首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paraventricular nucleus of the hypothalamus (PVN) is an important site for autonomic and endocrine homeostasis. The PVN integrates specific afferent stimuli to produce an appropriate differential sympathetic output. The neural circuitry and some of the neurochemical substrates within this circuitry are discussed. The PVN has at least three neural circuits to alter sympathetic activity and cardiovascular regulation. These pathways innervate the vasculature and organs such as the heart, kidney and adrenal medulla. The basal level of sympathetic tone at any given time is dependent upon excitatory and inhibitory inputs. Under normal circumstances the sympathetic nervous system is tonically inhibited. This inhibition is dependent upon GABA and nitric oxide such that nitric oxide potentiates local GABAergic synaptic inputs onto the neurones in the PVN. Excitatory neurotransmitters such as glutamate and angiotensin II modify the tonic inhibitory activity. The neurotransmitters oxytocin, vasopressin and dopamine have been shown to affect cardiovascular function. These neurotransmitters are found in neurones of the PVN and within the spinal cord. Oxytocin and vasopressin terminal fibres are closely associated with sympathetic preganglionic neurones (SPNs). Sympathetic preganglionic neurones have been shown to express receptors for oxytocin, vasopressin and dopamine. Oxytocin causes cardioacceleratory and pressor effects that are greatest in the upper thoracic cord while vasopressin cause these effects but more significant in the lower thoracic cord. Dopaminergic effects on the cardiovascular system include inhibitory or excitatory actions attributed to a direct PVN influence or via interneuronal connections to sympathetic preganglionic neurones.  相似文献   

2.
The aim of the present study was to determine the influence on renal sympathetic nerve activity of the different chemically coded neuronal phenotypes that project from the paraventricular nucleus (PVN) to the spinal cord. Experiments were carried out on male Wistar rats anaesthetised with chloralose and urethane. Changes in renal sympathetic nerve activity were measured following activation of neurones in the PVN with D,L-homocysteic acid (100 nl, 200 mM), before and following intrathecal application of glutamate, vasopressin, oxytocin, dopamine and their receptor antagonists. Excitatory and inhibitory effects on renal sympathetic nerve activity were elicited by PVN stimulation. PVN excitatory effects were mimicked by intrathecal administration of glutamate and vasopressin and selectively antagonised by intrathecal administration of kynurenic acid and a V1a receptor antagonist, respectively. A low dose of dopamine increased renal sympathetic activity and this was selectively antagonised by haloperidol; however, the latter was without effect on PVN excitatory responses. A high dose of dopamine decreased renal sympathetic nerve activity and this was selectively blocked by a D1 dopamine receptor antagonist (SCH 23390), which also antagonised a minority of inhibitory responses obtained from the caudal extension of the PVN. Oxytocin also had two actions in 5 rats it inhibited and in 10 rats it increased renal sympathetic nerve activity, both actions being blocked selectively by oxytocin receptor antagonists. Neither of the PVN effects on renal sympathetic nerve activity appeared to be dependent on oxytocin pathways. Tests with intrathecal administration of bicuculline showed that PVN inhibition of renal sympathetic nerve activity was not dependent on spinal GABA(A) receptor activation. The results show that PVH-induced excitation of sympathetic activity to the kidney is mainly mediated by glutamate or vasopressin neurones whereas dopamine via Dl receptors may mediate some of the PVN inhibitory effects.  相似文献   

3.
Functional studies suggest that nitric oxide (NO) modulates sympathetic outflow by enhancing synaptic GABAergic function. Furthermore, the paraventricular nucleus of the hypothalamus (PVN), an important site for autonomic and endocrine homeostasis constitutes an important center mediating NO actions on sympathetic outflow. However, the exact anatomical organization of GABA and NO releasing neurons with the PVN neurons that regulate autonomic activity is poorly understood. The present study addressed this by identifying PVN-presympathetic neurons in the rat with the retrograde tracer Fluorogold injected into T2 segment of the spinal cord or herpes simplex virus injected into the adrenal medulla (AM). GABAergic or nitric oxide cell bodies were identified by antibodies directed towards GABA or glutamate decarboxylase (GAD67) enzyme or neuronal nitric oxide synthase. This revealed a population of GABAergic neurons to be synaptically associated with a chain of pre-sympathetic neurons targeting the AM. Furthermore, this GABAergic population is not a cellular source of NO. Within the PVN, the majority of cellular nitric oxide was localized to non-spinally projecting neurons while for the PVN-spinally projecting neuronal pool only a minority of neuron were immunopositive for neuronal nitric oxide synthase. In summary, nitrergic and GABAergic neurons are associated with a hierarchical chain of neurons that regulate autonomic outflow. This anatomical arrangement supports the known function role of a NO-GABA modulation of sympathetic outflow.  相似文献   

4.
The importance of angiotensin II (AII) and glutamate has long since been recognized in neuroendocrine regulation. However, the mechanisms by which AII and glutamate modulate the excitability of the paraventricular nucleus (PVN) have largely remained a mystery until recently. It is now apparent that AII and glutamate are potent stimulators of both magnocellular and parvocellular neurones in the rat PVN. While glutamate, the predominant excitatory neurotransmitter in the CNS, ubiquitously excites PVN neurones, AII appears to mediate excitability of the PVN by both direct and indirect mechanisms. Interestingly, both of these neurotransmitters, upon exciting the PVN, activate an inhibitory feedback system, which is capable of diminishing the initial stimulus. Physiologically, this moderates the output signals from the PVN, and probably also regulates neuropeptide release from the neurohypophysis. The importance of this negative-feedback loop is evident in the pathophysiological implications of a disruption in the system. Evidence suggests that a breakdown in this system may be responsible in part for the onset and maintenance of both congestive heart failure and hypertension. Future studies will continue to characterize both the actions of glutamate and AII in the PVN, and to further elucidate the mechanisms which control the excitability of the PVN.  相似文献   

5.
AIM: Neurons in the rostral ventrolateral medulla (RVLM) that project directly to sympathetic preganglionic neurons in the spinal cord play a critical role in maintaining tonic activity in sympathetic vasomotor nerves. Intracellular recordings in vivo from putative RVLM presympathetic neurons have demonstrated that under resting conditions these neurons display an irregular tonic firing rate, and also receive both excitatory and inhibitory synaptic inputs. This paper will briefly review some recent findings on the role of glutamate, GABA and angiotensin II (Ang II) receptors in maintaining the tonic activity of RVLM presympathetic neurons. RESULTS: Based on these findings, the following hypotheses will be discussed: (1) RVLM neurons receive tonic glutamatergic excitatory inputs, which originate from both medullary and supramedullary sources; (2) at least some neurons that project to and tonically inhibit RVLM presympathetic neurons are themselves tonically inhibited by GABAergic inputs originating from neurons in the caudalmost part of the ventrolateral medulla (caudal pressor area); (3) under normal conditions, Ang II receptors in the RVLM do not contribute significantly to the tonic activity of RVLM presympathetic neurons, but may do so in abnormal conditions such as heart failure or neurogenic hypertension; (4) RVLM presympathetic neurons maintain a significant level of tonic resting activity even when glutamate, GABA and Ang II receptors on the neurons are completely blocked. Under these conditions, the tonic activity is a consequence either of the intrinsic membrane properties of the neurons (autoactivity) or of synaptic inputs mediated by receptors other than glutamate, GABA or Ang II receptors. CONCLUSION: The current evidence indicates that the resting activity of RVLM presympathetic neurons is determined by the balance of powerful tonic excitatory and inhibitory synaptic inputs. Ang II receptors also contribute to the raised resting activity of these neurons in some pathological conditions.  相似文献   

6.
Chen Q  Pan HL 《Neuroscience》2006,142(2):595-606
The hypothalamic paraventricular (PVN) neurons projecting to the spinal cord and brainstem play an important role in the control of homeostasis and the sympathetic nervous system. Although GABA(B) receptors are present in the PVN, their function in the control of synaptic inputs to PVN presympathetic neurons is not clear. Using retrograde tracing and whole-cell patch-clamp recordings in rat brain slices, we determined the role of presynaptic GABA(B) receptors in regulation of glutamatergic and GABAergic inputs to spinally projecting PVN neurons. The GABA(B) receptor agonist baclofen (1-50 microM) dose-dependently decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) and inhibitory postsynaptic currents (sIPSCs). The effect of baclofen on sEPSCs and sIPSCs was completely blocked by 10 microM CGP52432, a selective GABA(B) receptor antagonist. Baclofen also significantly reduced the frequency of both miniature excitatory and miniature inhibitory postsynaptic currents (mEPSCs and mIPSCs). Furthermore, uncoupling pertussis toxin-sensitive G(i/o) proteins with N-ethylmaleimide abolished baclofen-induced inhibition of mEPSCs and mIPSCs. However, the inhibitory effect of baclofen on the frequency of mIPSCs and mEPSCs persisted in the presence of either Cd2+, a voltage-gated Ca2+ channel blocker, or 4-aminopyridine, a blocker of voltage-gated K+ channels. Our results suggest that activation of presynaptic GABA(B) receptors inhibits synaptic GABA and glutamate release to PVN presympathetic neurons. This presynaptic action of GABA(B) receptors is mediated by the N-ethylmaleimide-sensitive G(i/o) proteins, but independent of voltage-gated Ca2+ and K+ channels.  相似文献   

7.
目的:观察中枢前列腺素E_2(PGE_2)在慢性心力衰竭(心衰)交感神经兴奋中的作用,并探讨其机制。方法:雄性SD大鼠冠脉结扎制备心衰模型,侧脑室渗透压泵持续给药,假手术组和心衰组给予人工脑脊液(0.25μL/h),心衰给药组给予塞来考昔(CLB;20 mg/h)。4周后,检测各组大鼠脑脊液内PGE_2浓度、交感神经兴奋性和心功能指标,同时测定下丘脑室旁核(PVN)内促肾上腺皮质激素释放激素(CRH)神经元激活指标和神经递质的变化。结果:与假手术组相比,心衰组大鼠脑脊液内PGE_2含量增加,肾交感神经放电活动增强,外周血去甲肾上腺素升高,左心室舒张末期压力、肺/体质量比和右心室/体质量比均增加,左室内压最大上升和下降速率均下降,PVN内CRH阳性神经元数目增多,外周血促肾上腺皮质激素浓度升高(P0.05);心衰大鼠侧脑室给予CLB后,脑脊液内PGE_2明显下降,PVN内CRH神经元激活减少,交感神经兴奋性减弱,心功能得到改善(P0.05)。与假手术组相比,心衰大鼠PVN内谷氨酸含量较高,γ-氨基丁酸含量和谷氨酸脱羧酶67阳性神经元数目较低(P0.05);侧脑室给予CLB后,以上各指标均被逆转(P0.05)。结论:慢性心衰时,中枢内升高的PGE_2可以激活下丘脑室旁核CRH神经元从而增强交感神经活动,而该作用可能是通过改变下丘脑室旁核神经递质系统来实现的。  相似文献   

8.
To investigate paraventricular hypothalamic neuronal actions responsible for the effects of neurotransmitters on feeding, and to test the notion that a single population of cells there could account for feeding effects, hypothalamic slices containing the paraventricular nucleus (PVN) were prepared from rats. Electrophysiological responses of individual PVN neurons to feeding-inducing agents norepinephrine (NE) and gamma-aminobutyric acid (GABA), and to anorexic agents serotonin (5-HT) and histamine (Hist) were examined. NE inhibited neuronal activity through alpha 2-adrenergic receptors, and excited through alpha 1-receptors. alpha 2-receptors are known to mediate the behavioral effect of NE. NE inhibited most clearly those neurons that otherwise fired continuously in this type of in vitro preparation. GABA affected the activity of 37% of the neurons tested, primarily by inhibition. The inhibitory action of GABA can be related to its feeding-inducing effect. GABA in PVN can also attenuate excitatory responses and enhance inhibitory responses to NE or 5-HT. 5-HT caused excitatory and inhibitory responses with the former action outnumbering the latter by approximately 3 to 1. Since this would result in a net excitation, it appears that 5-HT in PVN inhibits feeding mainly by exciting neuronal activity. Hist excited 72% and inhibited only 2% of PVN neurons. The excitation was blocked by H1-antagonists, which have been shown to mediate Hist effect on feeding. Comparing across neurons, the inhibitory response to NE was correlated with that to GABA, but not with any responses to 5-HT or Hist. The excitatory responses to Hist correlated with 5-HT responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Xu Y  Gao Q  Gan XB  Chen L  Zhang L  Zhu GQ  Gao XY 《Experimental physiology》2011,96(12):1282-1292
An enhancement of the cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation in renovascular hypertension. Angiotensin II in the paraventricular nucleus (PVN) augments the CSAR and increases sympathetic outflow and blood pressure. The present study aimed to determine whether endogenous hydrogen peroxide in the PVN mediated the enhanced CSAR, sympathetic activity and the effects of angiotensin II in the PVN in renovascular hypertension induced by the two-kidney, one-clip method (2K1C) in rats. At the end of the fourth week, the rats underwent sino-aortic and vagal denervation under general anaesthesia with urethane and α-chloralose. Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The CSAR was evaluated by the RSNA response to epicardial application of bradykinin. Microinjection of polyethylene glycol-catalase (PEG-CAT), an analogue of endogenous catalase, into the PVN decreased the RSNA and MAP and abolished the CSAR in both sham-operated and 2K1C rats. Microinjection into the PVN of the catalase inhibitor, aminotriazole, increased the RSNA and MAP and enhanced the CSAR. The effects of PEG-CAT or aminotriazole were greater in 2K1C rats than in sham-operated animals. The effects of angiotensin II in the PVN were abolished by pretreatment with PEG-CAT in both sham-operated and 2K1C rats; however, aminotriazole failed to potentiate the effects of angiotensin II. The catalase activity was decreased but the H(2)O(2) levels were increased in the PVN of 2K1C rats. These results indicate that endogenous H(2)O(2) in the PVN not only mediates the enhanced sympathetic activity and CSAR, but also the effects of angiotensin II in the PVN in renovascular hypertensive rats.  相似文献   

10.
Noradrenaline, neuropeptide Y and adenosine triphosphate are co-stored in, and co-released from, sympathetic nerves. Each transmitter modulates its own release as well as the release of one another; thus, anything affecting the release of one of these transmitters has consequences for all. Neurotransmission at the sympathetic neurovascular junction is also modulated by non-sympathetic mediators such as angiotensin II, serotonin, histamine, endothelin and prostaglandins through the activation of specific pre-junctional receptors. In addition, nitric oxide (NO) has been identified as a modulator of sympathetic neuronal activity, both as a physiological antagonist against the vasoconstrictor actions of the sympathetic neurotransmitters, and also by directly affecting transmitter release. Here, we review the modulation of sympathetic neurovascular transmission by neuronal and non-neuronal mediators with an emphasis on the actions of NO. The consequences for co-transmission are also discussed, particularly in light of hypertensive states where NO availability is diminished.  相似文献   

11.
The role of the hypothalamic paraventricular nucleus (PVN) in cardiovascular regulation is well established. In this study, it was hypothesized that the PVN may be one of the sites of cardiovascular actions of a newly discovered angiotensin, angiotensin-(1-12). Experiments were carried out in urethane-anaesthetized, artificially ventilated, adult male Wistar rats. The PVN was identified by microinjections of NMDA (10 mm). Microinjections (50 nl) of angiotensin-(1-12) (1 mm) into the PVN elicited increases in mean arterial pressure, heart rate and renal sympathetic nerve activity. The tachycardic responses to angiotensin-(1-12) were attenuated by bilateral vagotomy. The cardiovascular responses elicited by angiotensin-(1-12) were attenuated by microinjections of an angiotensin II type 1 receptor (AT(1)R) antagonist (losartan), but not an angiotensin II type 1 receptor (AT(2)R) antagonist (PD123319), into the PVN. Combined inhibition of angiotensin-converting enzyme and chymase in the PVN abolished angiotensin-(1-12)-induced responses. Angiotensin-(1-12)-immunoreactive cells and fibres were more numerous in the middle and caudal regions of the PVN. Angiotensin-(1-12) was present in many, but not all, vasopressinergic PVN cells. This peptide was also present in some non-vasopressinergic PVN cells, but not in oxytocin-containing PVN cells. These results can be summarized as follows: (1) microinjections of angiotensin-(1-12) into the PVN elicited increases in mean arterial pressure, heart rate and renal sympathetic nerve activity; (2) heart rate responses were mediated via both sympathetic and vagus nerves; (3) both angiotensin-converting enzyme and chymase were needed to convert angiotensin-(1-12) to angiotensin II in the PVN; and (4) AT(1)Rs, but not AT(2)Rs, in the PVN mediated angiotensin-(1-12)-induced responses. It was concluded that the cardiovascular actions of angiotensin-(1-12) in the PVN are mediated via its conversion to angiotensin II.  相似文献   

12.
Li Y  Zhang W  Stern JE 《Neuroscience》2003,118(3):585-601
Nitric oxide (NO) has been shown to modulate autonomic function by acting both peripherally and centrally. A growing body of evidence indicates that the paraventricular nucleus of the hypothalamus (PVN), an important site for autonomic and endocrine homeostasis, constitutes an important locus mediating central NO actions. However, the cellular targets and mechanisms mediating NO actions within the PVN are not completely understood. Here, we examined whether NO influences the firing activity of identified PVN neurons that innervate two functionally different autonomic centers, the dorsal vagal complex (DVC) and the rostral ventrolateral medulla (RVLM). Perforated patch-clamp recordings were performed in hypothalamic slices containing retrogradely labeled PVN neurons innervating the DVC or the RVLM. Application of the NO donors dyethylamine- or 1-propanamine, 3-(2-hydroxy-2-nitroso-1-propylhydrazino) NONOate inhibited the firing activity of both DVC- and RVLM-projecting PVN neurons. Furthermore, application of 2-(4-carboxypheny)-4,4,5,5,-tetramethilimidazoline-1-oxyl-3-oxide (carboxy-PTIO), or the relatively selective neuronal nitric oxide synthase (nNOS) inhibitor 7-nitroindazole alone, increased their basal firing activity, suggesting the presence of an endogenous NO inhibitory tone. GABAergic synaptic activity in PVN neurons was potentiated by NO donors, an action that involved a presynaptic mechanism. Furthermore, the NO-mediated inhibition of firing activity was blocked by the GABA(A) receptor antagonist bicuculline, suggesting that NO-inhibitory actions involved potentiation of local GABAergic synaptic activity. Immunohistochemical studies showed that approximately 25% of DVC- and RVLM-projecting PVN neurons express nNOS, suggesting that a proportion of these medullary-projecting PVN neurons contribute to the cellular source of NO within the PVN.In summary, NO has been identified as an important molecule controlling autonomic function under physiological and pathological conditions. Here, we provide information on the cellular mechanisms mediating central NO actions. Our results demonstrate for the first time that NO modulates the activity of identified populations of PVN neurons that innervate the medulla oblongata, an action that is likely mediated by enhancing synaptic GABAergic function. This work suggests that NO-GABA interaction in PVN neurons that innervate the medulla constitutes an efficient cellular mechanism mediating NO central regulation of autonomic function.  相似文献   

13.
Sympathetic activity is enhanced in hypertension, which contributes to the pathogenesis of hypertension and progression of organ damage. The cardiac sympathetic afferent reflex (CSAR) is enhanced in renovascular hypertension and involved in the sympathetic activation. The present study was designed to investigate whether angiotensin II (Ang II) and Ang II type 1 (AT(1)) receptors in paraventricular nucleus (PVN) contribute to the enhanced CSAR and sympathetic outflow in experimental renovascular hypertensive rats. Hypertension was induced by the two-kidney one-clip (2K1C) method. The normotensive rats underwent sham operation (Sham). Acute experimentation was carried out at the end of the 4th week. Under urethane and α-chloralose anaesthesia, the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in rats with sino-aortic denervation and cervical vagotomy. The AT(1) receptor expression was determined with Western blot. The CSAR was evaluated by the response of RSNA and MAP to epicardial application of 1.0 nmol of capsaicin. The AT(1) receptor expression in the PVN was increased, and Ang II in the PVN augmented the enhanced CSAR and RSNA in 2K1C rats. The effects of Ang II were abolished by pretreatment with the AT(1) receptor antagonist, losartan, in 2K1C rats. Losartan in the PVN normalized the enhanced CSAR and decreased the RSNA and MAP in 2K1C rats. These results indicate that the increased activity of AT(1) receptors in the PVN contributes to the enhanced CSAR and excessive sympathetic activation in renovascular hypertensive rats.  相似文献   

14.
Enhanced cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation in renovascular hypertension. The study was to determine whether c-Src in paraventricular nucleus (PVN) is involved in the enhanced CSAR and sympathetic activation in hypertensive rats induced by two-kidney one-clip (2K1C). At the end of the fourth week after 2K1C surgery, renal sympathetic nerve activity (RSNA) was recorded in anesthetized rats with baroreceptor denervation and vagotomy. The CSAR was evaluated by the RSNA response to epicardial application of capsaicin. In the PVN, c-Src activity was higher in 2K1C rats than sham-operated (Sham) rats while c-Src expression was not. Epicardial application of capsaicin or PVN microinjection of angiotensin II (Ang II) increased c-Src activity more in 2K1C than Sham rats. PVN microinjection of selective Src family kinase inhibitor 4-Amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazol [3,4-D] pyrimidine (PP2) or 2,3-Dihydro-N,N-dimethyl-2-oxo-3-[(4,5,6,7-tetrahydro-1?H-indol-2-yl)methylene]-1?H-indole-5-sulfonamide (SU6656) abolished the CSAR and decreased RSNA more in 2K1C than Sham rats. The Ang II-induced RSNA and CSAR enhancement was abolished by PP2 or SU6656 pretreatment in 2K1C and Sham rats. NAD(P)H oxidase activity and superoxide anion level in PVN were higher in 2K1C rats, which was attenuated by PP2 but increased by epicardial application of capsaicin or PVN microinjection of Ang II. The effects of capsaicin or Ang II were abolished by PP2. These results indicate that c-Src in the PVN is involved in the enhanced CSAR and sympathetic activation in renovascular hypertension, and mediates the excitatory effects of Ang II in the PVN on the CSAR and sympathetic activity via NAD(P)H oxidase-derived generation of superoxide anions.  相似文献   

15.
Inhibitory synapses in the developing auditory system are glutamatergic   总被引:3,自引:0,他引:3  
Activity-dependent synapse refinement is crucial for the formation of precise excitatory and inhibitory neuronal circuits. Whereas the mechanisms that guide refinement of excitatory circuits are becoming increasingly clear, the mechanisms guiding inhibitory circuits have remained obscure. In the lateral superior olive (LSO), a nucleus in the mammalian sound localization system that receives inhibitory input from the medial nucleus of the trapezoid body (MNTB), specific elimination and strengthening of synapses that are both GABAergic and glycinergic (GABA/glycinergic synapses) is essential for the formation of a precise tonotopic map. We provide evidence that immature GABA/glycinergic synapses in the rat LSO also release the excitatory neurotransmitter glutamate, which activates postsynaptic NMDA receptors (NMDARs). Immunohistochemical studies demonstrate synaptic colocalization of the vesicular glutamate transporter 3 with the vesicular GABA transporter, indicating that GABA, glycine and glutamate are released from single MNTB terminals. Glutamatergic transmission at MNTB-LSO synapses is most prominent during the period of synapse elimination. Synapse-specific activation of NMDARs by glutamate release at GABAergic and glycinergic synapses could be important in activity-dependent refinement of inhibitory circuits.  相似文献   

16.
Kraus MM  Prast H 《Neuroscience》2002,112(2):331-343
It is known that the nucleus accumbens contains all elements of the nitric oxide (NO)-cyclic GMP (cGMP) system but the role of NO in this nucleus is not well understood. We investigated the contribution of the NO-cGMP system in the neurotransmission elicited by hippocampal nerve signals which are propagated to the nucleus accumbens via the fornix/fimbria. This glutamatergic hippocampus-accumbens projection was electrically stimulated for short periods in the urethane-anaesthetized rat. The nucleus accumbens was simultaneously superfused by the push-pull technique with compounds that influence the NO system and the released glutamate, aspartate and GABA were determined in the superfusate.Superfusion of the nucleus accumbens with the NO donor, PAPA/NO, enhanced basal release of the investigated amino acids with a complex concentration dependency. The release of glutamate and aspartate was also increased by the inhibitor of phosphodiesterase 5, UK-114,542. The PAPA/NO-elicited release of glutamate and aspartate was diminished by superfusion with the inhibitor of guanylyl cyclase, NS 2028. Basal release of amino acid transmitters was not influenced by NS 2028 and the NO synthase inhibitor, 7-NINA.Electrical stimulation of the fornix/fimbria increased the outflow of aspartate, glutamate and GABA in the nucleus accumbens. The stimulation-evoked release was abolished by superfusion of the nucleus with tetrodotoxin and strongly diminished by NS 2028, 7-NINA and N(G)-nitro-L-arginine methyl ester (L-name), while PAPA/NO facilitated stimulation-evoked release of these neurotransmitters. UK-114,542 also enhanced the evoked release of glutamate and aspartate while evoked GABA release was not influenced by the phosphodiesterase inhibitor.These findings indicate that NO plays the role of an excitatory transmitter in the nucleus accumbens and that nerve signals from the hippocampus propagated via fornix/fimbria induce NO synthesis in the nucleus accumbens. NO does not exert a tonic influence on basal release but facilitates release of aspartate, glutamate and GABA through increased cGMP synthesis. Phosphodiesterase 5 seems to be involved in the termination of the NO effect in glutamatergic but not in GABAergic neurons.  相似文献   

17.
The hypothalamic paraventricular nucleus (PVN) is an important site for the regulation of sympathetic outflow. Angiotensin II (Ang II) can activate AT(1) receptors to stimulate PVN presympathetic neurons through inhibition of GABAergic input. However, little is known about the downstream pathway involved in this presynaptic action of Ang II in the PVN. In this study, using whole cell recording from retrogradely labeled PVN neurons in rat brain slices, we determined the signaling mechanisms responsible for the effect of Ang II on synaptic GABA release to spinally projecting PVN neurons. Bath application of Ang II reproducibly decreased the frequency of GABAergic miniature postsynaptic inhibitory currents (mIPSCs) in fluorescence-labeled PVN neurons. Ang II failed to change the frequency of mIPSCs in labeled PVN neurons treated with pertussis toxin. However, Ang II-induced inhibition of mIPSCs persisted in the presence of either CdCl(2), a voltage-gated Ca(2+) channel blocker, or 4-aminopyridine, a blocker of voltage-gated K(+) channels. Interestingly, inhibition of superoxide with superoxide dismutase or Mn(III) tetrakis (4-benzoic acid) prophyrin completely blocked Ang II-induced decrease in mIPSCs. By contrast, inhibition of hydroxyl radical formation with the ion chelator deferoxamine did not significantly alter the effect of Ang II. These findings suggest that the presynaptic action of Ang II on synaptic GABA release in the PVN is mediated by the pertussis toxin-sensitive G(i/o) proteins but not by voltage-gated Ca(2+) and K(+) channels. Ang II attenuates GABAergic input to PVN presympathetic neurons through reactive oxygen species, especially superoxide anions.  相似文献   

18.
19.
The effect of direct intrahypothalamic nitric oxide (NO) administration on the release of selected amino acids in the hypothalamic supraoptic nucleus (SON) with and without concomitant forced swimming was investigated. Adult male Wistar rats were chronically fitted with U-shaped microdialysis probes in the SON and forced to swim for 10-min in 20-degree C warm water. Thirty-min microdialysis samples were collected before, during and after the forced swimming period while NO was administered into the SON via microdialysis. The results show that NO administration in combination with forced swimming affects the release of aspartate, glutamate, taurine, and gamma aminobutyric acid (GABA) in different patterns. Whereas the release of the excitatory amino acids aspartate and glutamate was triggered only during NO administration and forced swimming, the inhibitory amino acids GABA and taurine were found in the extracellular fluid in increased concentrations also after the treatment. These data indicate that NO administration differently affects the release of excitatory and inhibitory amino acids within the SON. Thus, SON neurons which contain high concentrations of neuronal NO synthase, might contribute to the regulation of their own secretory activity by releasing NO that controls the orchestrated release of excitatory and inhibitory amino acids from axon terminals of afferences and interneurons as well as release from glial cells.  相似文献   

20.
The granule cells of the dentate gyrus (DG), origin of the mossy fibers (MFs), have been considered to be glutamatergic. However, data obtained with different experimental approaches in recent years may be calling for a redefinition of their phenotype. Although they indeed release glutamate for fast neurotransmission, immunohistological and molecular biology evidence has revealed that these glutamatergic cells also express GABAergic markers. The granule cell expression of a GABAergic phenotype is developmentally regulated. Electrophysiological studies reveal that during the first 3 weeks of age, mossy fiber stimulation provokes monosynaptic fast inhibitory transmission mediated by GABA, besides the monosynaptic excitatory glutamatergic transmission, onto their targets in CA3. After this age, mossy fiber GABAergic transmission abruptly disappears and the GABAergic markers are undetected. In the adult, the GABAergic markers are upregulated and GABA-mediated transmission emerges after induction of hyperexcitability. The simultaneous glutamate- and GABA-mediated signals share the same plastic and pharmacological characteristics that correspond to neurotransmission of mossy fiber origin. This intriguing evidence gives rise to two fundamental points of discussion. The first is the plausible fact that glutamate and GABA, two neurotransmitters of opposing actions, are coreleased from the mossy fibers. The second relates to its functional implications that can be immediately inferred, as the dentate gyrus can exert direct GABA-mediated excitatory actions early in life and inhibitory actions in young and adult hippocampus. This evidence poses the need to reevaluate and reinterpret some aspects of the physiology of the mossy fiber pathway under normal and pathological conditions. This work reviews the recent evidence that supports the assumption that glutamate and GABA can be coreleased from a single pathway, the mossy fibers, and makes some considerations about its functional implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号