首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combined study of anterograde axonal degeneration and Golgi electron microscopic technique was designed to examine the distribution and density of axon terminals from the mediodorsal thalamic nucleus (MD) over layer III pyramidal cells in the prelimbic cortex of the rat. The reconstructive analysis of serial ultrathin sections of gold-toned apical and basal dendrites of layer III pyramidal cells showed that degenerating thalamocortical axon terminals from MD formed asymmetrical synaptic contacts predominantly with dendritic spines of the identified basal dendrites as well as apical dendrites. There was little difference in the numerical density of thalamocortical synapses from MD per unit length of both apical and basal dendrites.  相似文献   

2.
A combined study of anterograde axonal degeneration and HRP retrograde labeling has shown that there exist monosynaptic connections between afferent fibers from the mediodorsal thalamic nucleus (MD) and callosal cells in the prelimbic cortex of the rat. Degenerating axon terminals from MD made asymmetrical synaptic contacts with dendritic spines from apical dendrites of layer III pyramidal cells that were retrogradely labeled with HRP after its injection into the prelimbic cortex contralateral to MD lesions.  相似文献   

3.
The synaptic termination in the cat motor cortex of afferents from the ventrolateral nucleus of the thalamus (VL) has been studied with experimental light and electron microscopic methods. The distribution of normal synapses on motor cortex pyramidal, stellate, and Betz cells was also examined. Synapses in the motor cortex can be classified into two general types. The first and most prominent type contains flat vesicles, lacks a compact postsynaptic density, and corresponds to Colonnier's ('68) symmetrical synapse. Stellate neurons receive synapses of both types on their cell bodies and proximal dendritic shafts, while pyramidal cells have only symmetrical synapses at these sites. The dendritic spines of both stellate and pyramidal cells are contacted by predominantly asymmetrical synapses. Betz cells, like smaller pyramidal neurons, receive only symmetrical synapses on their cell bodies. The proximal portions of the Betz cells apical dendrites, however, receive both asymmetrical and symmetrical synapses. Following VL lesions, degenerating synapses were mainly found in three cortical layers: the upper third of layer I (18%), layer III (66%), and layer VI (13%). Degenerating synapses were not seen in the lower two-thirds of layer I or in layer II, and were only rarely seen in layer V (3%). Ninety-one percent of the VL synapses were found on spines and 8% on stellate-type dendritic shafts. Stellate cell bodies rarely received VL synapses (1%) and none occurred on pyramidal or Betz cell bodies and their proximal dendrites. A VL synapse within layer III was found on two dendritic spines of a Betz cell apical dendrite. Thus, part of the VL input to layer III synapses on the processes of both motor cortex output neurons (Betz cells in layer V) and cortical interneurons (stellate cells in layer III).  相似文献   

4.
Pyramidal neurons in the mouse SmI cortex were labeled by the retrograde transport of horseradish peroxidase (HRP) injected into the ipsilateral MsI cortex. Terminals of the local axon collaterals of these neurons (CC terminals) were identified in SmI, and their distribution and synaptic connectivity were examined. To avoid confusion, terminals in SmI cortex labeled by the anterograde transport of HRP injected into MsI were eliminated by lesion-induced degeneration. Lesions of MsI were made 24 hours after the injection of HRP; postlesion survival time was 4 days. Most CC axon terminals occurred in layers III and V where they formed asymmetrical synapses. Of 139 CC synapses in layer III and 104 in layer V, approximately 13% were formed with dendritic shafts. Reconstruction of 19 of these dendrites from serial thin sections showed them to originate from both spiny and nonspiny neurons. Most synapses of CC terminals (about 87%) were onto dendritic spines. In contrast, White and Keller (1987) demonstrated that terminals belonging to the local axon collaterals of corticothalamic (CT) projection cells synapse mainly with dendritic shafts of nonspiny neurons: 92% onto shafts, the remainder onto spines. The distribution of asymmetical synapses onto spines and dendritic shafts was analyzed for neuropil in layers III, IV, and V. Depending on the layer, from 34 to 46% of the asymmetrical synapses in the neuropil were onto dendritic shafts. Results showing that CC and CT terminals form proportions of axodendritic vs. axospinous synapses that differ from each other, and from the neuropil, indicate that local axon collaterals are highly selective with regard to their postsynaptic elements.  相似文献   

5.
Although the reciprocal interconnections between the prefrontal cortex and the mediodorsal nucleus of the thalamus (MD) are well known, the involvement of inhibitory cortical interneurons in the neural circuit has not been fully defined. To address this issue, we conducted three combined neuroanatomical studies on the rat brain. First, the frequency and the spatial distribution of synapses made by reconstructed dendrites of nonpyramidal neurons were identified by impregnation of cortical cells with the Golgi method and identification of thalamocortical terminals by degeneration following thalamic lesions. Terminals from MD were found to make synaptic contacts with small dendritic shafts or spines of Golgi-impregnated nonpyramidal cells with very sparse dendritic spines. Second, a combined study that used anterograde transport of Phaseolus vulgaris leucoagglutinin (PHA-L) and postembedding gamma-aminobutyric acid (GABA) immunocytochemistry indicated that PHA-L-labeled terminals from MD made synaptic junctions with GABA-immunoreactive dendritic shafts and spines. Nonlabeled dendritic spines were found to receive both axonal inputs from MD with PHA-L labelings and from GABAergic cells. In addition, synapses were found between dendritic shafts and axon terminals that were both immunoreactive for GABA. Third, synaptic connections between corticothalamic neurons that project to MD and GABAergic terminals were investigated by using wheat germ agglutinin conjugated to horseradish peroxidase and postembedding GABA immunocytochemistry. GABAergic terminals in the prelimbic cortex made symmetrical synaptic contacts with retrogradely labeled corticothalamic neurons to MD. All of the synapses were found on cell somata and thick dendritic trunks. These results provide the first demonstration of synaptic contacts in the prelimbic cortex not only between thalamocortical terminals from MD and GABAergic interneurons but also between GABAergic terminals and corticothalamic neurons that project to MD. The anatomical findings indicate that GABAergic interneurons have a modulatory influence on excitatory reverberation between MD and the prefrontal cortex.  相似文献   

6.
The morphology of certain Golgi-stained cells was examined in the striate and peristriate cortex of the cat and in the striate cortex of the rhesus monkey. Neurons in layer III were selected on the basis of their characteristic vertical axon bundles, which are 20–150 μ in diameter and traverse layers II–V Selected neurons were examined under the electron microscope to characterize their synapses and to establish their postsynaptic targets. It was found that double bouquet cells form symmetrical or type II synapses. In the cat the postsynaptic membrane specialization was more extensive than in the monkey. After removing the Golgi precipitate from boutons of two cells in the cat, small pleomorphic and flattened vesicles were found in the boutons Earlier suggestions that double bouquet cells make synapses preferentially with spines of apical dendrites could not be confirmed. Out of 66 boutons in area 17 of the cat, 86.4% formed synapses with dendritic shafts, many of them belonging to nonpyramidal cells, 9% with perikarya of nonpyramidal cells, and only 4.6% with spines. Out of 19 synapses examined in area 18, 74% were contacting dendritic shafts and the rest contacted spines. In the monkey 60% of a total of 35 double bouquet cell synapses made synapses with dendritic shafts. A different type of double bouquet cell with densely spiny dendrites is also described in layer IV of the monkey striate cortex. This neuron formed asymmetrical synapses It is suggested that layer III double bouquet cells with vertical axon bundles are probably inhibitory and act on other nonpyramidal cells and certain parts of pyramidal cells.  相似文献   

7.
The part of turtle general cortex that receives afferent fibers from the dorsal lateral geniculate nucleus and that shows evoked potentials to light stimuli has been studied with the electron microscope. This cortex consists of an outer molecular layer, a perikaryal layer, and a subcellular layer lying on a row of ependymal cell bodies. Neurons in the perikaryal lamina are characterized by long spine-bearing apical dendrites ascending through the outer molecular layer and short finer basal dendrites in the subcellular zone. Scattered neurons without apical dendrites occur in both the molecular and subcellular zones. Two types of dendritic spines can be distinguished. Some are large, have a complex irregular shape, contain a variety of membranous sacs and mitochondria, and occasionally, a single bundle of microtubules embedded in an electron-dense background opacity. These large spines are the most common postsynaptic element in the outer third of the molecular layer, where they are located on the distal tips of the apical dendrites. Other spines are small, with a simple spherical distal enlargement that contains only electron-dense fuzz. They are the most common post-synaptic element in the lower two-thirds of the molecular layer where they arise from the proximal portion of apical dendrites. Most synaptic contacts are found on the dendritic spines and are of the “round-asymmetrical” type. Not infrequently “flat-symmetrical” synapses are seen coupled to “round-asymmetrical” contacts on individual large spines. The few contacts present on spine-bearing dendritic shafts are of both types. Axo-somatic contacts are mainly of the “flat-symmetrical” variety. Thus the synaptic patterns on the principal cells of turtle visual cortex are remarkably similar to those found on pyramidal cells of mammalian neocortex. In addition, however, axon terminals, dendrites and glial (ependymal) processes were often seen to give rise to membranous pouches containing large vacuoles and invaginating into dendritic shafts or spines. Rarely, axon terminals were seen to form contacts, identical in appearance to synaptic contacts, on cell bodies in the ependymal lining. More frequently, unusual types of membrane differentiations were present at the site of apposition of the membranes of axon terminals and ependymal processes. They are interpreted as functional neuroependymal contacts.  相似文献   

8.
Reciprocal axonal projections between homotypic areas of the vibrissal region of mouse primary motor cortex (MsI) (Porter and White: Neurosci. Lett. 47:37-40, '84) suggested the existence of reciprocal synaptic connections between callosal projection neurons and callosal afferents. In the present study, the retrograde transport of horseradish peroxidase (HRP) was combined with lesion-induced degeneration to identify synapses between callosal afferents and callosal neurons in the corresponding region of the contralateral cortex. The procedure was as follows: MsI was injected with HRP and aspirated on the following day. After 4 days, the animals were perfused and motor cortex was processed for HRP according to a variation of the Adams (Brain Res. 176:33-47,'77) technique, and postfixed in OsO4. The methods used consistently filled fine dendritic branches and spines with dense reaction product, thus allowing examination of synaptic contacts with these processes. All callosal projection neurons were identified as pyramidal neurons, having somata in cortical layers II/III and V. Labeled cells from each of the two levels were prepared for electron microscopy, and that part of each cell's apical dendrite that traversed the superficial cortical layers, where most callosal axons terminate, was cut in an unbroken series of thin sections. Micrographs were taken of all labeled profiles in each thin section, and tracings of the profiles were assembled to reconstruct the apical dendrites. Data on the distribution, type, and amount of callosal and other synapses with the shaft and spines of the apical dendrites were obtained by examining the reconstructions. In addition, profiles of basal dendrites of layer II/III cells were examined in thin sections to ascertain the numbers of callosal and other synapses formed with their shafts and spines. The proportion of synapses that each dendrite formed with callosal axon terminals was compared to the concentration of callosal afferents in the neuropil. Dendrites of both layer II/III and layer V pyramidal cells synapsed with callosal axon terminals. The apical and basal dendrites of layer II/III neurons formed a similar proportion of their synapses with callosal afferents, and this was similar to the concentration of callosal synapses in the surrounding neuropil. Segments of apical dendrites belonging to layer V and layer II/III neurons course through neuropil containing nearly the same concentration of degenerating callosal terminals, but the layer V cells form fewer callosal synapses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The mediodorsal nucleus of the thalamus (MD) represents the main subcortical structure that projects to the prefrontal cortex (PFC) and it regulates key aspects of the cognitive functions of this region. Within the PFC, GABA local circuit neurons shape the activity patterns and hence the "memory fields" of pyramidal cells. Although the connections between the MD and PFC are well established, the ultrastructural relationships between projecting fibers from the MD and different subclasses of GABA cells in the PFC are not known. In order to address this issue in the rat, we examined MD axons labeled by tract-tracing in combination with immunogold-silver to identify different calcium-binding proteins localized within separate populations of interneurons. Electron micrographic examination of PFC sections from these animals revealed that MD terminals made primarily asymmetric synapses onto dendritic spines and less commonly onto dendritic shafts. Most of the dendrites receiving MD synaptic input were immunoreactive for parvalbumin (ParV), whereas MD synapses onto dendrites labeled for calretinin or calbindin were less frequent. We also observed that some MD terminals were themselves immunoreactive for calcium-binding proteins, again more commonly for ParV. These results suggest that the MD exerts a dual influence on PFC pyramidal cells: direct inputs onto spines and an indirect influence mediated via synapses onto each subclass of interneurons. The apparent preferential input to ParV cells endows MD afferents with a strong indirect inhibitory influence on pyramidal neuron activity by virtue of ParV cell synapses onto soma, proximal dendrites, and axon initial segments.  相似文献   

10.
Thalamic fibers in the cortex of Pseudemys turtles were studied with the electron microscope to determine the type of synaptic vesicle they contain, the type of membrane differentiation they form, and the type of processes they contact. Following unilateral removal of the thalamus, all degenerating thalamic axon terminals are located in the outer third of the molecular layer in the rostral half of general cortex. In the middle of this zone they constitute as much as 25% of all vesicle-containing profiles. The degenerated terminals appear as electron opaque profiles, most commonly with a uniform opacity. They contain round agranular vesicles and form synapses with asymmetrical membrane differentiations. They synapse mainly on dendritic spines containing mitochondria and/or membranous sacs, although some thalamic fibers contact small clear spines, dendrites, and, rarely, cell bodies. Counts show that 86% of degenerated contacts are on dendritic spines and 14% on dendritic shafts. The spines probably all belong to the dendrites of the pyramidal cells, whose somata are located in the deep cellular layer. The dendritic shafts and somata are most likely those of the aspinous stellate neurons located in the molecular layer. Although these stellate cells are not sufficiently numerous to form a cell “layer,” each transverse section through thalamic recipient cortex contains about nine of these cells and they occur in a ratio of 1:37 to pyramidal cells in the underlying main cell layer. We have calculated that in a rectangular solid of turtle cortex whose dimensions are 1 mm × 1 mm × the depth from pial surface to the underlying ventricle, there are 5.2 million thalamic fiber contacts (all in the outer 100 μm), 15,000 pyramidal neurons in the main cell layer, and 400 stellate cells in the molecular layer. Of the 5.2 million thalamic synapses, 0.7 million contact stellate cells and 4.5 million contact pyramidal cells. Thus each stellate cell in the molecular layer receives on the average 1,800 thalamic fiber contacts, while each pyramidal cell receives only 300 thalamic fiber synapses on the distal portion of its dendrites. The calculations lead to the conclusion that individual stellate cells receive at least six times more thalamic fiber synapses than individual pyramidal cells in turtle cortex. We suggest that the stellate cells in the thalamic input zone are inhibitory and that each thalamic volley not only excites efferent pyramidal cells but is also a powerful activator of inhibitory interneurons.  相似文献   

11.
Pyramidal neurons are covered with dendritic spines, the main postsynaptic targets of excitatory (asymmetrical) synapses. However, the proximal portion of both the apical and basal dendrites is devoid of spines, suggesting a lack of excitatory inputs to this region. In the present study we used electron microscopy to analyse the proximal region of the basal dendrites of supra- and infragranular pyramidal cells to determine if this is the case. The proximal region of 80 basal dendrites sampled from the rat hindlimb representation in the primary somatosensory cortex was studied by electron microscopy. A total of 317 synapses were found within this region of the dendrites, all of which were of the symmetrical type. These results suggest that glutamate receptors, although present in the cytoplasm, are not involved in synaptic junctions in the proximal portion of the dendrites. These data further support the idea that inhibitory terminals exclusively innervate the proximal region of basal dendrites.  相似文献   

12.
The distribution and synaptic connections of dopamine axons were studied by light and electron microscopy in human cerebral cortex. For this purpose, dopamine immunoreactivity was characterized in apparently normal anteriolateral temporal cortex, which was removed to gain access to the medial temporal lobe during tumor excision or treatment of epilepsy. Nissl sections showed this to be granular neocortex. Dopamine fibers were distributed throughout this cortex, although there were relatively more fibers in layers I-II and in layers V-VIa, compared to layers III-IV and VIb, resulting in a bilaminar pattern of labeling. In all layers, fibers were seen to form numerous varicosities, and to vary in size from thick to very fine. Fibers were relatively straight, sparsely branched and were oriented in various planes within the cortex. However, in layer I, they often ran parallel to the pial surface. In order to analyze the functional interactions of dopamine fibers, individual cortical layers were surveyed for dopamine synapses. These were usually symmetrical (Gray's type II), although 13% of them were asymmetrical. Approximately 60% of dopamine synapses were made with dendritic spines, and 40% with dendritic shafts, and this ratio was similar in all layers. On both spines and shafts, it was common to see dopamine synapses closely apposed to an unlabeled asymmetric input, suggesting a dopamine modulation of excitatory input. Some postsynaptic dendritic shafts had features of pyramidal cells, including formation of spines. Since pyramidal cells are the major type of cortical spiny neuron, they probably represent the main target of dopamine synapses in this cortex. There were also dopamine profiles apposed to membrane densities on unlabeled axon terminals, suggesting another type of synaptic interaction. These findings provide the first documentation of dopamine synapses in the human cortex, and show that they form classical synaptic junctions. The location of these synapses on spines and distal dendrites, and their proximity to asymmetric synapses, suggest a modulatory role on excitatory input to pyramidal cells.  相似文献   

13.
The fine structure of cell bodies and neuropil in the piriform cortex of the opossum has been examined. A close similarity in ultrastructure of many features has been demonstrated between this pylogenetically old cortex in a primitive mammal and the neocortex of higher mammals. Cell bodies of pyramidal cells are very similar to those in the neocortex: The nucleus is pale with a smooth surface, the cytoplasm has a modest number of organelles, and the soma receives a small number of exclusively symmetrical synapses. Semilunar cells, which have apical but no basal den-drites, are very similar to pyramidal cells in ultrastructure of their cell bodies. Two populations of neurons with nonpyramidal ultrastructural features have been distinguished: (1) cells in layer III that closely resemble the well-known large multipolar cells in neocortex by virtue of a large number of symmetrical and asymmetrical somatic synapses and long cisterns of rough endoplasmic reticulum (ER); and (2) large cells in layer I with very few somatic synapses, a large number of mitochondria, and short cisterns of rough ER that may correspond to cells with somatic appendages described with the Golgi method. Large numbers of profiles are found in all layers that contain round vesicles and make asymmetrical synapses onto dendritic spines, and occasionally, dendritic shafts. Theseprofileshavedistinctly different morphological features in layer Ia, in which olfactory bulb afferents are concentrated, and in layers Ib, II, and III, which contain terminals of association and commis-sural fibers. A smaller number of profiles containing pleomorphic vesicles make symmetrical contacts onto initial segments, dendritic shafts, cell bodies, and occasionally, dendritic spines. Most dendritic spines in all layers are small to medium in size (0.3–1.2 μm) and presumably originate from pyramidal cells. In layer Ia, however, large, flattened spines are also present which appear to originate from semi-lunar cells. In layer III, and to a lesser extent other layers, large irregular spines are present that may be branched appendages on dendrites of complex appendage cells (Haberly, 1983).  相似文献   

14.
In the present report, we describe a morphological and quantitative analysis of subicular synapses in layer V of the lateral entorhinal cortex (LEA) of the rat. Projections from the dorsal subiculum were labeled anterogradely, and areas in LEA showing high terminal density were randomly selected for ultrathin sectioning. More than 400 terminals in LEA were photographed in the electron microscope, and synapse types and postsynaptic targets were identified and, subsequently, quantified with the unbiased disector method. Most subicular terminals appeared to form asymmetrical synapses. A majority of asymmetrical synapses terminated on spines (67.5%), whereas a smaller fraction of asymmetrical synapses (23.5%) terminated on dendritic shafts. A small fraction of the terminals (7%) had symmetrical features. These symmetrical synapses had an almost equal percentage of spines and dendritic shafts as postsynaptic elements. Labeled synapses on somata or axons were never observed. The findings of this study in conjunction with relevant electrophysiological observations (Jones [1987] Neurosci Lett 81:209–214) leads to the conclusion that the subiculo-entorhinal pathway comprises a large excitatory and a smaller inhibitory projection, both making synaptic contacts with presumed principal neurons and interneurons in the entorhinal cortex. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Axons of pyramidal cells in piriform cortex stained by intracellular injection of horseradish peroxidase (HRP) have been analyzed by light and electron microscopy. Myelinated primary axons give rise to extensive, very fine caliber (0.2 micron) unmyelinated collaterals with stereotyped radiating branching patterns. Serial section electron microscopic analysis of the stained portions of the collateral systems (initial 1-2 mm) revealed that they give rise to synaptic contacts on dendritic spines and shafts. These synapses typically contain compact clusters of large, predominantly spherical synaptic vesicles subjacent to asymmetrical contacts with heavy postsynaptic densities. On the basis of comparisons with Golgi material and intracellularly stained dendrites, it was concluded that dendritic spines receiving synapses from the proximal portions of pyramidal cell axon collaterals originate primarily from pyramidal cell basal dendrites. Postsynaptic dendritic shafts contacted closely resemble dendrites of probable GABAergic neurons identified in antibody and [3H]-GABA uptake studies. Electron microscopic examination of pyramidal cell axon initial segments revealed a high density of symmetrical synaptic contacts on their surfaces. Synaptic vesicles in the presynaptic boutons were small and flattened. It is concluded that pyramidal cells synaptically interact over short distances with other pyramidal cells via basal dendrites and with deep nonpyramidal cells that probably include GABAergic cells mediating a feedback inhibition. This contrasts with long associational projections of pyramidal cells that terminate predominantly on apical dendrites of other pyramidal cells.  相似文献   

16.
Neurons providing connections between the deep and superficial layers of the entorhinal cortex (EC) constitute a pivotal link in the network underlying reverberation and gating of neuronal activity in the entorhinal-hippocampal system. To learn more of these deep-to-superficial neurons and their targets, we applied the tracer Neurobiotin pericellularly in layer V of the medial EC of 12 rats. Labeled axons in the superficial layers were studied with light and electron microscopy, and their synaptic organization recorded. Neurobiotin-labeled layer V neurons displayed "Golgi-like" staining. Two major cell types were distinguished among these neurons: (1) pyramidal neurons with apical spiny dendrites traversing all layers and ramifying in layer I, and (2) horizontal neurons with dendrites confined to the deep layers. Labeled axons ramified profusely in layer III, superficially in layer II and deep in layer I. Analysis of labeled axon terminals in layers I-II and III showed that most synapses (95%) were asymmetrical. Of these synapses, 56% occurred with spines (presumably belonging to principal neurons) and 44% with dendritic shafts (presumably interneurons). A small fraction of the synapses (5%) was of the symmetrical type. Such synapses were mainly seen on dendritic shafts. We found in two sections a symmetrical synapse on a spine. These findings suggest that the deep to superficial projection is mainly excitatory in nature, and that these fibers subserve both excitation and feed-forward inhibition. There is an additional, much weaker, inhibitory component in this projection, which may have a disinhibitory effect on the entorhinal network in the superficial layers.  相似文献   

17.
The major target of the V4 projection in V2 is layer 1, where it forms a tangential spread of asymmetric (excitatory) synapses. This is characteristic of a "feedback" projection. Some axons formed discrete clusters of bouton terminaux between lengths of myelinated axon, while others were unbranched and formed a continuous distribution of en passant boutons with no intercalated myelin. Minor projections were found in layers 2/3 and 6. Dendritic spines were the most frequently encountered targets of the V4 projection (80% in layer 1 and layer 2/3, 94% in layer 6). The remaining targets were dendritic shafts. In layer 1, 69% of target dendrites (12% of all targets) had characteristics identifying them as smooth (GABAergic) cells. In layer 2/3 and layer 6 virtually all the shaft synapses were on smooth dendrites (86% and 100%, respectively). Multisynaptic boutons were rare (mean 1.1 synapses per bouton). Synapses formed in layer 6 were smaller than those of layer 1 (mean area 0.073 microm(2) vs. 0.117 microm(2)). Synapses formed with spines had a more complex postsynaptic density than those formed with dendritic shafts. With respect to targets and synaptic type and size and morphology of synapses, the feedback projection from V4 to V2 resembles those of feedforward projections. The principal difference between the feedforward and feedback projection is in the lamina location of their terminal boutons. The concentration of the V4 projection on layer 1, where it forms asymmetric synapses mainly with spines, suggests that it excites the distal apical dendrites of pyramidal cells.  相似文献   

18.
The sources of GABAergic innervation to granule cells were studied to establish how the basic cortical circuit is implemented in the dentate gyrus. Five types of neuron having extensive local axons were recorded electrophysiologically in vitro and filled intracellularly with biocytin (Han et al., 1993). They were processed for electron microscopy in order to reveal their synaptic organization and postsynaptic targets, and to test whether their terminals contained GABA. (1) The hilar cell, with axon terminals in the commissural and association pathway termination field (HICAP cell), formed Gray's type 2 (symmetrical) synapses with large proximal dendritic shafts (n= 18), two-thirds of which could be shown to emit spines, and with small dendritic branches (n= 6). Other boutons of the HICAP neuron were found to make either Gray's type 1 (asymmetrical) synapses (n= 4) or type 2 synapses (n= 6) with dendritic spines. Using a highly sensitive silver-intensified immunogold method for the postembedding visualization of GABA immunoreactivity, both the terminals and the dendrites of the HICAP cell were found to be immunopositive, whereas its postsynaptic targets were GABA-immunonegative. The dendritic shafts of the HICAP cell received synapses from both GABA-negative and GABA-positive boutons; the dendritic spines which densely covered the main apical dendrite in the medial one-third of the molecular layer received synapses from GABA-negative boutons. (2) The hilar cell, with axon terminals distributed in conjunction with the perforant path termination field (HIPP cell), established type 2 synapses with distal dendritic shafts (n= 17), most of which could be shown to emit spines, small-calibre dendritic profiles (n= 2) and dendritic spines (n= 6), all showing characteristics of granule cell dendrites. The sparsely spiny dendrites of the HIPP cell were covered with many synaptic boutons on both their shafts and their spines. (3) The cell with soma in the molecular layer had an axon associated with the perforant path termination field (MOPP cell). This GABA-immunoreactive cell made type 2 synapses exclusively on dendritic shafts (n= 20), 60% of which could be shown to emit spines. The smooth dendrites of the MOPP cell were also restricted to the outer two-thirds of the molecular layer, where they received both GABA-negative and GABA-positive synaptic inputs. (4) The extensive axonal arborization of the dentate basket cell terminated mainly on somata (n= 26) and proximal dendrites (n= 9) in the granule cell layer, and some boutons made synapses on somatic spines (n= 6); all boutons established type 2 synapses. (5) The dentate axo-axonic cell established type 2 synapses (n= 14) exclusively on axon initial segments of granule cells in the granule cell layer, and on initial segments of presumed mossy cells in the hilus. The results demonstrate that granule cells receive inputs from the local circuit axons of at least five distinct types of dentate neuron terminating in mutually exclusive domains of the cell's surface in four out of five cases. Four of the cell types (HICAP cell, MOPP cell, basket cell, axo-axonic cell) contain GABA, and the HIPP cell may also be inhibitory. The specific local inhibitory neurons terminating in conjunction with particular excitatory amino acid inputs to the granule cells (types 1 – 3) are in a position to interact selectively with the specific inputs on the same dendritic segment. This arrangement provides a possibility for the independent regulation of the gain and long-term potentiation of separate excitatory inputs, through different sets of GABAergic local circuit neurons. The pairing of excitatory and inhibitory inputs may also provide a mechanism for the downward reseating of excitatory postsynaptic potentials, thereby extending their dynamic range.  相似文献   

19.
The pyramidal neuron in cerebral cortex following prenatal X-irradiation   总被引:1,自引:0,他引:1  
Pregnant rats were subjected to whole body X-irradiation amounting to 125 R, on gestational day 15. Cortical pyramidal neurons were examined in irradiated and control offspring at 4 weeks and 4 to 6 months postnatally. All gestationally irradiated rats developed ectopic cortex located below the corpus callosum adjacent to the caudate nucleus in the forebrain. With the rapid Golgi stain, counts were made of dendritic spines on the apical dendrites of layer 5 pyramidal cells in the normally-located cortex and compared with similar neurons in the ectopias. Dendritic spines were present on all pyramidal cells but spines were more sparse on ectopic pyramidal cells. Electron microscopic examination of ectopic and layered cortex in irradiated rats showed axodendritic synapses on the spines and shafts of the dendrites and axosomatic synapses, all of which were indistinguishable morphologically from synapses in control cortex. As a result of the observations made with the light and electron microscopes, it is concluded that the ectopic cortex may contain functional cells in spite of the abnormal location of the tissue.  相似文献   

20.
Projections from the ventral tegmental area (VTA) have been demonstrated to terminate in the prefrontal cortex (PFC) and to be dopaminergic and/or gamma-aminobutyric acidergic (GABAergic), forming a neural circuit implicated in certain memory and cognitive processes. However, it has not been determined whether gamma-aminobutyric acid (GABA) and dopamine (DA) are localized in certain types of axon terminals from the VTA to the PFC. To determine the synaptic characteristics made by postsynaptic prefrontal cortical structures and mesoprefrontal fibers utilizing either GABA or DA, we performed a double-labeling method for electron microscopy, in which we combined peroxidase markers for anterograde tract-tracing with postembedding immunogold labeling for tyrosine hydroxylase, DA, and GABA in rats. The anterograde tract-tracing studies showed that tegmentocortical fibers from the VTA terminated as both symmetric and asymmetric axon terminals with the predominantly symmetric synaptic type in the prelimbic cortex of the rat. Furthermore, a study using the combination of anterograde tract-tracing and postembedding immunocytochemistry indicated that tegmentocortical axon terminals forming symmetric synapses were either GABAergic or dopaminergic, whereas a small fraction of tegmentocortical terminals ending as asymmetric synapses were not immunopositive for DA or GABA. These findings indicate that the mesocortical projections to the PFC exert an inhibitory effect on the spontaneous activity of PFC cells via symmetric synapses that use DA and GABA as neurotransmitters and that these projections also have as yet unknown effects via asymmetric synapses using other neurotransmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号