首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously we reported that the 50% EtOH extract of Cinnamomum cassia (C. cassia) possesses anxiolytic-like activity in the mouse elevated plus maze (EPM) test. This activity was blocked by the 5-HT1A receptor antagonist, WAY 100635. Therefore, in order to investigate the effect of C. cassia on 5-HT1A receptor binding, quantitative autoradiography of 5-HT1A receptors was carried out in brains of mice treated acutely and repeatedly with C. cassia. Binding of [3H]8-OH-DPAT to the 5-HT1A receptor was investigated in the mouse brain. After a single treatment of C. cassia (750 mg/kg, p.o.), [3H]8-OH-DPAT binding showed a significant increase in the dorsal raphe nucleus (DRN). After repeated treatment with C. cassia (100 mg/kg, once a day for 5 days, p.o.), [3H]8-OH-DPAT binding showed no significant change in any brain region. Taken together, the anxiolytic-like effect of the 50% EtOH extract of C. cassia might be mediated by region specific change of 5-HT1A receptors in the dorsal raphe nucleus.  相似文献   

2.
This study was performed to investigate the sedative-hypnotic activity of γ-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the GABAA-benzodiazepine and 5-HT2C receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In GABAA and 5-HT2C receptor binding assays, FST displayed an effective concentration-dependent binding affinity to GABAA receptor, similar to the binding affinity to 5-HT2C receptor. FO exhibited higher affinity to 5-HT2C receptor, compared with the GABAA receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedative-hypnotic activity possibly by modulating GABAA and 5-HT2C receptors. We propose that FST and FO might be effective agents for treatment of insomnia.  相似文献   

3.
Rationale and Objectives Conflict procedures are used to study mechanisms underlying the anxiolytic effects of benzodiazepines (BZs). We established a conflict procedure with rhesus monkeys in order to examine the role of GABAA receptors in the anxiolytic-like effects of BZs. Methods Four rhesus monkeys responded under a two-component multiple schedule in which responding was maintained under a fixed-ratio schedule of food delivery in the absence (non-suppressed responding) and presence (suppressed responding) of response-contingent electric shock. Results Conventional BZs (alprazolam, flunitrazepam, clonazepam, nitrazepam, lorazepam, bromazepam, diazepam, flurazepam, clorazepate, chlordiazepoxide) engendered increases in the average rates of suppressed responding at low to intermediate doses and decreased the average rates of non-suppressed responding at higher doses. Positive correlations were observed when the therapeutic potencies of BZs in humans were compared with potencies to increase the rates of suppressed responding (R 2=0.83) or decrease the rates of non-suppressed responding (R 2=0.60). The 5-HT1A agonist buspirone increased the rates of suppressed responding, although the effects were modest, whereas the opioid morphine lacked anti-conflict effects. The BZ antagonist flumazenil also modestly increased the rates of suppressed responding. A relatively low dose of flumazenil enhanced, while a high dose blocked, alprazolam’s anti-conflict effects. Compounds selective for α1 subunit-containing GABAA receptors (zolpidem, zaleplon, CL218,872) engendered relatively weak increases in the rates of suppressed responding. Conclusions A rhesus monkey conflict procedure was established with predictive validity for therapeutic doses in people and provided evidence that anxiolytic-like effects of BZs can occur with relatively low intrinsic efficacy at GABAA receptors and are reduced by α1GABAA receptor selectivity. This research was supported by U.S.P.H.S. grants DA11792 and RR00168  相似文献   

4.

Background and purpose

Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa which induces anxiolytic- and antipsychotic-like effects in rodents. These effects could be mediated by facilitation of the endocannabinoid system or by the activation of 5-HT1A receptors. As either of these mechanisms could promote adaptation to inescapable stress, the aim of the present work was to test the hypothesis that CBD would attenuate the autonomic and behavioural consequences of restraint stress (RS). We also investigated if the responses to CBD depended on activation of 5-HT1A receptors.

Experimental approach

Male Wistar rats received i.p. injections of vehicle or CBD (1, 10 or 20 mg kg−1) and 30 min later were submitted to 60 min of restraint where their cardiovascular responses were recorded. The protocol of the second experiment was similar to the first one except that animals received i.p. injections of the 5-HT1A receptor antagonist WAY100635 (0.1 mg kg−1) before CBD treatment and exposure to restraint. 24 h later they were also tested in the elevated plus-maze (EPM), an animal model of anxiety.

Key results

Exposure to RS increased blood pressure and heart rate and induced an anxiogenic response in the EPM 24 h later. These effects were attenuated by CBD. WAY100635 by itself did not change the cardiovascular and anxiogenic response to RS, but blocked the effects of CBD.

Conclusion and implications

The results suggest that CBD can attenuate acute autonomic responses to stress and its delayed emotional consequences by facilitating 5-HT1A receptor-mediated neurotransmission.  相似文献   

5.

BACKGROUND AND PURPOSE

The aim of this study was to explore the effects of CB2 receptor agonist and antagonist in the regulation of anxiety-like behaviours.

EXPERIMENTAL APPROACHES

Effects of acute and chronic treatment with the CB2 receptor agonist JWH133 and CB2 receptor antagonist AM630 were evaluated in the light-dark box (LDB) and elevated plus maze (EPM) tests in Swiss ICR mice. CB2 receptor, GABAAα2 and GABAAγ2 gene and protein expression in the cortex and amygdala of mice chronically treated with JWH133 or AM630 were examined by RT-PCR and Western blot. Effects of chronic AM630 treatment were evaluated in spontaneously anxious DBA/2 mice in LDB.

KEY RESULTS

Acute JWH133 treatment failed to produce any effect. Acute AM630 treatment increased anxiety and was blocked by pre-treatment with JWH133. Chronic JWH133 treatment increased anxiety-like behaviour whereas chronic AM630 treatment was anxiolytic in LDB and EPM tests. Chronic AM630 treatment increased gene and reduced protein expression of CB2 receptors, GABAAα2 and GABAAγ2 in cortex and amygdala. Chronic JWH133 treatment resulted in opposite gene and protein alterations. In addition, chronic AM630 administration decreased the anxiety of DBA/2 mice in the LDB test.

CONCLUSIONS AND IMPLICATIONS

The opposing behavioural and molecular changes observed after chronic treatment with AM630 or JWH133 support the key role of CB2 receptors in the regulation of anxiety. Indeed, the efficacy of AM630 in reducing the anxiety of the spontaneously anxious DBA/2 strain of mice strengthens the potential of the CB2 receptor as a new target in the treatment of anxiety-related disorders.  相似文献   

6.
It has been demonstrated that 5-HT1A receptors play an important role in the pathophysiology of schizophrenia. Because Gastrodia elata Bl (GE) modulates the serotonergic system, we examined whether GE could affect phencyclidine (PCP)-induced abnormal behavior in mice. Repeated treatment with PCP increased immobility time, while it decreased social interaction time and recognition memory. PCP-induced abnormal behaviors were significantly attenuated by GE, and these effects were comparable to those of 8-OH-DPAT, a 5-HT1A receptor agonist. Furthermore, GE-mediated effects were counteracted by WAY 100635, a 5-HT1A receptor antagonist. Our results suggest that the antipsychotic effects of GE are, at least in part, mediated via activation of 5-HT1A in mice.  相似文献   

7.
Mirtazapine is an antidepressant with a unique mechanism of action and has been categorized as a Noradrenergic and Specific Serotonergic Antidepressant (NaSSA). Although numerous clinical trials suggested the usefulness of mirtazapine for not only major depressive disorders but also a variety of anxiety disorders, efficacy studies in animal anxiety models have been rarely reported. The present study investigated a potential anxiolytic-like profile of mirtazapine in rat conditioned fear stress model. A 5-hydroxytryptamine (5-HT) 1A receptor partial agonist, buspirone (1-5 mg/kg) exhibited a significant reduction in freezing time, and its maximal effect was reversed by a selective 5-HT1A antagonist, WAY-100635 (1 mg/kg). Mirtazapine (1-10 mg/kg) also reduced the freezing time in a dose-related fashion, a substantial proportion (approx. 50%) of which was likewise antagonized by WAY-100635 (1 mg/kg). Mianserin (1-30 mg/kg), a structural analogue for mirtazapine, was ineffective. Furthermore, co-administration of α1 adrenoceptor antagonist, prazosin (0.03 mg/kg) completely reversed mirtazapine (10 mg/kg)-induced reduction of freezing time. These findings represent the first demonstration that the anxiolytic-like action of mirtazapine involves activation of 5-HT1A receptor and α1 adrenoceptor to different extents, and are compatible with one aspect of mirtazapine's pharmacological profile as NaSSA.  相似文献   

8.

Background:

The basolateral amygdala plays a critical role in the etiology of anxiety disorders and addiction. Pyramidal neurons, the primary output cells of this region, display increased firing following exposure to stressors, and it is thought that this increase in excitability contributes to stress responsivity and the expression of anxiety-like behaviors. However, much remains unknown about the underlying mechanisms that regulate the intrinsic excitability of basolateral amygdala pyramidal neurons.

Methods:

Ex vivo gramicidin perforated patch recordings were conducted in current clamp mode where hyper- and depolarizing current steps were applied to basolateral amygdala pyramidal neurons to assess the effects of adenosine A2A receptor modulation on intrinsic excitability.

Results:

Activation of adenosine A2A receptors with the selective A2A receptor agonist CGS-21680 significantly increased the firing rate of basolateral amygdala pyramidal neurons in rat amygdala brain slices, likely via inhibition of the slow afterhyperpolarization potential. Both of these A2A receptor-mediated effects were blocked by preapplication of a selective A2A receptor antagonist (ZM-241385) or by intra-pipette infusion of a protein kinase A inhibitor, suggesting a postsynaptic locus of A2A receptors on basolateral amygdala pyramidal neurons. Interestingly, bath application of the A2A receptor antagonist alone significantly attenuated basolateral amygdala pyramidal cell firing, consistent with a role for tonic adenosine in the regulation of the intrinsic excitability of these neurons.

Conclusions:

Collectively, these data suggest that adenosine, via activation of A2A receptors, may directly facilitate basolateral amygdala pyramidal cell output, providing a possible balance for the recently described inhibitory effects of adenosine A1 receptor activation on glutamatergic excitation of basolateral amygdala pyramidal cells.  相似文献   

9.
Summary The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective [3-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective β1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs.  相似文献   

10.
The non-competitive NMDA receptor (NMDA-R) antagonist phencyclidine (PCP)—used as a pharmacological model of schizophrenia—disrupts prefrontal cortex (PFC) activity. PCP markedly increased the discharge rate of pyramidal neurons and reduced slow cortical oscillations (SCO; 0.15–4 Hz) in rat PFC. Both effects were reversed by classical (haloperidol) and atypical (clozapine) antipsychotic drugs. Here we extended these observations to mice brain and examined the potential involvement of 5-HT2A and 5-HT1A receptors (5-HT2AR and 5-HT1AR, respectively) in the reversal by clozapine of PCP actions. Clozapine shows high in vitro affinity for 5-HT2AR and behaves as partial agonist in vivo at 5-HT1AR. We used wild-type (WT) mice and 5-HT1AR and 5-HT2AR knockout mice of the same background (C57BL/6) (KO-1A and KO-2A, respectively). Local field potentials (LFPs) were recorded in the PFC of WT, KO-1A, and KO-2A mice. PCP (10 mg/kg, intraperitoneally) reduced SCO equally in WT, KO-2A, and KO-1A mice (58±4%, 42±7%, and 63±7% of pre-drug values, n=23, 13, 11, respectively; p<0.0003). Clozapine (0.5 mg/kg, intraperitoneally) significantly reversed PCP effect in WT and KO-2A mice, but not in KO-1A mice nor in WT mice pretreated with the selective 5-HT1AR antagonist WAY-100635.The PCP-induced disorganization of PFC activity does not appear to depend on serotonergic function. However, the lack of effect of clozapine in KO-1A mice and the prevention by WAY-100635 indicates that its therapeutic action involves 5-HT1AR activation without the need to block 5-HT2AR, as observed with clozapine-induced cortical dopamine release.  相似文献   

11.
Available evidence strongly suggests that the γ-aminobutyric acid type A (GABAA) receptor has a crucial role in memory retrieval. However, the signaling mechanisms underlying the role of GABAA receptor modulation in memory retrieval are unclear. We conducted one-trial passive avoidance task with pre-retention trial drug administration in the hippocampus to test the effects of GABAA receptor modulation on memory retrieval. We further tested the co-involvement of signaling molecules: extracellular signal-regulated kinase (ERK), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and cAMP responsive element-binding protein (CREB). First, we observed that the phosphorylation of hippocampal ERK was required for memory retrieval during the task. Accordingly, to investigate whether GABAA receptor activation or inhibition induces ERK phosphorylation during memory retrieval, drugs that target the GABAA receptor were administered into the hippocampus before the retention trial. Muscimol, a GABAA receptor agonist, and diazepam, an agonist to benzodiazepine-binding site of GABAA receptor, blocked retention trial-induced ERK phosphorylation and impaired memory retrieval. Furthermore, co-treatment with sub-effective dose of U0126, a mitogen-activated protein kinase inhibitor, blocked the upregulation of ERK phosphorylation and impaired memory retrieval, and bicuculline methiodide (BMI), a GABAA receptor antagonist, increased ERK phosphorylation induced by the retention trial and facilitated memory retrieval. Finally, the effects of BMI were blocked by the co-application of a sub-effective dose of U0126. These results suggest that GABAA receptor-mediated memory retrieval is closely related to ERK activity.  相似文献   

12.
Rationale Allopregnanolone, a neurosteroid-reduced metabolite of progesterone, is a well-documented positive modulator of the -aminobutyric type A (GABAA) receptor. As has been reported for other positive modulators of the GABAA receptor, chronic exposure to neurosteroids is hypothesized to decrease GABAA receptor function. Drawing from the literature on chronic exposure to benzodiazepines or alcohol, putative changes in N-methyl-d-aspartate (NMDA) receptor function are also expected after chronic neurosteroid exposure.Objectives To assess the sensitivity of the GABAA and NMDA receptors after chronic elevation of neurosteroid produced by termination of pseudopregnancy in behavioral tests of anxiety and sensorimotor coordination.Methods Female rats ovariectomized on day 10 of pseudopregnancy were tested in the elevated plus-maze and on the rotor rod after an acute injection of progesterone (4 mg/0.2 ml, s.c.), chlordiazepoxide (5 or 15 mg/kg, i.p.), or MK-801 (0.025, 0.05, or 0.1 mg/kg, i.p.).Results Pseudopregnancy termination produced an anxiogenic-like response in the plus-maze; an acute injection of progesterone restored baseline levels of behavior in this test. Pseudopregnancy termination eliminated the anxiolytic-like, sedative, and ataxic effects of chlordiazepoxide. In contrast, pseudopregnancy termination produced an increased sensitivity to the anxiolytic-like and ataxic effects of MK-801.Conclusions The effects of pseudopregnancy termination on the behavioral response to positive modulators of the GABAA receptor are consistent with results from studies in which chronic exposure to neurosteroids decreases the response to acute neurosteroid and benzodiazepine administration. However, unlike the enhanced glutamatergic tone resulting from discontinuation of chronic benzodiazepine or alcohol exposure, the termination of pseudopregnancy apparently decreases NMDA receptor function.  相似文献   

13.
The serotonin 5-HT2A receptor (5-HT2AR) and dopamine D2 receptor (D2R) are high-affinity G protein-coupled receptor targets for two different classes of antipsychotic drugs used to treat schizophrenia. Interestingly, the antipsychotic effects are not based on the regulation of same signaling mediators since activation of the 5-HT2AR and of the D2R regulate Gq/11 protein and Gi/o protein, respectively. Here we use radioligand binding and second messenger production assays to provide evidence for a functional crosstalk between 5-HT2AR and D2R in brain and in HEK293 cells. D2R activation increases the hallucinogenic agonist affinity for 5-HT2AR and decreases the 5-HT2AR induced inositol phosphate production. In vivo, 5-HT2AR expression is necessary for the full effects of D2R antagonist on MK-801-induced locomotor activity. Co-immunoprecipitation studies show that the two receptors can physically interact in HEK293 cells and raise the possibility that a receptor heterocomplex mediates the crosstalk observed. The existence of this 5-HT2AR-D2R heteromer and crosstalk may have implications for diseases involving alterations of serotonin and dopamine systems and for the development of new classes of therapeutic drugs.  相似文献   

14.
Pharmacological blockade of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), produces CB1 receptor (CB1R)-mediated analgesic, anxiolytic-like and antidepressant-like effects in murids. Using behavioral and electrophysiological approaches, we have characterized the emotional phenotype and serotonergic (5-HT) activity of mice lacking the FAAH gene in comparison to their wild type counterparts, and their response to a challenge of the CB1R antagonist, rimonabant. FAAH null-mutant (FAAH−/−) mice exhibited reduced immobility in the forced swim and tail suspension tests, predictive of antidepressant activity, which was attenuated by rimonabant. FAAH−/− mice showed an increase in the duration of open arm visits in the elevated plus maze, and a decrease in thigmotaxis and an increase in exploratory rearing displayed in the open field, indicating anxiolytic-like effects that were reversed by rimonabant. Rimonabant also prolonged the initiation of feeding in the novelty-suppressed feeding test. Electrophysiological recordings revealed a marked 34.68% increase in dorsal raphe 5-HT neural firing that was reversed by rimonabant in a subset of neurons exhibiting high firing rates (33.15% mean decrease). The response of the prefrontocortical pyramidal cells to the 5-HT2A/2C agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane ((±)-DOI) revealed desensitized 5-HT2A/2C receptors, likely linked to the observed anxiolytic-like behaviors. The hippocampal pyramidal response to the 5-HT1A antagonist, WAY-100635, indicates enhanced tonus on the hippocampal 5-HT1A heteroreceptors, a hallmark of antidepressant-like action. Together, these results suggest that FAAH genetic deletion enhances anxiolytic-like and antidepressant-like effects, paralleled by altered 5-HT transmission and postsynaptic 5-HT1A and 5-HT2A/2C receptor function.  相似文献   

15.

Background and purpose:

The neurosteroid, dehydroepiandrosterone sulphate (DHEAS) and its non-sulphated form, DHEA, are considered as crucial endogenous modulators of a number of important physiological events. Evidence suggests that DHEAS and DHEA modulate central nervous system-related functions by activating sigma-1 receptors and/or allosterically inhibiting γ-aminobutyric acic receptor type A (GABAA) receptors. As both the sigma-1 receptor and the GABAA receptor play important roles in spinal pain transmission, the present study was designed to examine whether intrathecally injected DHEAS or DHEA affect nociceptive signalling at the spinal cord level.

Experimental approach:

We first determined whether intrathecal (i.t.) DHEA or DHEAS injection was able to affect nociceptive thresholds to peripheral mechanical stimulation and subsequently examined whether this effect was mediated by sigma-1 or the GABAA receptors.

Key results:

The i.t. DHEAS injection dose-dependently decreased the nociceptive threshold to mechanical stimulation, thus producing mechanical allodynia. Moreover, this DHEAS-induced mechanical allodynia was significantly reduced by administration of the sigma-1 receptor antagonist, BD-1047 or the GABAA receptor agonist, muscimol. Conversely, i.t. DHEA had no effect on mechanical sensitivity. However, when i.t. DHEA was combined with the GABAA receptor antagonist bicuculline, DHEA dose-dependently produced mechanical allodynia similar to that of DHEAS. This effect was blocked by BD-1047 and by muscimol.

Conclusions and implications:

These findings indicate that i.t. injection of DHEAS produces mechanical allodynia and that the development of this mechanical allodynia is mediated by sigma-1 and GABAA receptors. The findings of this study raise several interesting questions for further investigations into the mechanisms underlying neurosteroid modulation of spinal pain transmission.British Journal of Pharmacology (2009) 157, 666–673; doi:10.1111/j.1476-5381.2009.00197.x; published online 30 April 2009  相似文献   

16.
  1. Ejaculatory problems and anorgasmia are well-known side-effects of the SSRI antidepressants, and a pharmacologically induced increase in serotonergic neurotransmission inhibits ejaculatory behaviour in the rat. In the present study the role of 5-HT1A and 5-HT1B receptors in the mediation of male rat ejaculatory behaviour was examined by use of selective agonists and antagonists acting at these 5-HT receptor subtypes.
  2. The 5-HT1A receptor agonist 8-OH-DPAT (0.25–4.00 μmol kg−1 s.c.) produced an expected facilitation of the male rat ejaculatory behaviour, and this effect was fully antagonized by pretreatment with the new selective 5-HT1A receptor antagonist (R)-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide hydrogen (2R,3R) tartrate monohydrate (NAD-299) (1.0 μmol kg−1 s.c.). NAD-299 by itself (0.75–3.00 μmol kg−1 s.c.) did not affect the male rat ejaculatory behaviour.
  3. The 5-HT1B receptor agonist anpirtoline (0.25–4.00 μmol kg−1 s.c.) produced a dose-dependent inhibition of the male rat ejaculatory behaviour, and this effect was fully antagonized by pretreatment with the 5-HT1B receptor antagonist isamoltane (16 μmol kg−1 s.c.) as well as by the new and selective antagonist (R)-(+)-2-(3-morpholinomethyl-2H-chromene-8-yl)oxymethylmorpholino methansulphonate (NAS-181) (16 μmol kg−1 s.c.). Isamoltane (1.0–16.0 μmol kg−1 s.c.) and NAD-181 (1.0–16.0 μmol kg−1 s.c.) had no, or weakly facilitatory effects on the male rat ejaculatory behaviour. The non-selective 5-HT1 receptor antagonist (−)-pindolol (8 μmol kg−1 s.c.), did not antagonize the inhibition produced by anpirtoline.
  4. The present results demonstrate opposite effects, facilitation and inhibition, of male rat ejaculatory behaviour by stimulation of 5-HT1A and 5-HT1B receptors, respectively, suggesting that the SSRI-induced inhibition of male ejaculatory dysfunction is due to 5-HT1B receptor stimulation.
  相似文献   

17.
Rationale The selective serotonin reuptake inhibitors (SSRIs) and the serotonin and noradrenaline reuptake inhibitors (SNRIs) increase synaptic levels of serotonin, leading to an increased activation of a multitude of specific postsynaptic 5-HT receptors. However, it is not yet known which 5-HT receptor subtypes mediate the therapeutic effects of antidepressants.Methods The effects of the SSRI, paroxetine and the SNRI, venlafaxine were evaluated in the mouse four plates test (FPT).Results Paroxetine administered intraperitoneally (IP) (0.5, 2–8 mg/kg) potently augmented the number of punished passages accepted by mice in this paradigm. The effects of paroxetine (8 mg/kg) were not reversed by the selective 5-HT2C receptor antagonist, RS 10-2221 (0.1 mg/kg and 1 mg/kg) or the selective 5-HT2B/2C receptor antagonist SB 206553 (0.1 mg/kg and 1 mg/kg), at doses which lack an effect when administered alone. In contrast, the selective 5-HT2A receptor antagonist, SR 46349B (0.1 mg/kg and 1 mg/kg) completely abolished the paroxetine-induced increase in punished passages. The acute administration of venlafaxine induced an anxiolytic-like effect in the FPT at the doses of 2–16 mg/kg. This effect was reversed by the 5-HT2B/2C receptor antagonist as did SR 46349B, for both doses administered. Our results strongly suggest that activation of 5-HT2A receptors is critically involved in the anxiolytic activity of paroxetine, whereas the 5-HT2A and 5-HT2B receptors are involved in the anti-punishment action of venlafaxine in the FPT. The co-administration of selective 5-HT2A, 2B, 2C receptor agonists (DOI, 0.06 mg/kg and 0.25 mg/kg; BW 723C86, 0.5 mg/kg and 2 mg/kg and RO 60-0175, 0.06 mg/kg and 0.25 mg/kg), respectively, was subsequently investigated. The effects of sub-active doses of paroxetine (0.25 mg/kg and 1 mg/kg) were augmented by BW 723C86 and RO 60-0175 receptor agonist challenge. The anti-punishment effects of venlafaxine (0.25 mg/kg and 1 mg/kg) were potentialised only by DOI co-administration.Conclusion These results indicate that the co-administration of 5-HT2 receptor agonists with paroxetine and venlafaxine may provide a powerful tool for enhancing the clinical efficacy of these antidepressants.  相似文献   

18.
Stress is closely related with levels of corticosteroid and corticotrophin releasing factor, which at the same time can modify 5-HT1A receptors and brain serotonin levels. Consequently, the absence of corticosteroids in rats induced by an adrenalectomy could be useful to understand the functionality of the brain serotonergic system after a stressing event.The influence of 15 min of forced swimming was explored on sham and adrenalectomized rats by measuring the 5-HT1A receptor density in raphe and hippocampus. Other previously stressed groups (sham and adrenalectomized) were tested in two anxiety models with the 5-HT1A agonist 8-OH-DPAT, the postsynaptic antagonist MM-77, and with a combination of these two compounds.It was found that the removal of adrenals in rats that were not previously stressed induced an increase in the postsynaptic 5-HT1A receptor density. On the other hand, an adrenalectomy in rats that were previously stressed induced a reduction in the same receptor density. Adrenal gland removal induced an anxiolytic-like effect. However, after the injection of 8-OH-DPAT, adrenalectomized rats showed anxiogenic-like actions, an effect which was reversed by MM-77.Data show that changes in 5-HT1A receptors density caused by a stressful session can have behavioral consequences, thus emphasizing the need to reconsider the clinical use of 5-HT1A ligands after traumatic events.  相似文献   

19.

BACKGROUND AND PURPOSE

Flavonoids are known to have anxiolytic and sedative effects mediated via actions on ionotropic GABA receptors. We sought to investigate this further.

EXPERIMENTAL APPROACH

We evaluated the effects of 2′-methoxy-6-methylflavone (2′MeO6MF) on native GABAA receptors in new-born rat hippocampal neurons and determined specificity from 18 human recombinant GABAA receptor subtypes expressed in Xenopus oocytes. We used ligand binding, two-electrode voltage clamp and patch clamp studies together with behavioural studies.

KEY RESULTS

2′MeO6MF potentiated GABA at α2β1γ2L and all α1-containing GABAA receptor subtypes. At α2β2/3γ2L GABAA receptors, however, 2′MeO6MF directly activated the receptors without potentiating GABA. This activation was attenuated by bicuculline and gabazine but not flumazenil indicating a novel site. Mutation studies showed position 265 in the β1/2 subunit was key to whether 2′MeO6MF was an activator or a potentiator. In hippocampal neurons, 2′MeO6MF directly activated single-channel currents that showed the hallmarks of GABAA Cl- currents. In the continued presence of 2′MeO6MF the single-channel conductance increased and these high conductance channels were disrupted by the γ2(381–403) MA peptide, indicating that such currents are mediated by α2/γ2-containing GABAA receptors. In mice, 2′MeO6MF (1–100 mg·kg−1; i.p.) displayed anxiolytic-like effects in two unconditioned models of anxiety: the elevated plus maze and light/dark tests. 2′MeO6MF induced sedative effects at higher doses in the holeboard, actimeter and barbiturate-induced sleep time tests. No myorelaxant effects were observed in the horizontal wire test.

CONCLUSIONS AND IMPLICATIONS

2′MeO6MF will serve as a tool to study the complex nature of the activation and modulation of GABAA receptor subtypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号