首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The development of mouse/human chimeras through the engraftment of human immune cells and tissues into immunodeficient mice, including the recently described humanized BLT (bone marrow, liver, thymus) mouse model, holds great promise to facilitate the in vivo study of human immune responses. However, little data exist regarding the extent to which cellular immune responses in humanized mice accurately reflect those seen in humans. We infected humanized BLT mice with HIV-1 as a model pathogen and characterized HIV-1-specific immune responses and viral evolution during the acute phase of infection. HIV-1-specific CD8(+) T cell responses in these mice were found to closely resemble those in humans in terms of their specificity, kinetics, and immunodominance. Viral sequence evolution also revealed rapid and highly reproducible escape from these responses, mirroring the adaptations to host immune pressures observed during natural HIV-1 infection. Moreover, mice expressing the protective HLA-B*57 allele exhibited enhanced control of viral replication and restricted the same CD8(+) T cell responses to conserved regions of HIV-1 Gag that are critical to its control of HIV-1 in humans. These data reveal that the humanized BLT mouse model appears to accurately recapitulate human pathogen-specific cellular immunity and the fundamental immunological mechanisms required to control a model human pathogen, aspects critical to the use of a small-animal model for human pathogens.  相似文献   

2.
Humanized mouse models have been developed to study cell-mediated immune responses to human pathogens in vivo. How immunocompetent human T cells are selected in a murine thymus in such humanized mice remains poorly explored. To gain insights into this mechanism, we investigated the differentiation of human immune compartments in mouse MHC class II-deficient immune-compromised mice (humanized Ab0 mice). We observed a strong reduction in human CD4+ T-cell development but despite this reduction Ab0 mice had no disadvantage during Epstein–Barr virus (EBV) infection. Viral loads were equally well controlled in humanized Ab0 mice compared to humanized NSG mice, and improved T-cell recognition of autologous EBV-transformed B cells was observed, especially with respect to cytotoxicity. MHC class II blocking experiments with CD4+ T cells from humanized Ab0 mice demonstrated MHC class II restriction of lymphoblastoid cell line recognition. These findings suggest that a small number of CD4+ T cells in humanized mice can be solely selected on human MHC class II molecules, presumably expressed by reconstituted human immune cells, leading to improved effector functions.  相似文献   

3.
《Immunology》2017,152(1):150-162
The humanized mouse model has been developed as a model to identify and characterize human immune responses to human pathogens and has been used to better identify vaccine candidates. In the current studies, the humanized mouse was used to determine the ability of a vaccine to affect the immune response to infection with Mycobacterium tuberculosis. Both human CD4+ and CD8+ T cells responded to infection in humanized mice as a result of infection. In humanized mice vaccinated with either BCG or with CpG‐C, a liposome‐based formulation containing the M. tuberculosis antigen ESAT‐6, both CD4 and CD8 T cells secreted cytokines that are known to be required for induction of protective immunity. In comparison to the C57BL/6 mouse model and Hartley guinea pig model of tuberculosis, data obtained from humanized mice complemented the data observed in the former models and provided further evidence that a vaccine can induce a human T‐cell response. Humanized mice provide a crucial pre‐clinical platform for evaluating human T‐cell immune responses in vaccine development against M. tuberculosis.  相似文献   

4.
Few rodent models of human immunodeficiency virus type one (HIV-1) infection can reflect the course of viral infection in humans. To this end, we investigated the relationships between progressive HIV-1 infection, immune compromise, and neuroinflammatory responses in NOD/scid-IL-2Rγ(c)(null) mice reconstituted with human hematopoietic CD34(+) stem cells. Human blood-borne macrophages repopulated the meninges and perivascular spaces of chimeric animals. Viral infection in lymphoid tissue led to the accelerated entry of human cells into the brain, marked neuroinflammation, and HIV-1 replication in human mononuclear phagocytes. A meningitis and less commonly an encephalitis followed cM-T807 antibody-mediated CD8(+) cell depletion. We conclude that HIV-1-infected NOD/scid-IL-2Rγ(c)(null) humanized mice can, at least in part, recapitulate lentiviral neuropathobiology. This model of neuroAIDS reflects the virological, immunological, and early disease-associated neuropathological components of human disease.  相似文献   

5.
Immune responses to Epstein–Barr virus (EBV) infection synergize with the main genetic risk factor HLA-DRB1*15:01 (HLA-DR15) to increase the likelihood to develop the autoimmune disease multiple sclerosis (MS) at least sevenfold. In order to gain insights into this synergy, we investigated HLA-DR15 positive human immune compartments after reconstitution in immune-compromised mice (humanized mice) with and without EBV infection. We detected elevated activation of both CD4+ and CD8+ T cells in HLA-DR15 donor-reconstituted humanized mice at steady state, even when compared to immune compartments carrying HLA-DRB1*04:01 (HLA-DR4), which is associated with other autoimmune diseases. Increased CD8+ T cell expansion and activation was also observed in HLA-DR15 donor-reconstituted humanized mice after EBV infection. Despite this higher immune activation, EBV viral loads were less well controlled in the context of HLA-DR15. Indeed, HLA-DR15-restricted CD4+ T cell clones recognized EBV-transformed B cell lines less efficiently and demonstrated cross-reactivity toward allogeneic target cells and one MS autoantigen. These findings suggest that EBV as one of the main environmental risk factors and HLA-DR15 as the main genetic risk factor for MS synergize by priming hyperreactive T-cell compartments, which then control the viral infection less efficiently and contain cross-reactive CD4+ T cell clones.  相似文献   

6.
FoxP3+CD4+CD25+ regulatory T (Treg) cells are implicated in a number of pathologic processes including elevated levels in cancers and infectious diseases, and reduced levels in autoimmune diseases. Treg cells are activated to modulate immune responses to avoid over-reactive immunity. However, conflicting findings are reported regarding relative levels of Treg cells during HIV-1 infection and disease progression. The role of Treg cells in HIV-1 diseases (aberrant immune activation) is poorly understood due to lack of a robust model. We summarize here the regulation and function of Foxp3 in Treg cells and in modulating HIV-1 replication. Based on recent findings from SIV/monkey and HIV/humanized mouse models, a model of the dual role of Treg cells in HIV-1 infection and immuno-pathogenesis is discussed.  相似文献   

7.

The lack of relevant animal models is the major bottleneck for understanding human immunology and immunopathology. In the last few years, a novel model of humanized mouse has been successfully employed to investigate some of the most critical questions in human immunology. We have set up and tested in our laboratory the latest technology for generating mice with a human immune system by reconstituting newborn immunodeficient NOD/SCID-γ −/−c mice with human fetal liver-derived hematopoietic stem cells. These humanized mice have been deemed most competent as human models in a thorough comparative study with other humanized mouse technologies. Lymphocytes in these mice are of human origin while other hematopoietic cells are chimeric, partly of mouse and partly of human origin. We demonstrate that human CD8 T lymphocytes in humanized mice are fully responsive to our novel cell-based secreted heat shock protein gp96HIV-Ig vaccine. We also show that the gp96HIV-Ig vaccine induces powerful mucosal immune responses in the rectum and the vagina, which are thought to be required for protection from HIV infection. We posit the hypothesis that vaccine approaches tested in humanized mouse models can generate data rapidly, economically and with great flexibility (genetic manipulations are possible), to be subsequently tested in larger nonhuman primate models and humans.

  相似文献   

8.
NOD/LtSz-prkdc(scid)/prkdc(scid) (non-obese diabetic-severe combine immunodeficiency; NOD-scid) mice grafted with human peripheral blood lymphoid cells have been used as an in vivo humanized mouse model in various studies. However, cytotoxic human T cells are induced in this model during immune responses, which gives misleading results. To assist in grafting of human lymphocytes without the induction of cytotoxic human T cells, we investigated the effects of T helper type 1 (Th1) and Th2 cytokines on human lymphocyte grafting and migration, as well as the production of immunoglobulin deposited in glomeruli and human immunodeficiency virus-1 (HIV-1) infection using NOD-scid mice. Administration of interleukin-18 (IL-18) and IL-12 enhanced the grafting of human CD4+ and CD8+ T cells in the mice, whereas co-administration prevented grafting due to interferon-gamma-dependent apoptosis. Immunoglobulin A (IgA) deposits were observed in mice treated with IL-18 alone, but not in those given phosphate-buffered saline, IL-12 alone, or IL-18 + IL-12. A high rate of HIV infection was also observed in the IL-18-treated group. Together, these results indicate that IL-18 may be effective for the grafting and migration of CD4+ and CD8+ T cells, except for the induction of apoptosis and regulation of class-switching IgA. IL-18-administered NOD-scid mice provide a useful small humanized model for the study of HIV infection and IgA nephropathy.  相似文献   

9.
Small animal models with functional human lymphohematopoietic systems are highly valuable for the study of human immune function under physiological and pathological conditions. Over the last two decades, numerous efforts have been devoted towards the development of such humanized mouse models. This review is focused on human lymphohematopoietic reconstitution and immune function in humanized mice by cotransplantation of human fetal thymic tissue and CD34+ cells. The potential use of these humanized mice in translational biomedical research is also discussed.  相似文献   

10.
HIV-1 infection is characterized by life-long viral persistence and continued decline of helper CD4 T cells. The new generation of humanized mouse models that encompass RAG-hu, hNOG and BLT mice have been shown to be susceptible to HIV-1 infection and display CD4 T cell loss. Productive infection has been demonstrated with both R5 and X4 tropic strains of HIV-1 via direct injection as well as mucosal exposure. However the duration of infection in these mice was evaluated for a limited time lasting only weeks post infection, and it is not established how long the viremia can be sustained, and if the CD4 T cell loss persists throughout the life of the infected humanized mice. In the present study we followed the HIV-1 infected RAG-hu mice to determine the long-term viral persistence and CD4 T cell levels. Our results showed that viremia persists life-long lasting for more than a year, and that CD4 T cell levels display a continuous declining trend as seen in the human. These studies provide a chronic HIV-1 infection humanized mouse model that can be used to dissect viral latency, long-term drug evaluation and immune-based therapies.  相似文献   

11.
More than a quarter of a century of research has established chronic immune activation and dysfunctional T cells as central features of chronic HIV infection and subsequent immunodeficiency. Consequently, the search for a new immunomodulatory therapy that could reduce immune activation and improve T‐cell function has been increased. However, the lack of small animal models for in vivo HIV study has hampered progress. In the current study, we have investigated a model of cord blood haematopoietic progenitor cells (CB‐HPCs) ‐transplanted humanized NOD/LtsZ‐scidIL‐2Rγnull mice in which progression of HIV infection is associated with widespread chronic immune activation and inflammation. Indeed, HIV infection in humanized NSG mice caused up‐regulation of several T‐cell immune activation markers such as CD38, HLA‐DR, CD69 and co‐receptor CCR5. T‐cell exhaustion markers PD‐1 and CTLA‐4 were found to be significantly up‐regulated on T cells. Moreover, increased plasmatic levels of lipopolysaccharide, sCD14 and interleukin‐10 were also observed in infected mice. Treatment with minocycline resulted in a significant decrease of expression of cellular and plasma immune activation markers, inhibition of HIV replication and improved T‐cell counts in HIV‐infected humanized NSG mice. The study demonstrates that minocycline could be an effective, low‐cost adjunctive treatment to regulate chronic immune activation and replication of HIV.  相似文献   

12.
The murine immune system is not necessarily identical to it human counterpart, which has led to the construction of humanized mice. The current study analysed whether or not a human immune system contained within the non‐obese diabetic (NOD)‐Rag1null‐γ chainnull (NRG) mouse model was an accurate representation of the original stem cell donor and if multiple mice constructed from the same donor were similar to one another. To that end, lightly irradiated NRG mice were injected intrahepatically on day 1 of life with purified cord blood‐derived CD34+ stem and progenitor cells. Multiple mice were constructed from each cord blood donor. Mice were analysed quarterly for changes in the immune system, and followed for periods up to 12 months post‐transplant. Mice from the same donor were compared directly with each other as well as with the original donor. Analyses were performed for immune reconstitution, including flow cytometry, T cell receptor (TCR) and B cell receptor (BCR) spectratyping. It was observed that NRG mice could be ‘humanized’ long‐term using cord blood stem cells, and that animals constructed from the same cord blood donor were nearly identical to one another, but quite different from the original stem cell donor immune system.  相似文献   

13.
An elaborate network of cell–cell interactions in the immune system is essential for vertebrates to mount adaptive immune responses against invading pathogens. For lymphotropic viruses such as the human immunodeficiency virus type 1 (HIV-1), these immune cell interactions can also promote the spread of the virus within the host. The main target of HIV-1 infection is the CD4+ helper T lymphocyte, a cell type that is responsible for coordinating immune responses and modulating effector responses to foreign antigens. As part of their normal immune surveillance duties, these cells migrate actively within lymphoid tissues and can travel from inductive sites to effector sites in search of their cognate antigen. For CD4+ T cells, there is an ongoing search for a unique peptide antigen presented in the context of class II MHC that can activate a proliferative or tolerogenic response. This iterative and continual probing and interrogation of other cells determine the outcome of immune responses. Recent studies in vitro have revealed that the viral infection program induces cell–cell interactions called virological synapses between infected and uninfected CD4+ T cells. These long-lived, virally induced adhesive contacts greatly enhance the rate of productive infection and may be central to the spread of the virus in vivo. Here, we review aspects of this efficient mode of cell-to-cell infection and the implications for our understanding of HIV-1 pathogenesis.  相似文献   

14.
To investigate the events leading to the depletion of CD4+ T lymphocytes during long-term infection of human immunodeficiency virus type 1 (HIV-1), we infected human CD34+ cells-transplanted NOD/SCID/IL-2Rγnull mice with CXCR4-tropic and CCR5-tropic HIV-1. CXCR4-tropic HIV-1-infected mice were quickly depleted of CD4+ thymocytes and both CD45RA+ naïve and CD45RA memory CD4+ T lymphocytes, while CCR5-tropic HIV-1-infected mice were preferentially depleted of CD45RA memory CD4+ T lymphocytes. Staining of HIV-1 p24 antigen revealed that CCR5-tropic HIV-1 preferentially infected effector memory T lymphocytes (TEM) rather than central memory T lymphocytes. In addition, the majority of p24+ cells in CCR5-tropic HIV-1-infected mice were activated and in cycling phase. Taken together, our findings indicate that productive infection mainly takes place in the activated TEM in cycling phase and further suggest that the predominant infection in TEM would lead to the depletion of memory CD4+ T lymphocytes in CCR5-tropic HIV-1-infected mice.  相似文献   

15.
The diversity of the human immune repertoire and how it relates to a functional immune response has not yet been studied in detail in humanized NOD.SCID.γc?/? immunodeficient mice. Here, we used a multiplex PCR on genomic DNA to quantify the combinatorial diversity of all possible V–J rearrangements at the TCR‐β chain and heavy chain Ig locus. We first show that the combinatorial diversity of the TCR‐β chain generated in the thymus was well preserved in the periphery, suggesting that human T cells were not vastly activated in mice, in agreement with phenotypic studies. We then show that the combinatorial diversity in NOD.SCID.γc?/? mice reached 100% of human reference samples for both the TCR and the heavy chain of Ig. To document the functionality of this repertoire, we show that a detectable but weak HLA‐restricted cellular immune response could be elicited in reconstituted mice after immunization with an adenoviral vector expressing HCV envelope glycoproteins. Altogether, our results suggest that humanized mice express a diversified repertoire and are able to mount antigen‐specific immune responses.  相似文献   

16.
HIV-1 and the hijacking of dendritic cells: a tug of war   总被引:4,自引:0,他引:4  
Dendritic cells are critical for host immunity and are involved both in the innate and adaptive immune responses. They are among the first cells targeted by HIV-1 in vivo at mucosal sites. Dendritic cells can sequester HIV-1 in endosomal compartments for several days and transmit infectious HIV-1 to interacting T cells in the lymph node, which is the most important site for viral replication and spread. Initially, the cellular immune response developed against HIV-1 is strong, but eventually it fails to control and resolve the infection. The most dramatic effect seen on the immune system during untreated HIV-1 infection is the destruction of helper CD4+ T cells, which leads to subsequent immune deficiency. However, the immunomodulatory effects of HIV-1 on different dendritic cell subpopulations may also play an important role in the pathogenesis of HIV-1. This review discusses the effects HIV-1 exerts on dendritic cells in vivo and in vitro, including the binding and uptake of HIV by dendritic cells, the formation of infectious synapses, infection, and the role of dendritic cells in HIV-1 pathogenesis.  相似文献   

17.
Humanized mouse models of HIV infection   总被引:1,自引:0,他引:1  
Denton PW  García JV 《AIDS reviews》2011,13(3):135-148
Because of the limited tropism of HIV, in vivo modeling of this virus has been almost exclusively limited to other lentiviruses, such as simian immunodeficiency virus, that reproduce many important characteristics of HIV infection. However, there are significant genetic and biological differences among lentiviruses and some HIV-specific interventions are not effective against other lentiviruses in nonhuman hosts. For these reasons, much emphasis has recently been placed on developing alternative animal models that support HIV replication and recapitulate key aspects of HIV infection and pathogenesis in humans. Humanized mice, CD34+ hematopoietic progenitor cell transplanted immunodeficient mice, and in particular mice also implanted with human thymus/liver tissue (bone marrow liver thymus mice) that develop a functional human immune system, have been the focus of a great deal of attention as possible models to study virtually all aspects of HIV biology and pathogenesis. Humanized mice are systemically reconstituted with human lymphoid cells, offering rapid, reliable, and reproducible experimental systems for HIV research. Peripheral blood of humanized mice can be readily sampled longitudinally to assess reconstitution with human cells and to monitor HIV replication, permitting the evaluation of multiple parameters of HIV infection such as viral load levels, CD4+ T-cell depletion, immune activation, as well as the effects of therapeutic interventions. Of high relevance to HIV transmission is the extensive characterization and validation of the reconstitution with human lymphoid cells of the female reproductive tract and of the gastrointestinal tract of humanized bone marrow liver thymus mice that renders them susceptible to both vaginal and rectal HIV infection. Other important attributes of all types of humanized mice include: (i) their small size and cost that make them widely accessible; (ii) multiple cohorts of humanized mice can be made from multiple human donors and each cohort has identical human cells, permitting control of intragenetic variables; (iii) continuous de novo production of human immune cells from the transplanted CD34+ cells within each humanized mouse facilitates long-term experiments; (iv) both primary and laboratory HIV isolates can be used for experiments; and (v) in addition to therapeutic interventions, rectal and vaginal HIV prevention approaches can be studied. In summary, humanized mice can have an important role in virtually all aspects of HIV research, including the analysis of HIV replication, the evaluation of HIV restriction factors, the characterization of successful biomedical HIV prevention strategies, the evaluation of new treatment regimens, and the evaluation of novel HIV eradication strategies.  相似文献   

18.
Chronic HCV infection can lead to cirrhosis and is associated with increased mortality. Interleukin (IL)-10-producing B cells (B10 cells) are regulatory cells that suppress cellular immune responses. Here, we aimed to determine whether HCV induces B10 cells and assess the roles of the B10 cells during HCV infection. HCV-induced B10 cells were enriched in CD19hi and CD1dhiCD5+ cell populations. HCV predominantly triggered the TLR2-MyD88-NF-κB and AP-1 signaling pathways to drive IL-10 production by B cells. In a humanized murine model of persistent HCV infection, to neutralize IL-10 produced by B10 cells, mice were treated with pcCD19scFv-IL-10R, which contains the genes coding the anti-CD19 single-chain variable fragment (CD19scFv) and the extracellular domain of IL-10 receptor alpha chain (sIL-10Ra). This treatment resulted in significant reduction of B10 cells in spleen and liver, increase of cytotoxic CD8+ T-cell responses against HCV, and low viral loads in infected humanized mice. Our results indicate that targeting B10 cells via neutralization of IL-10 may offer a novel strategy to enhance anti-HCV immunotherapy.  相似文献   

19.
Studies on HIV-1 mucosal transmission to evaluate early events in pathogenesis and the development of effective preventive/prophylactic methods have thus far been hampered by the lack of a suitable animal model susceptible to HIV-1 infection by either vaginal and/or rectal routes. In this regard, while primate-SIV/SHIV and cat-FIV models provided useful surrogate platforms to derive comparative data, these viruses are distinct and different from that of HIV-1. Therefore an optimal model that permits direct study of HIV-1 transmission via mucosal routes is highly desirable. The new generation of humanized NOD/SCID BLT, NOD/SCIDgammac(-/-), and Rag2(-/-)gammac(-/-) mouse models show great promise to achieve this goal. Here, we show that humanized Rag2(-/-)gammac(-/-) mice (RAG-hu) engrafted with CD34 hematopoietic progenitor cells harbor HIV-1-susceptible human cells in the rectal and vaginal mucosa and are susceptible to HIV-1 infection when exposed to cell-free HIV-1 either via vagina or rectum. Infection could be established without any prior hormonal conditioning or mucosal abrasion. Both R5 and X4 tropic viruses were capable of mucosal infection resulting in viremia and associated helper T cell depletion. There was systemic spread of the virus with infected cells detected in different organs including the intestinal mucosa. R5 virus was highly efficient in mucosal transmission by both routes whereas X4 virus was relatively less efficient in causing infection. HIV-1 infection of RAG-hu mice by vaginal and rectal routes as shown here represents the first in vivo model of HIV-1 transmission across intact mucosal barriers and as such may prove very useful for studying early events in HIV-1 pathogenesis in vivo, as well as the testing of microbicides, anti-HIV vaccines/therapeutics, and other novel strategies to prevent HIV-1 transmission.  相似文献   

20.
Schistosome infection induces significant T helper type 2 (Th2) and anti-inflammatory immune responses and has been shown to negatively impact vaccine efficacy. Our goal was to determine if the administration of schistosome soluble egg antigens (SEA) would negatively influence the induction of cytotoxic T lymphocyte (CTL) and Th1-type T cell responses to an HIV candidate vaccine in the Th1-biased C57BL/6 mouse strain. Initial experiments failed, as we were unable to detect any response to the defined class I epitope for HIV-1 IIIB Gag. Therefore, we initiated an epitope mapping study to identify C57BL/6 (H-2b) T cell epitopes in HIV-1 IIIB Gag in order to perform the experiments. This analysis defined two previously unreported minimal class I H-2b and class II I-Ab epitopes for HIV-1 IIIB Gag. The newly defined HIV-1 IIIB Gag epitopes were used to evaluate the influence of SEA on the generation of CTL and Th1-type HIV-1 IIIB Gag responses. Surprisingly, in contrast to our hypothesis, we observed that the coadministration of SEA with a Listeria monocytogenes vector expressing HIV-1 IIIB Gag (Lm-Gag) led to a significantly increased frequency of gamma interferon (IFN-γ)-producing CD8+ and CD4+ T cells in C57BL/6 mice compared to mice immunized with Lm-Gag only. These observations suggest that SEA contains, in addition to Th2-type and immune-suppressive molecules, substances that can act with the Lm-Gag vaccine to increase CTL and Th1-type vaccine-specific immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号