRP1 membrane expression or glutathione-S-transferase activity in cells. Cellular glutathione (GSH) concentrations were significantly decreased following a 2-h incubation with biochanin A, chalcone, genistein, phloretin, quercetin, and silymarin, and following a 24-h incubation with biochanin A, chalcone, genistein, and phloretin. These results therefore indicate that the flavonoids morin, chalcone, silymarin, phloretin, genistein, quercetin, biochanin A, and kaempferol can inhibit MRP1-mediated drug transport, effects that may involve binding interactions with MRP1, as well as modulation of GSH concentrations.  相似文献   

16.
人葡糖醛酸基转移酶(UGT)同工酶在黄酮类化合物Ⅱ相代谢反应中呈重要的作用。本综述总结了近年来国内外学者对黄酮类化合物Ⅱ相代谢中UGT的研究情况,包括各同工酶间的底物差异,结构-代谢活性关系,基因多态性的影响以及黄酮对UGT调控的研究。结果表明,人UGT1A1,1A3,1A8,1A9,1A10和2B15主要参与了广泛黄酮类化合物的葡醛酸结合反应,而UGT1A5,1A7和2B7对黄酮代谢的作用有待于进一步研究证明,UGT的基因多态性、结构-代谢关系、调控机制为生物黄酮的合理利用以及此类化合物的合理药物设计提供了重要的参考依据。  相似文献   

17.
A large group of flavonoids was investigated for inhibitory effects on sulfo- and glucurono-conjugation of acetaminophen when added to rat cultured hepatocytes and liver subcellular preparations. The flavonoids inhibited the production of both sulfate and glucuronide conjugates in the cultured cells, with potencies that depended on the specific flavonoid. Among the flavonols, quercetin, kaempferol and galangin were much more effective than myricetin and morin. Flavones including luteolin, apigenin and chrysin were as effective as the corresponding three flavonols above. The inhibition of conjugation by other simple flavones such as 3-, 5-, 7- and 3',4'-OH flavones, and by catechins such as epicatechin and epigallocatechin, was very weak. These data suggest that the presence of both C5 and 7 hydroxyl substitutions on the A-ring in the flavone structure is required for effective inhibitory activity. The effect of flavonoids on sulfo- and glucurono-conjugation was also examined by incubating acetaminophen with isolated liver cytosolic and microsomal preparations, respectively. The active flavonoids in the cells remarkably inhibited the sulfation, but not glucuronidation, in cell-free enzymatic preparations in vitro. The mechanism of inhibition of conjugation by flavonoids in cultured hepatocytes is not likely to depend on the direct inhibition of sulfo- and glucurono-transferase activity by flavonoids.  相似文献   

18.
Flavonoids occur naturally as glucosides and aglycones. Their common phenolic hydroxyl groups may trigger extensive UDP‐glucuronosyltransferase (UGT)‐ catalysed metabolism. Unlike aglycones, glucosides contain glucose moieties. However, the influence of these glucose moieties on glucuronidation of glucosides and aglycones remains unclear. In this study, the flavonoid glucoside tilianin and its aglycone acacetin were used as model compounds. The glucuronidation characteristics and enzyme kinetics of tilianin and acacetin were compared using human UGT isoforms, liver microsomes and intestinal microsomes obtained from different animal species. Tilianin and acacetin were metabolized into different glucuronides, with UGT1A8 produced as the main isoform. Assessment of enzyme kinetics in UGT1A8, human liver microsomes and human intestinal microsomes revealed that compared with tilianin, acacetin displayed lower Km (0.6‐, 0.7‐ and 0.6‐fold, respectively), higher Vmax (20‐, 60‐ and 230‐fold, respectively) and higher clearance (30‐, 80‐ and 300‐fold, respectively). Furthermore, glucuronidation of acacetin and tilianin showed significant species‐ and gender‐dependent differences. In conclusion, glucuronidation of flavonoid aglycones is faster than that of glucosides in the intestine and the liver. Understanding the metabolism and species‐ and gender‐dependent differences between glucosides and aglycones is crucial for the development of drugs from flavonoids. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Flavonoids have been demonstrated to exhibit a wide range of biological activities including anti-inflammatory and neuroprotective actions. Although a significant amount of flavonoids has been identified to be present as glycosides in medicinal plants, determinations of the biological activities of flavonoids were mainly carried out with aglycones of flavonoids. Therefore, the exact role of the glycosidation of flavonoid aglycones needs to be established. In an attempt to understand the possible role of glycosidation on the modulation of the biological activities of flavonoids, diverse glycosides of kaempferol, quercetin, and aromadendrin were examined in terms of their anti-inflammatory activity determined with the suppression of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglial cells. The results indicated that glycosidation of aglycones attenuated the suppressive activity of aglycones on LPS-induced NO production. Although attenuated, some of glycosides, depending on the position and degree of glycosidation, maintained the inhibitory capability of LPS-induced NO production. These findings suggest that glycosidation of flavonoid aglycones should be considered as an important modulator of the biological activities of flavonoids.  相似文献   

20.
银杏黄酮山奈酚的体外葡醛酸结合反应   总被引:2,自引:0,他引:2  
目的 旨在了解银杏黄酮山奈酚代谢的有关酶系及酶动力学参数。方法 采用苯巴比妥 (PB)、地塞米松 (DEX)、β 萘黄酮 (BNF)和地非三唑 (DIPH)诱导SD大鼠 ,与未诱导大鼠分别作为体外代谢的 5种不同酶源。取山奈酚和鼠肝微粒体 2 5℃下共孵育 ,HPLC法测定孵育液中剩余底物浓度。比较不同诱导剂处理的鼠肝微粒体对山奈酚代谢的催化活性 ,以未作任何处理的鼠肝微粒体为空白对照。结果 山奈酚在BNF和DIPH诱导的鼠肝微粒体中有较强的代谢作用 ,而在PB ,DEX诱导的鼠肝微粒体和空白组微粒体中的代谢较弱。在 0 .2g·L- 1的微粒体蛋白质浓度的孵育液中 ,山奈酚 (40mg·L- 1)经4 5min孵育后 ,分别有 6 2 .9% (DIPH ) ,4 0 .1%(BNF) ,2 1.1% (PB) ,2 3.7% (DEX)和 18.0 % (空白组 )的量被代谢。测得山奈酚在空白对照组、BNF和DIPH诱导的微粒体中的Km 值分别为 (1.85±1.0 5 ) ,(9.4 1± 2 .4 5 )和 (72 .4± 3.0 8) μmol·L- 1;Vmax值分别为 (2 .4 5± 0 .6 3) ,(7.5 5± 1.4 0 )和 (2 5 .2±1.0 8) μmol·g- 1·min- 1。结论 山奈酚在各种微粒体中被广泛代谢 ;BNF和DIPH葡醛酸转移酶的强诱导剂可使山奈酚Ⅱ相葡萄糖醛酸苷结合反应增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号