首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-linked hypophosphatemia (XLH) is caused by mutations in the PHEX gene, which increase circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Because XLH is a dominant disease, one mutant allele is sufficient for manifestation of the disease. However, the dosage effect of a PHEX mutation in XLH is not completely understood. To examine the effect of Phex genotypes, we compared serum biochemistries and skeletal measures between all five possible genotypes of a new murine model of XLH (Phex K496X or Phex Jrt ). Compared to sex-matched littermate controls, all Phex mutant mice had hypophosphatemia, mild hypocalcemia, and increased parathyroid hormone and alkaline phosphatase levels. Furthermore, mutant mice had markedly elevated serum Fgf23 levels due to increased Fgf23 expression and reduced cleavage of Fgf23. Although females with a homozygous Phex mutation were slightly more hypocalcemic and hypophosphatemic than heterozygous females, the two groups had comparable intact Fgf23 levels. Similarly, there was no difference in intact Fgf23 or phosphorus concentrations between hemizygous males and heterozygous females. Compared to heterozygous females, homozygous counterparts were significantly smaller and had shorter femurs with reduced bone mineral density, suggesting the existence of dosage effect in the skeletal phenotype of XLH. However, overall phenotypic trends in regards to mineral ion homeostasis were mostly unaffected by the presence of one or two mutant Phex allele(s). The lack of a gene dosage effect on circulating Fgf23 (and thus phosphorus) levels suggests that a Phex mutation may create the lower set point for extracellular phosphate concentrations.  相似文献   

2.
X-linked hypophosphatemia (XLH), a disorder characterized by hypophosphatemia, impaired skeletal mineralization, and aberrant regulation of 1, 25(OH)(2)D(3), is caused by inactivating mutations of Phex, which results in the accumulation of putative phosphaturic factors, called phosphatonins. Matrix extracellular phosphoglycoprotein (Mepe) is a proposed candidate for phosphatonin. The authors found that Hyp mice had increased expression of the MEPE and another phosphaturic factor, Fgf23. To establish MEPE's role in the pathogenesis of the XLH, Mepe-deficient mice were back-crossed onto the Hyp mouse homologue of XLH and phenotypes of wild-type, Mepe(-/-), Hyp, and Mepe(-/-)/Hyp mice were examined. Transfer of Mepe deficiency onto the Phex-deficient Hyp mouse background failed to correct hypophosphatemia and aberrant serum 1,25(OH)(2)D(3) levels. Increased Fgf23 levels in Hyp mice were not affected by superimposed Mepe deficiency. In addition, Mepe-deficient Hyp mice retained bone mineralization defects in vivo, characterized by decreased bone mineral density, reduced mineralized trabecular bone volume, lower flexural strength, and histologic evidence of osteomalacia; however, cultures of Hyp-derived bone marrow stromal cells in the absence of Mepe showed improved mineralization and normalization of osteoblast gene expression profiles observed in cells derived from Mepe-null mice. These results demonstrate that MEPE elevation in Hyp mice does not contribute to the hypophosphatemia associated with inactivating Phex mutations and is therefore not phosphatonin.  相似文献   

3.
Investigation of X-linked hypophosphatemia (XLH) has led to the identification of a novel phosphate-regulating homeostatic system. Initially considered vitamin D-refractory rickets, renal phosphate wasting was identified as the cardinal biochemical feature of XLH and several related disorders. Current therapy employs calcitriol and phosphate, which usually improves, but does not completely heal deformities and short stature. Later complications of XLH include development of osteophytes, entheses, and osteoarthritis. The mutated gene in XLH, PHEX, is expressed in osteocytes, but its role in the pathogenesis of phosphate wasting is poorly understood. Many hypophosphatemic disorders are mediated by FGF23, a unique fibroblast growth factor with endocrine properties. Renal action of FGF23 leads to reduced expression of type II sodium-phosphate co-transporters, as well as reduced expression of CYP27B1, which encodes vitamin D 1α-hydroxylase. FGF23-mediated hypophosphatemia is characterized by inappropriately normal circulating 1,25-dihydroxyvitamin D together with renal phosphate wasting. The FGF23 system serves as a novel mechanism by which the mineralizing skeleton can communicate phosphate supply to the kidney and thereby mediate excretion or conservation of this important skeletal component. Other forms of FGF23-mediated hypophosphatemia represent various aberrations in this axis. Secretion of excess FGF23 (as in tumor-induced osteomalacia), and mutations preventing proteolytic cleavage of FGF23 result in similar clinical features. Other hypophosphatemic disorders are discussed.  相似文献   

4.
XLH in humans and the Hyp phenotype in mice are caused by inactivating Phex mutations. Overexpression of human PHEX under the human beta-actin promoter in Hyp mice rescued the bone phenotype almost completely, but did not affect phosphate homeostasis, suggesting that different, possibly independent, pathophysiological mechanisms contribute to hyperphosphaturia and bone abnormalities in XLH. INTRODUCTION: Mutations in PHEX, a phosphate-regulating gene with homologies to endopeptidases on the X chromosome, are responsible for X-linked hypophosphatemia (XLH) in humans, and its mouse homologs, Hyp, Phex(Hyp-2J), Phex(Hyp-Duk), Gy, and Ska1. PHEX is thought to inactivate a phosphaturic factor, which may be fibroblast growth factor 23 (FGF)-23. Consistent with this hypothesis, FGF-23 levels were shown to be elevated in most patients with XLH and in Hyp mice. The aim of this study was, therefore, to examine whether transgenic overexpression of PHEX under the human beta-actin promoter would rescue the Hyp phenotype. MATERIALS AND METHODS: We tested this hypothesis by generating two mouse lines expressing human PHEX under the control of a human beta-actin promoter (PHEX-tg). With the exception of brain, RT-PCR analyses showed transgene expression in all tissues examined. PHEX protein, however, was only detected in bone, muscle, lung, skin, and heart. To assess the role of the mutant PHEX, we crossed female heterozygous Hyp mice with male heterozygous PHEX-tg mice to obtain wildtype (WT), PHEX-tg, Hyp, and Hyp/PHEX-tg offspring, which were examined at 3 months of age. RESULTS: PHEX-tg mice exhibited normal bone and mineral ion homeostasis. Hyp mice showed the known phenotype with reduced body weight, hypophosphatemia, hyperphosphaturia, and rickets. Hyp/PHEX-tg mice had almost normal body weight relative to WT controls, showed a dramatic improvement in femoral BMD, almost normal growth plate width, and, despite remaining disturbances in bone mineralization, almost normal bone architecture and pronounced improvements of osteoidosis and of halo formation compared with Hyp mice. However, Hyp and Hyp/PHEX-tg mice had comparable reductions in tubular reabsorption of phosphate and were hypophosphatemic relative to WT controls. CONCLUSION: Our data suggest that different, possibly independent, pathophysiological mechanisms contribute to renal phosphate wasting and bone abnormalities in Hyp and XLH.  相似文献   

5.
X-linked hypophosphatemia (XLH), caused by a loss-of-function mutation in the phosphate regulating gene with homology to endopeptidase located on the X chromosome (PHEX), is the most common form of vitamin D-resistant rickets. Loss of functional PHEX results in elevated fibroblast growth factor 23 (FGF23) levels, impaired phosphate reabsorption, and inhibited skeletal mineralization. Sclerostin, a protein produced primarily in osteocytes, suppresses bone formation by antagonizing Wnt signaling and is reported to be elevated in XLH patients. This study used the Hyp mouse model to investigate sclerostin's role in the pathophysiology of XLH by evaluating the use of a monoclonal antibody to sclerostin in a mouse model of XLH, the Hyp mouse. Male and female wild-type and Hyp littermates were injected with 25 mg/kg of vehicle or sclerostin antibody (Scl-Ab) twice weekly, beginning at 4 weeks of age and euthanized at 8 weeks of age. Scl-Ab treatment increased serum phosphate levels and suppressed circulating levels of intact FGF23 in treated wild-type and Hyp mice of both sexes. Cortical area, trabecular bone volume fraction (BV/TV), metaphyseal apparent density, and the peak load increased with Scl-Ab treatment in both sexes. This short-term treatment study suggests that Scl-Ab treatment can effectively improve some of the pathologies associated with XLH, including normalization of phosphate, and that sclerostin may play a role in regulating FGF23 and phosphate metabolism in XLH. © 2019 American Society for Bone and Mineral Research.  相似文献   

6.
The transgenic and knockout (KO) animals involving Fgf23 have been highly informative in defining novel aspects of mineral metabolism, but are limited by shortened lifespan, inability of spatial/temporal FGF23 control, and infertility of the global KO. To more finely test the role of systemic and genetic influences in FGF23 production, a mouse was developed that carried a floxed (“f”)‐Fgf23 allele (exon 2 floxed) which demonstrated in vivo recombination when bred to global‐Cre transgenic mice (eIIa‐cre). Mice homozygous for the recombined allele (“Δ”) had undetectable serum intact FGF23, elevated serum phosphate (p < 0.05), and increased kidney Cyp27b1 mRNA (p < 0.05), similar to global Fgf23‐KO mice. To isolate cellular FGF23 responses during phosphate challenge, Fgf23Δ/f mice were mated with early osteoblast type Iα1 collagen 2.3‐kb promoter‐cre mice (Col2.3‐cre) and the late osteoblast/early osteocyte Dentin matrix protein‐1‐cre (Dmp1‐cre). Fgf23Δ/f/Col2.3‐cre+ and Fgf23Δ/f/Dmp1‐cre+ exhibited reduced baseline serum intact FGF23 versus controls. After challenge with high‐phosphate diet Cre mice had 2.1‐fold to 2.5‐fold increased serum FGF23 (p < 0.01), but Col2.3‐cre+ mice had no significant increase, and Dmp1‐cre+ mice had only a 37% increase (p < 0.01) despite prevailing hyperphosphatemia in both models. The Fgf23Δ/f/Col2.3‐cre was bred onto the Hyp (murine X‐linked hypophosphatemia [XLH] model) genetic background to test the contribution of osteoblasts and osteocytes to elevated FGF23 and Hyp disease phenotypes. Whereas Hyp mice maintained inappropriately elevated FGF23 considering their marked hypophosphatemia, Hyp/Fgf23Δ/f/Col2.3‐cre+ mice had serum FGF23 <4% of Hyp (p < 0.01), and this targeted restriction normalized serum phosphorus and ricketic bone disease. In summary, deleting FGF23 within early osteoblasts and osteocytes demonstrated that both cell types contribute to baseline circulating FGF23 concentrations, and that targeting osteoblasts/osteocytes for FGF23 production can modify systemic responses to changes in serum phosphate concentrations and rescue the Hyp genetic syndrome. © 2016 American Society for Bone and Mineral Research.  相似文献   

7.
《BONE》2013,55(2):213-221
Although recent studies have established that osteocytes function as secretory cells that regulate phosphate metabolism, the biomolecular mechanism(s) underlying these effects remain incompletely defined. However, investigations focusing on the pathogenesis of X-linked hypophosphatemia (XLH), autosomal dominant hypophosphatemic rickets (ADHR), and autosomal recessive hypophosphatemic rickets (ARHR), heritable disorders characterized by abnormal renal phosphate wasting and bone mineralization, have clearly implicated FGF23 as a central factor in osteocytes underlying renal phosphate wasting, documented new molecular pathways regulating FGF23 production, and revealed complementary abnormalities in osteocytes that regulate bone mineralization. The seminal observations leading to these discoveries were the following: 1) mutations in FGF23 cause ADHR by limiting cleavage of the bioactive intact molecule, at a subtilisin-like protein convertase (SPC) site, resulting in increased circulating FGF23 levels and hypophosphatemia; 2) mutations in DMP1 cause ARHR, not only by increasing serum FGF23, albeit by enhanced production and not limited cleavage, but also by limiting production of the active DMP1 component, the C-terminal fragment, resulting in dysregulated production of DKK1 and β-catenin, which contributes to impaired bone mineralization; and 3) mutations in PHEX cause XLH both by altering FGF23 proteolysis and production and causing dysregulated production of DKK1 and β-catenin, similar to abnormalities in ADHR and ARHR, but secondary to different central pathophysiological events. These discoveries indicate that ADHR, XLH, and ARHR represent three related heritable hypophosphatemic diseases that arise from mutations in, or dysregulation of, a single common gene product, FGF23 and, in ARHR and XLH, complimentary DMP1 and PHEX directed events that contribute to abnormal bone mineralization.This article is part of a Special Issue entitled "The Osteocyte".  相似文献   

8.
Serum FGF23 levels in normal and disordered phosphorus homeostasis.   总被引:12,自引:0,他引:12  
We investigated if the circulating levels of the phosphaturic factor FGF23 are elevated in subjects with XLH. Although we failed to find a statistically significant increase, FGF23 levels were significantly correlated with the degree of hypophosphatemia in XLH. In contrast, FGF23 levels were markedly increased in subjects with ESRD and correlated inversely with the degree of hyperphosphatemia. INTRODUCTION: Inactivating mutations of PHEX cause renal phosphate wasting in X-linked hypophosphatemic rickets (XLH) because of the accumulation of a phosphaturic hormone called phosphatonin. The recent discovery that FGF23 is the circulating phosphaturic factor in autosomal dominant hypophosphatemia raises the possibility that FGF23 is phosphatonin. METHODS: Fasting serum FGF23 levels and serum biochemical parameters were measured using a human FGF23 (C-terminal) ELISA assay in 11 subjects with XLH and 42 age-matched controls, 5 subjects with hypophosphatemia of unknown cause, and 14 hyperphosphatemic subjects with end stage renal disease (ESRD). Associations between variables were examined using the Spearman's correlation coefficient and linear regression analysis. RESULTS AND CONCLUSIONS: FGF23 (RU/ml) concentrations were not different (p = 0.11) between control and hypophosphatemic XLH subjects, but were significantly increased in hyperphosphatemic subjects with ESRD (p < 0.001). Western blot analysis found the presence of both full-length and C-terminal FGF23 fragments in serum from ESRD subjects. There was a strong inverse correlation between FGF23 and serum phosphorus (r = -0.60) and calcium and phosphorus (Ca x P) product (r = -0.65) in XLH, and a strong positive relationship between FGF23 and Pi (r = 0.50) and Ca x P product (r = 0.62) in ESRD. FGF23 levels were variably elevated in subjects with hypophosphatemia of unknown cause, one of which had tumor-induced osteomalacia (TIO). Removal of the tumor resulted in rapid reduction in serum FGF23 levels. These findings suggest that FGF23 has a possible role in mediating hypophosphatemia in XLH and TIO, but the overlapping levels of FGF23 in hypophosphatemic disorders and normal subjects indicate that serum phosphorus and FGF23 can also be independently regulated.  相似文献   

9.
X‐linked hypophosphatemia (XLH), characterized by renal phosphate wasting, is the most common cause of vitamin D‐resistant rickets. It has been postulated that some phosphaturic factor plays a causative role in XLH and its murine homolog, the Hyp mouse. Fibroblast growth factor 23 (FGF23) is a physiological phosphaturic factor; its circulatory level is known to be high in most patients with XLH and Hyp mice, suggesting its pathophysiological role in this disease. To test this hypothesis, we treated Hyp mice with anti‐FGF23 antibodies to inhibit endogenous FGF23 action. A single injection of the antibodies corrected the hypophosphatemia and inappropriately normal serum 1,25‐dihydroxyvitamin D. These effects were accompanied by increased expressions of type IIa sodium‐phosphate cotransporter and 25‐hydroxyvitamin‐D‐1α‐hydroxylase and a suppressed expression of 24‐hydroxylase in the kidney. Repeated injections during the growth period ameliorated the rachitic bone phenotypes typically observed in Hyp mice, such as impaired longitudinal elongation, defective mineralization, and abnormal cartilage development. Thus, these results indicate that excess actions of FGF23 underlie hypophosphatemic rickets in Hyp mice and suggest a novel therapeutic potential of the FGF23 antibodies for XLH.  相似文献   

10.
Yu X  Sabbagh Y  Davis SI  Demay MB  White KE 《BONE》2005,36(6):971-977
Fibroblast growth factor-23 (FGF23) is a circulating factor that plays critical roles in phosphate and vitamin D metabolism. The goal of our studies was to dissect the pathways directing the vitamin D–phosphate–FGF23 homeostatic axis. To test the role of diet in the regulation of Fgf23, wild-type (WT) mice were fed either a standard (0.44% phosphorus) or a low-phosphate (0.02%) diet. WT mice on standard diet had a serum phosphate of 9.5 ± 0.3 mg/dl and an Fgf23 concentration of 99.0 ± 10.6 pg/ml; mice on the low-phosphate diet had a phosphate of 5.0 ± 0.2 mg/dl (P < 0.01) and an Fgf23 of 10.6 ± 3.7 pg/ml (P < 0.01). To genetically separate the effects of phosphate and vitamin D on Fgf23, we examined vitamin D receptor null (VDR−/−) mice, which are hypocalcemic and hypophosphatemic secondary to hyperparathyroidism. On standard diets, WT and VDR+/− mice had Fgf23 levels of 106.0 ± 30.7 and 90.6 ± 17.3 pg/ml, respectively, whereas Fgf23 was undetectable in the VDR−/−. Animals were then placed on a diet that normalizes serum calcium and phosphorus. This ‘rescue’ increased Fgf23 in WT to 192.3 ± 32.5 pg/ml and in VDR+/− to 388.2 ± 89.6pg/ml, and importantly, in VDR−/− to 476.9 ± 60.1 pg/ml (P < 0.01 vs. WT). In addition, renal vitamin D 1-alpha hydroxylase (1-OHase) mRNA levels were corrected to WT levels in the VDR−/− mice. In summary, Fgf23 is suppressed in diet-induced hypophosphatemia and in hypophosphatemia associated with secondary hyperparathyroidism. Normalization of serum phosphate by diet in VDR−/− mice increases Fgf23. Thus, our results demonstrate that Fgf23 is independently regulated by phosphate and by vitamin D.  相似文献   

11.
Familial tumoral calcinosis is characterized by ectopic calcifications due to persistent hyperphosphatemia. The most common genetic cause of the disease is mutations in GALNT3, encoding a glycosyltransferase involved in a posttranslational modification of fibroblast growth factor 23 (FGF23). The Galnt3 knockout mouse we developed was hyperphosphatemic due to low intact Fgf23 levels, but did not develop any apparent calcifications on a standard rodent diet. We therefore tested the hypothesis that a further challenge with a high phosphate diet could induce ectopic calcifications in Galnt3 knockout mice. Mice were fed either normal (0.6%) or high (1.65%) phosphate diet for 20 weeks beginning from weaning at 3 weeks. The high phosphate diet did not affect serum phosphorus concentration. However, regardless of the dietary phosphate contents, serum phosphorus levels were consistently elevated in Galnt3 knockout mice. The mice on the high phosphate diet had slightly low serum calcium, but significantly high alkaline phosphatase, parathyroid hormone (PTH), and calcium in the kidney. Although none of Galnt3 knockout mice on the normal phosphate diet developed calcifications, calcifications appeared in approximately one‐half of the mice on the high phosphate diet by 12 weeks. Calcified masses were most often found around the neck and on the back and as large as 9.9 mm in length. These data indicate that dietary phosphate load has major impact on the development of ectopic calcifications in tumoral calcinosis. © 2014 American Society for Bone and Mineral Research.  相似文献   

12.
Inactivating mutations of the “phosphate regulating gene with homologies to endopeptidases on the X chromosome” (PHEX/Phex) underlie disease in patients with X‐linked hypophosphatemia (XLH) and the hyp‐mouse, a murine homologue of the human disorder. Although increased serum fibroblast growth factor 23 (FGF‐23) underlies the HYP phenotype, the mechanism(s) by which PHEX mutations inhibit FGF‐23 degradation and/or enhance production remains unknown. Here we show that treatment of wild‐type mice with the proprotein convertase (PC) inhibitor, decanoyl‐Arg‐Val‐Lys‐Arg‐chloromethyl ketone (Dec), increases serum FGF‐23 and produces the HYP phenotype. Because PC2 is uniquely colocalized with PHEX in osteoblasts/bone, we examined if PC2 regulates PHEX‐dependent FGF‐23 cleavage and production. Transfection of murine osteoblasts with PC2 and its chaperone protein 7B2 cleaved FGF‐23, whereas Signe1 (7B2) RNA interference (RNAi) transfection, which limited 7B2 protein production, decreased FGF‐23 degradation and increased Fgf‐23 mRNA and protein. The mechanism by which decreased 7B2?PC2 activity influences Fgf‐23 mRNA was linked to reduced conversion of the precursor to bone morphogenetic protein 1 (proBMP1) to active BMP1, which resulted in limited cleavage of dentin matrix acidic phosphoprotein 1 (DMP1), and consequent increased Fgf‐23 mRNA. The significance of decreased 7B2?PC2 activity in XLH was confirmed by studies of hyp‐mouse bone, which revealed significantly decreased Sgne1 (7B2) mRNA and 7B2 protein, and limited cleavage of proPC2 to active PC2. The expected downstream effects of these changes included decreased FGF‐23 cleavage and increased FGF‐23 synthesis, secondary to decreased BMP1‐mediated degradation of DMP1. Subsequent Hexa‐D‐Arginine treatment of hyp‐mice enhanced bone 7B2?PC2 activity, normalized FGF‐23 degradation and production, and rescued the HYP phenotype. These data suggest that decreased PHEX‐dependent 7B2?PC2 activity is central to the pathogenesis of XLH. © 2013 American Society for Bone and Mineral Research  相似文献   

13.
X-linked hypophosphatemia (XLH) and autosomal dominant hypophosphatemic rickets (ADHR) are characterized by renal phosphate wasting, rickets, and osteomalacia. ADHR is caused by gain of function mutations in the fibroblast growth factor 23 gene (FGF23). During secretion, FGF23 is processed at the C-terminus between amino acids 179 and 180. The cleavage site is mutated in ADHR, preventing processing of FGF23. Here, we show that FGF23 is likely to be cleaved by subtilisin-like proprotein convertases (SPC) as cleavage can be inhibited by a specific SPC inhibitor in HEK293 cells. SPCs, which are widely expressed, were demonstrated to be also present in HEK293 cells as well as in osteoblasts. XLH is caused by loss of function mutations in the putative endopeptidase PHEX. It was tempting to speculate that FGF23 is a substrate of PHEX, but studies have been inconclusive so far. Here, we used a secreted form of PHEX (secPHEX) and tagged and untagged FGF23 constructs for co-incubation experiments. These experiments provided evidence against cleavage of intact FGF23(25-251) as well as of N-terminal (FGF23(25-179)) and C-terminal (FGF23(180-251)) fragments by the endopeptidase PHEX.  相似文献   

14.
X‐linked hypophosphatemia (XLH) is characterized by impaired renal tubular reabsorption of phosphate owing to increased circulating FGF23 levels, resulting in rickets in growing children and impaired bone mineralization. Increased FGF23 decreases renal brush border membrane sodium‐dependent phosphate transporter IIa (Npt2a) causing renal phosphate wasting, impairs 1‐α hydroxylation of 25‐hydroxyvitamin D, and induces the vitamin D 24‐hydroxylase, leading to inappropriately low circulating levels of 1,25‐dihydroxyvitamin D (1,25D). The goal of therapy is prevention of rickets and improvement of growth in children by phosphate and 1,25D supplementation. However, this therapy is often complicated by hypercalcemia and nephrocalcinosis and does not always prevent hyperparathyroidism. To determine if 1,25D or blocking FGF23 action can improve the skeletal phenotype without phosphate supplementation, mice with XLH (Hyp) were treated with daily 1,25D repletion, FGF23 antibodies (FGF23Ab), or biweekly high‐dose 1,25D from d2 to d75 without supplemental phosphate. All treatments maintained normocalcemia, increased serum phosphate, and normalized parathyroid hormone levels. They also prevented the loss of Npt2a, α‐Klotho, and pERK1/2 immunoreactivity observed in the kidneys of untreated Hyp mice. Daily treatment with 1,25D decreased urine phosphate losses despite a marked increase in bone FGF23 mRNA and in circulating FGF23 levels. Daily 1,25D was more effective than other treatments in normalizing the growth plate and metaphyseal organization. In addition to being the only therapy that normalized lumbar vertebral height and body weight, daily 1,25D therapy normalized bone geometry and was more effective than FGF23Ab in improving trabecular bone structure. Daily 1,25D and FGF23Ab improved cortical microarchitecture and whole‐bone biomechanical properties more so than biweekly 1,25D. Thus, monotherapy with 1,25D improves growth, skeletal microarchitecture, and bone strength in the absence of phosphate supplementation despite enhancing FGF23 expression, demonstrating that 1,25D has direct beneficial effects on the skeleton in XLH, independent of its role in phosphate homeostasis. © 2016 American Society for Bone and Mineral Research.  相似文献   

15.
Fibroblast growth factor 23 (FGF23) is the causative factor of X‐linked hypophosphatemia (XLH), a genetic disorder effecting 1:20,000 that is characterized by excessive phosphate excretion, elevated FGF23 levels and a rickets/osteomalacia phenotype. FGF23 inhibits phosphate reabsorption and suppresses 1α,25‐dihydroxyvitamin D (1,25D) biosynthesis, analytes that differentially contribute to bone integrity and deleterious soft‐tissue mineralization. As inhibition of ligand broadly modulates downstream targets, balancing efficacy and unwanted toxicity is difficult when targeting the FGF23 pathway. We demonstrate that a FGF23 c‐tail‐Fc fusion molecule selectively modulates the phosphate pathway in vivo by competitive antagonism of FGF23 binding to the FGFR/α klotho receptor complex. Repeated injection of FGF23 c‐tail Fc in Hyp mice, a preclinical model of XLH, increases cell surface abundance of kidney NaPi transporters, normalizes phosphate excretion, and significantly improves bone architecture in the absence of soft‐tissue mineralization. Repeated injection does not modulate either 1,25D or calcium in a physiologically relevant manner in either a wild‐type or disease setting. These data suggest that bone integrity can be improved in models of XLH via the exclusive modulation of phosphate. We posit that the selective modulation of the phosphate pathway will increase the window between efficacy and safety risks, allowing increased efficacy to be achieved in the treatment of this chronic disease. © 2017 American Society for Bone and Mineral Research.  相似文献   

16.
Mutations in the GALNT3 gene result in familial tumoral calcinosis, characterized by persistent hyperphosphatemia and ectopic calcific masses in soft tissues. Since calcific masses often recur after surgical removal, a more permanent solution to the problem is required. Nicotinamide is reported to lower serum phosphate by decreasing sodium-dependent phosphate co-transporters in the gut and kidney. However, its effectiveness in tumoral calcinosis remains unknown. In this study, we investigated nicotinamide as a potential therapy for tumoral calcinosis, using a murine model of the disease—Galnt3 knockout mice. Initially, five different doses of nicotinamide were given to normal heterozygous mice intraperitoneally or orally. Treatment had no effect on serum phosphate levels, but serum levels of a phosphaturic hormone, fibroblast growth factor 23 (Fgf23), decreased in a dose-dependent manner. Subsequently, high-dose nicotinamide (40 mM) was tested in Galnt3 knockout mice fed a high phosphate diet. The radiographic data pre- and post-treatment showed that nicotinamide did not reverse the calcification. However, the treatment retarded calcification growth after 4 weeks, while in the untreated animals, calcifications increased in size. The therapy did not affect serum phosphate levels, but intact Fgf23 decreased in the treated mice. The treated mice also had increased calcium in the heart. In summary, nicotinamide did not alter serum phosphate levels, likely due to compensatory decrease in Fgf23 to counteract the phosphate lowering effect of nicotinamide. Although increased calcium accumulation in the heart is a concern, the therapy appears to slow down the progression of ectopic calcifications.  相似文献   

17.
Fibroblast growth factor 23 (FGF23) plays important roles in the development of hypophosphatemic diseases such as tumor-induced osteomalacia (TIO) and X-linked hypophosphatemic rickets/osteomalacia (XLH). However, clinical usefulness of measurement of FGF23 has not been established. The objective of this study is to examine the importance of FGF23 measurement in the diagnosis of hypophosphatemic diseases. Biochemical parameters concerning phosphate metabolism were analyzed in a cross-sectional study. 32 patients with TIO, 28 patients with XLH and 16 hypophosphatemic patients with other causes including vitamin D deficiency, Fanconi's syndrome and Cushing's syndrome were studied. In patients with TIO and XLH, FGF23 was above the upper limit of the reference range in most patients irrespective of medical treatment. The lowest FGF23 in these patients was 38.0 pg/ml. FGF23 in hypophosphatemic patients with other causes was undetectable (less than 3 pg/ml) in 12 patients and the highest FGF23 in this group was 23.9 pg/ml. Relationship between phosphate and FGF23 indicated that TIO and XLH are diseases with high FGF23 and hypophosphatemia judged by age-dependent reference ranges for serum phosphate. FGF23 measurement is useful for differential diagnosis of hypophosphatemic diseases caused by excess actions of FGF23 and other etiologies. High FGF23 with low phosphate judged by age-dependent reference ranges for phosphate establishes the diagnosis of diseases caused by excess actions of FGF23.  相似文献   

18.
Fibroblast growth factor 23 (FGF‐23) plays causative roles in the development of several hypophosphatemic rickets/osteomalacia such as X‐linked hypophosphatemic rickets/osteomalacia (XLH) and tumor‐induced rickets/osteomalacia. Patients with hypophosphatemic rickets/osteomalacia often complain of muscle weakness and bone pain that severely affect daily activities of these patients. The purpose of this study was to examine whether anti‐FGF‐23 antibodies, which have been shown to improve hypophosphatemia and rachitic changes of juvenile Hyp mice in a murine model of XLH, also ameliorate hypophosphatemic osteomalacia and affect muscle force and spontaneous motor activity in adult Hyp mice. Repeated injections of anti‐FGF‐23 antibodies increased serum phosphate and 1,25‐dihydroxyvitmain D levels and enhanced mineralization of osteoid in adult Hyp mice, whereas bone length did not change. We found that grip strength was weaker and that spontaneous movement was less in adult Hyp mice than in wild‐type mice. In addition, FGF‐23 antibodies increased grip strength and spontaneous movement. These results suggest that the inhibition of excess FGF‐23 action not only ameliorates hypophosphatemia and impaired mineralization of bone but also improves muscle weakness and daily activities of patients with FGF‐23‐related hypophosphatemic rickets/osteomalacia. © 2011 American Society for Bone and Mineral Research.  相似文献   

19.
X-linked hypophosphataemia: a homologous disorder in humans and mice.   总被引:1,自引:1,他引:0  
X-linked hypophosphatemia is an inherited disorder of phosphate (Pi) homeostasis characterized by growth retardation, rickets and osteomalacia, hypophosphataemia, and aberrant renal Pi reabsorption and vitamin D metabolism. Studies in murine Hyp and Gy homologues have identified a specific defect in Na+-Pi cotransport at the brush border membrane, abnormal regulation of 1,25-dihydroxyvitamin D3 (1,25(OH)2D) synthesis and degradation, and an intrinsic defect in bone mineralization. The mutant gene has been identified in XLH patients, by positional cloning, and in Hyp and Gy mice, and was designated PHEX/Phex to signify a PHosphate-regulating gene with homology to Endopeptidases on the X chromosome. PHEX/Phex is expressed in bones and teeth but not in kidney and efforts are under way to elucidate how loss of PHEX/Phex function elicits the mutant phenotype. Based on its homology to endopeptidases, it is postulated that PHEX/Phex is involved in the activation or inactivation of a peptide hormone(s) which plays a key role in the regulation of bone mineralization, renal Pi handling and vitamin D metabolism.  相似文献   

20.
X-linked dominant hypophosphatemia (XLH, OMIM307800), the most prevalent form of inherited rickets in humans, is a dominant disorder of phosphate homeostasis characterized by growth retardation, rachitic and osteomalacic bone disease, hypophosphatemia, and renal phosphate wasting. The gene responsible for XLH was identified by positional cloning and designated PHEX (formerly PEX) to depict a phosphate-regulating gene homologous with endopeptidases on the X chromosome. Recently, extensive mutation analysis of the PHEX gene has revealed a wide variety of gene defects in XLH. The ethnic distribution of the mutations is very widespread but only a few mutations in Chinese have been reported. To analyze the molecular basis in three unrelated Chinese families with XLH, we determined the nucleotide sequence of the PHEX gene and fibroblast growth factor 23 (FGF23) gene of affected members. The serum FGF23 concentrations of these patients with XLH were also measured. Three different novel mutations were observed in these three families: one deletion mutation c.264delG causing p.W88 X; one missense mutation c.1673C>G causing p.P558A; one nonsense mutation c.1809G>A causing p.W603 X. Serum concentration of FGF23 in XLH patients of these three families was significantly higher than normal. The results suggest that PHEX gene mutations were responsible for XLH in these patients and these mutations may contribute to a higher serum FGF23 level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号