首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been widely reported that silver nanoparticles (AgNPs) induce oxidative stress in various cell lines. However, the mechanism for this effect and its consequences for cellular signaling are poorly understood. In this study, human umbilical vein endothelial cells (HUVECs) were used to assess the toxicity and investigate the associated molecular mechanisms caused by exposure to AgNPs. We demonstrated that AgNP exposure significantly and dose‐dependently decreased the cell viability, induced reactive oxygen species (ROS) generation and led to early apoptosis in HUVECs. Our findings showed that AgNPs induced excess ROS production that affected the signaling pathways by a mechanism that depended on activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity through upregulation of NADPH oxidase 4 (NOX4) protein expressions. Moreover, AgNPs could disrupt the inactivation of the nuclear factor erythroid 2‐related factor 2 (Nrf2)‐mediated antioxidant response, which is considered another important element for oxidative stress caused by AgNPs in HUVECs. The redox imbalance between NOX4 and Nrf2 was an important cause for the ROS overproduction that led to cell injury in HUVECs. The results provided insight into the mechanisms of oxidative stress induced by AgNPs in vascular endothelial cells.  相似文献   

2.
Kang K  Lim DH  Choi IH  Kang T  Lee K  Moon EY  Yang Y  Lee MS  Lim JS 《Toxicology letters》2011,205(3):227-234
Silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials due to their antibacterial properties. In this study, we examined the effects of polyvinylpyrrolidone (PVP)-coated AgNPs (average size 2.3 nm) on angiogenesis in both an in vivo model and an in vitro endothelial cell line, SVEC4-10. Increased angiogenesis was detected around the injection site of AgNP-containing Matrigel in vivo. AgNPs also increased the infiltration of endothelial cells and the hemoglobin (Hb) content in AgNP-Matrigel plugs implanted into mice. AgNPs induced endothelial cell tube formation on growth factor-reduced Matrigel, production of reactive oxygen species (ROS), and production of angiogenic factors, such as vascular endothelial growth factor (VEGF) and nitric oxide (NO), in SVEC4-10 cells. In addition, AgNPs promoted the activation of FAK, Akt, ERK1/2, and p38, which are all involved in VEGF receptor (VEGFR)-mediated signaling. Finally, AgNP-treated tumors caused angiogenesis around tumors in B16F10 melanomas after they were injected into mice, and the Hb concentration in the tumors increased in a concentration-dependent manner with AgNP treatment. Thus, our study suggests that exposure to AgNPs can cause angiogenesis through the production of angiogenic factors.  相似文献   

3.
Silver nanoparticles (AgNPs) are incorporated into a large number of consumer and medical products. Several experiments have demonstrated that AgNPs can be toxic to the vital organs of humans and especially to the lung. The present study evaluated the in vitro mechanisms of AgNP (<100 nm) toxicity in relationship to the generation of reactive oxygen species (ROS) in A549 cells. AgNPs caused ROS formation in the cells, a reduction in their cell viability and mitochondrial membrane potential (MMP), an increase in the proportion of cells in the sub-G1 (apoptosis) population, S phase arrest and down-regulation of the cell cycle associated proliferating cell nuclear antigen (PCNA) protein, in a concentration- and time-dependent manner. Pretreatment of the A549 cells with N-acetyl-cysteine (NAC), an antioxidant, decreased the effects of AgNPs on the reduced cell viability, change in the MMP and proportion of cells in the sub-G1population, but had no effect on the AgNP-mediated S phase arrest or down-regulation of PCNA. These observations allow us to propose that the in vitro toxic effects of AgNPs on A549 cells are mediated via both ROS-dependent (cytotoxicity) and ROS-independent (cell cycle arrest) pathways.  相似文献   

4.
Silver nanoparticles (AgNPs), which have well‐known antimicrobial properties, are extensively used in various medical and general applications. In spite of the widespread use of AgNPs, relatively few studies have been undertaken to determine the cytotoxic effects of AgNPs. The aim of this study was investigate how AgNPs of different sizes (4.7 and 42 nm) interact with two different tumoral human cell lines (hepatoma [HepG2] and leukemia [HL‐60]). In addition, glutathione depletion, inhibition of superoxide dismutase (SOD) and reactive oxygen species (ROS) generation were used to evaluate feasible mechanisms by which AgNPs exerted its toxicity. AgNPs of 4.7 nm and 42 nm exhibited a dramatic difference in cytotoxicity. Small AgNPs were much more cytotoxic than large AgNPs. A difference in the cellular response to AgNPs was found. HepG2 cells showed a higher sensitivity to the AgNPs than HL‐60. However, the cytotoxicity induced by AgNPs was efficiently prevented by NAC treatment, which suggests that oxidative stress is primarily responsible for the cytotoxicity of AgNPs. Furthermore, cellular antioxidant status was disturbed: AgNPs exposure caused ROS production, glutathione depletion and slight, but not statistically significant inactivation of SOD. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Silver nanoparticles (AgNPs) are antibacterial materials widely used in numerous products and medical supplies. Previously, we showed that AgNPs trigger apoptotic processes in mouse blastocysts, leading to a decrease in cell viability and impairment of preimplantation and postimplantation embryonic development in vitro and in vivo. In the present study, we further investigated the hazardous effects of AgNPs on mouse oocyte maturation, in vitro fertilization (IVF), and subsequent preimplantation and postimplantation development in vitro and in vivo. Data from in vitro experiments revealed that AgNPs impair mouse oocyte maturation, decrease IVF rates, and induce injury effects on subsequent embryonic development to a significant extent. In an animal model, intravenous injection of AgNPs (5 mg/kg body weight) led to a significant decrease in mouse oocyte maturation and IVF concomitant with impairment of early embryonic development in vivo. Importantly, pretreatment with N‐acetylcysteine effectively prevented AgNP‐triggered reactive oxygen species (ROS) production and apoptosis, clearly suggesting a critical role of ROS as an upstream initiator or key regulator of AgNP‐induced hazardous effects on oocyte maturation and sequent embryonic development. Furthermore, preincubation of oocytes with Ac‐DEVD‐cho, a caspase‐3‐specific inhibitor, effectively prevented hazardous effects, highlighting the potential involvement of caspase‐dependent apoptotic signaling cascades in AgNP‐mediated events. Expression levels of p53 and p21 of blastocysts were upregulated upon preincubation of mouse oocytes with AgNPs. Our collective results imply that cell apoptosis in mouse blastocysts derived from the AgNP‐pretreated oocytes via intracellular ROS generation, which is further mediated through p53‐, p21‐, and caspase‐3‐dependent regulatory mechanisms.  相似文献   

6.
The combined action of shikonin and silver nanoparticles (AgNPs) for apoptosis in human cancer cells has not been elucidated. Hence, we investigated the synergistic combinatorial effect of shikonin and AgNPs in human lung cancer cells. Shikonin was used as a reducing and capping agent for AgNPs synthesis as a green method avoiding the hazards of chemical methods. Radiolabeling of shikonin-AgNPs with radioactive iodine forming [131I]I-Shikonin-AgNPs was carried out to enable the intracellular tracking of NPs. The antitumor effect of a combined treatment (shikonin-AgNPs) was evaluated using tissue culture assay. The 50% inhibitory concentration (IC50) of SHK-AgNPs on A549 cells after 24 hours determined by an MTT assay is 2.4 ± 0.11 μg/mL. As a deduction, this study revealed that the combination of shikonin and AgNPs treatment significantly inhibited cell viability and proliferation of A549 cells (human lung carcinoma cell line) with a great potential than the monotherapy.  相似文献   

7.
Hydrolyzable tannins are known to exhibit anti-inflammatory activity, which can be used in combination with silver nanoparticles (AgNPs) for dermal uses. In this study, we investigated the effects of tannic acid-modified 13, 33, 46 nm and unmodified 10–65 nm AgNPs using the human-derived keratinocyte HaCaT and VK2-E6/E7 cell lines in the form of stationary and spheroids cultures. After exposition to tannic acid-modified AgNPs, VK2-E6/E7 cells showed higher toxicity, increased production of reactive oxygen species (ROS) and activity of JNK stress kinase, while HaCaT cell line demonstrated less ROS production and activation of ERK kinase. AgNPs internalization was detected both in the superficial and internal layers of spheroids prepared from both cell lines. Tannic acid modified AgNPs sized above 30 nm did not induce DNA breaks in comet assay performed in both cell lines. Tannic acid-modified but not unmodified AgNPs down-regulated TNF-α and LPS-triggered production of IL-8 in VK2-E6/E7 but not in HaCaT cells. In summary, tannic acid-modified AgNPs sized above 30 nm show good toxicological profile both in vitro and possess immunomodulatory properties useful for potential dermal applications in humans.  相似文献   

8.
Silver nanoparticles (AgNPs), which have well-known antimicrobial properties, are extensively used in various medical and general applications. Despite the widespread use of AgNPs, relatively few studies have been undertaken to determine the cytotoxic effects of AgNPs exposure. This study investigates possible molecular mechanisms underlying the cytotoxic effects of AgNPs. Here, we show that AgNPs-induced cytotoxicity was higher compared than that observed when AgNO3 was used as a silver ion source. AgNPs induced reactive oxygen species (ROS) generation and suppression of reduced glutathione (GSH) in human Chang liver cells. ROS generated by AgNPs resulted in damage to various cellular components, DNA breaks, lipid membrane peroxidation, and protein carbonylation. Upon AgNPs exposure, cell viability decreased due to apoptosis, as demonstrated by the formation of apoptotic bodies, sub-G1 hypodiploid cells, and DNA fragmentation. AgNPs induced a mitochondria-dependent apoptotic pathway via modulation of Bax and Bcl-2 expressions, resulting in the disruption of mitochondrial membrane potential (Δψm). Loss of Δψm was followed by cytochrome c release from the mitochondria, resulting in the activation of caspases 9 and 3. The apoptotic effect of AgNPs was exerted via the activation of c-Jun NH2-terminal kinase (JNK) and was abrogated by the JNK-specific inhibitor, SP600125 and siRNA targeting JNK. In summary, the results suggest that AgNPs cause cytotoxicity by oxidative stress-induced apoptosis and damage to cellular components.  相似文献   

9.
Silver nanoparticles (AgNPs) are widely used in industry, consumer products, and medical appliances due to their efficient antimicrobial properties. However, information on environmental toxicity and bacterial impact of these particles is not completely elucidated. Results showed that AgNPs produced growth inhibition and oxidative stress in bacteria Escherichia coli (gram negative) and Staphylococcus aureus (gram positive), with half-maximal inhibitory concentrations (IC50) of 12 and 7 mg/L, respectively. Surprisingly, bacteria pre-exposed to sublethal dose of AgNPs exhibited increased resistance toward antibiotics (ampicillin and Pen-Strep) with IC50 elevated by 3–13-fold. Further, AgNP pre-exposure raised the minimal inhibitory concentration and minimal biocidal concentration by two- to eightfold when cells were challenged with antibiotics with diverse mechanisms of action (penicillin, chloramphenicol, and kanamycin). Interestingly, we found that upon exposure to ampicillin, strains pretreated with AgNPs exhibited lower levels of membrane damage and oxidative stress, together with elevated levels of intracellular ATP relative to untreated cells. Bacterial reverse mutation assay (Ames test) showed that AgNPs are highly mutagenic, consistent with further assays demonstrating abiotic reactive oxygen species (ROS) generation and intrinsic DNA cleavage activity in vitro of AgNPs. Overall, our results suggest that AgNPs enhance bacterial resistance to antibiotics by promoting stress tolerance through induction of intracellular ROS. Our data suggest potential consequences of incidental environmental exposure of bacteria to AgNPs and indicate the need to regulate use and disposal of AgNPs in industry and consumer products.  相似文献   

10.
A growing number of studies report that conventional cytotoxicity assays are incompatible with certain nanoparticles (NPs) due to artifacts caused by the distinctive characteristics of NPs. Lactate dehydrogenase (LDH) leakage assays have inadequately detected cytotoxicity of silver nanoparticles (AgNPs), leading to research into the underlying mechanism. When ECV304 endothelial-like umbilical cells were treated with citrate-capped AgNPs (cAgNPs) or bare AgNPs (bAgNPs), the plasma membrane was disrupted, but the LDH leakage assay failed to detect cytotoxicity, indicating interference with the assay by AgNPs. Both cAgNPs and bAgNPs inactivated LDH directly when treated to cell lysate as expected. AgNPs adsorbed LDH and thus LDH, together with AgNPs, was removed from assay reactants during sample preparation, with a resultant underestimation of LDH leakage from cells. cAgNPs, but not bAgNPs, generated reactive oxygen species (ROS), which were successfully scavenged by N-acetylcysteine or ascorbic acid. LDH inhibition by cAgNPs could be restored partially by simultaneous treatment with those antioxidants, suggesting the contribution of ROS to LDH inactivation. Additionally, the composition of the protein corona surrounding AgNPs was identified employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. In sum, the LDH leakage assay, a conventional cell viability test method, should be employed with caution when assessing cytotoxicity of AgNPs.  相似文献   

11.
12.
Hydrolyzable tannins are known to exhibit diverse biological effects, which can be used in combination with silver nanoparticles (AgNPs). In this study, we tested toxic and inflammatory properties of tannic-acid modified 13, 33, 46 nm and unmodified 10–65 nm AgNPs using murine 291.03C keratinocyte and RAW 264.7 monocyte cell lines. Both cell lines exposed for 24 h to 1–10 μg/ml of 13 nm, 33 nm, 46 nm and unmodified AgNPs showed dose-dependent toxicity and decreased cell proliferation. Only small-sized AgNPs induced production of ROS by monocytes, but not keratinocytes. Monocytes internalized large aggregates of 33, 46 nm and 10–65 nm AgNPs in cytoplasmic vacuoles, whereas keratinocytes accumulated less particles. AgNPs of 13 nm were localized ubiquitously within both cell types. The tested AgNPs strongly down-regulated production of tumor necrosis factor-α (TNF-α) by monocytes, whereas keratinocytes exposed to AgNPs showed an opposite effect. Unmodified but not tannic acid-modified AgNPs increased production of the pro-inflammatory MCP-1 by monocytes and keratinocytes. In summary, low inflammatory potential and lack of ROS production by tannic-acid modified AgNPs sized above 30 nm suggests that tannic acid modification of large silver nanoparticles may help to increase AgNPs biosafety.  相似文献   

13.
The industry of nanotechnology has had a rapid development in the last decades. In particular, silver nanoparticles (AgNPs) have unique properties so they can be used in different industrial applications, mainly in areas such as electronics, environment, medicine, biosensors and biotechnology; as well as household and healthcare‐related products, like cosmetics, due to their antimicrobial properties. These beneficial effects are also offset by the higher chemical reactivity of these NPs due to their surface area to volume ratio, leading to the increased formation of reactive oxygen species (ROS) within cells. AgNPs, however, have a dark side: they increase the formation of reactive oxygen species (ROS). With increased human exposure to AgNPs, the risk and safety standards have attracted much attention. This review highlights the beneficial and toxicological effects of AgNPs in terms of cytotoxicity and genotoxicity.  相似文献   

14.
Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25-200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion of glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level.  相似文献   

15.
The widespread use of silver nanoparticles (AgNPs) is accompanied by a growing concern regarding their potential risks to human health, thus calling for an increased understanding of their biological effects. The aim of this work was to systematically study the extent to which changes in cellular metabolism were dependent on the properties of AgNPs, using NMR metabolomics. Human skin keratinocytes (HaCaT cells) were exposed to citrate-coated AgNPs of 10, 30 or 60?nm diameter and to 30?nm AgNPs coated either with citrate (CIT), polyethylene glycol (PEG) or bovine serum albumin (BSA), to assess the influence of NP size and surface chemistry. Overall, CIT-coated 60?nm and PEG-coated 30?nm AgNPs had the least impact on cell viability and metabolism. The role of ionic silver and reactive oxygen species (ROS)-mediated effects was also studied, in comparison to CIT-coated 30?nm particles. At concentrations causing an equivalent decrease in cell viability, Ag+?ions produced a change in the metabolic profile that was remarkably similar to that seen for AgNPs, the main difference being the lesser impact on the Krebs cycle and energy metabolism. Finally, this study newly reported that while down-regulated glycolysis and disruption of energy production were common to AgNPs and H2O2, the impact on some metabolic pathways (GSH synthesis, glutaminolysis and the Krebs cycle) was independent of ROS-mediated mechanisms. In conclusion, this study shows the ability of NMR metabolomics to define subtle biochemical changes induced by AgNPs and demonstrates the potential of this approach for rapid, untargeted screening of pre-clinical toxicity of nanomaterials in general.  相似文献   

16.
Silver nanoparticles (AgNPs) prepared and stabilized by diverse biologically active substances seem to be especially useful in diverse biological and medical applications. The combination of AgNPs with bioactive substances, such as antioxidants, can lead to the development of new systems of desired anticancer properties. In this research, AgNPs were prepared with the use of diverse antioxidant combinations including gallic acid (GA), (−)-epicatechin-3-gallate (EGCG), and caffeine (CAF). The insightful physicochemical characteristic revealed that each type of AgNPs exhibited spherical shape, comparable size distribution and negative surface charge. Surface-enhanced Raman spectroscopy (SERS) delivered the information about the chemistry of AgNP stabilizing layers, which turned out to be a crucial factor tuning toxicity of AgNPs toward murine B16 melanoma cells (B16-F0) and human skin melanoma (COLO 679) cells. EGCGAgNPs were the most cytotoxic among all the investigated AgNPs. They strongly reduced the activity of mitochondria, damaged cell membrane integrity, and penetrated inside the cells causing DNA damage. In turn, the toxicity of GAAgNPs strongly manifested via the induction of oxidative stress in the cells. It was found that CAFGAAgNPs exhibited the lowest toxicity toward the melanoma cells, which proved that a proper combination of antioxidants enable to prepare AgNPs of differentiated toxicity. It was established that human skin melanoma cells were significantly more sensitive to AgNPs than the murine melanoma cells.  相似文献   

17.
Park EJ  Yi J  Chung KH  Ryu DY  Choi J  Park K 《Toxicology letters》2008,180(3):222-229
As the applications of industrial nanoparticles are being developed, the concerns on the environmental health are increasing. Cytotoxicities of titanium dioxide nanoparticles of different concentrations (5, 10, 20 and 40mug/ml) were evaluated in this study using a cultured human bronchial epithelial cell line, BEAS-2B. Exposure of the cultured cells to nanoparticles led to cell death, reactive oxygen species (ROS) increase, reduced glutathione (GSH) decrease, and the induction of oxidative stress-related genes such as heme oxygenase-1, thioredoxin reductase, glutathione-S-transferase, catalase, and a hypoxia inducible gene. The ROS increase by titanium dioxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that titanium dioxide nanoparticles exert cytotoxicity by an apoptotic process. Furthermore, the expressions of inflammation-related genes such as interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), TNF-a, and C-X-C motif ligand 2 (CXCL2) were also elevated. The induction of IL-8 by titanium dioxide nanoparticles was inhibited by the pre-treatment with SB203580 and PD98059, which means that the IL-8 was induced through p38 mitogen-acitvated protein kinase (MAPK) pathway and/or extracellular signal (ERK) pathway. Uptake of the nanoparticles into the cultured cells was observed and titanium dioxide nanoparticles seemed to penetrate into the cytoplasm and locate in the peri-region of the nucleus as aggregated particles, which may induce direct interactions between the particles and cellular molecules, to cause adverse biological responses.  相似文献   

18.
Silver nanoparticles (AgNPs) are commonly used nanomaterials in consumer products. Previous studies focused on its effects on neurons; however, little is known about their effects and uptake mechanisms on glial cells under normal or activated states. Here, ALT astrocyte‐like, BV‐2 microglia and differentiated N2a neuroblastoma cells were directly or indirectly exposed to 10 nm AgNPs using mono‐ and co‐culture system. A lipopolysaccharide (LPS) was pretreated to activate glial cells before AgNP treatment for mimicking NP exposure under brain inflammation. From mono‐culture, ALT took up the most AgNPs and had the lowest cell viability within three cells. Moreover, AgNPs induced H2O2 and NO from ALT/activated ALT and BV‐2, respectively. However, AgNPs did not induce cytokines release (IL‐6, TNF‐α, MCP‐1). LPS‐activated BV‐2 took up more AgNPs than normal BV‐2, while the induction of ROS and cytokines from activated cells were diminished. Ca2+‐regulated clathrin‐ and caveolae‐independent endocytosis and phagocytosis were involved in the AgNP uptake in ALT, which caused more rapid NP translocation to lysosome than in macropinocytosis and clathrin‐dependent endocytosis‐involved BV‐2. AgNPs directly caused apoptosis and necrosis in N2a cells, while by indirect NP exposure to bottom chamber ALT or BV‐2 in Transwell, more apoptotic upper chamber N2a cells were observed. Cell viability of BV‐2 also decreased in an ALT–BV‐2 co‐culturing study. The damaged cells correlated to NP‐mediated H2O2 release from ALT or NO from BV‐2, which indicates that toxic response of AgNPs to neurons is not direct, but indirectly arises from AgNP‐induced soluble factors from other glial cells.  相似文献   

19.
20.
《Toxicology in vitro》2014,28(7):1280-1289
The antimicrobial properties of silver nanoparticles (AgNPs) have made these particles one of the most frequently utilized nanomaterials in consumer products; therefore, a comprehensive understanding of their toxicity is necessary. In particular, information about the cellular uptake and size dependence of AgNPs is insufficient.In this study, we evaluated the size-dependent effects of AgNPs by treating the human LoVo cell line, an intestinal epithelium model, with spherical AgNPs of well-defined sizes (10, 20, 40, 60 and 100 nm). The cellular uptake was visualized by confocal laser scanning microscopy, and various cytotoxicity parameters were analyzed in a size- and dose-dependent manner. In addition, the cellular proteomic response to 20 and 100 nm AgNPs was investigated to increase the understanding of potential mechanisms of action. Our data indicated that cellular uptake and toxicity were regulated by size; smaller particles easily penetrated the cells, and 100 nm particles did not. It was hypothesized that this size-dependent effect resulted from the stimulation of a signaling cascade that generated ROS and inflammatory markers, leading to mitochondrial dysfunction and subsequently inducing apoptosis. By contrast, the cell proliferation, was independent of AgNPs particle size, indicating a differentially regulated, ROS-independent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号