首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Recent advances in circadian biology are identifying key genes and the molecular clockworks they command. These biochemical systems provide new tools for evaluating clinically observed, intrinsic circadian rhythm sleep disorders. A striking example was last year's discovery of a point mutation in a human clock gene that produces a sleep phase syndrome. This finding suggested that other intrinsic sleep disorders may have genetic underpinnings, and that less debilitating variations in sleep/wake behavior may be revealed by molecular screening of known clock genes in broader human populations.  相似文献   

2.
There is now reason to speculate that disruption of circadian rhythms of physiology and behavior may have broader implications for human health. A long history of clinical epidemiology in humans demonstrates an increased incidence of obesity, cardiovascular disease and cancer among shift workers. Clues from studies on the molecular genetics of circadian clock genes may offer insight into the molecular mechanisms underlying the circadian variation of metabolic coordination. A better understanding of the impact of circadian gene networks on nutrient balance at the molecular, cellular, and system levels promises to shed light on the emerging association between disorders of diabetes, obesity, sleep, and circadian timing.  相似文献   

3.
For many years, researchers have suggested that abnormalities in circadian rhythms may underlie the development of mood disorders such as bipolar disorder (BPD), major depression and seasonal affective disorder (SAD). Furthermore, some of the treatments that are currently employed to treat mood disorders are thought to act by shifting or "resetting" the circadian clock, including total sleep deprivation (TSD) and bright light therapy. There is also reason to suspect that many of the mood stabilizers and antidepressants used to treat these disorders may derive at least some of their therapeutic efficacy by affecting the circadian clock. Recent genetic, molecular and behavioral studies implicate individual genes that make up the clock in mood regulation. As well, important functions of these genes in brain regions and neurotransmitter systems associated with mood regulation are becoming apparent. In this review, the evidence linking circadian rhythms and mood disorders, and what is known about the underlying biology of this association, is presented.  相似文献   

4.
Circadian rhythm sleep disorders (CRSD) are characterized by misalignment between major sleep episode and desired sleep phase, or symptoms associated with internal desynchronization between endogenous circadian rhythm and overt sleep-wake rhythm. Endogenous circadian rhythm is mainly regulated by master circadian clock located in the suprachiasmatic nucleus. Light entrains the circadian clock according to a phase-response curve. Furthermore, social time cue affects human sleep-wake rhythm. Instructions concerning sleep hygiene including light environment play fundamental role for the treatment in CRSD. In addition, light therapy and oral melatonin administration have application to delayed sleep phase type. Diagnostic classification and treatment in each types of CRSD are reviewed in this article.  相似文献   

5.
Rhythmic variations in physiological and behavioural processes are mediated by both endogenous and exogenous factors. Endogenous factors include self-sustaining biological pacemakers or clocks which in the absence of strong external influences self-sustain periodic rhythms in such diverse physiological and psychological processes as core body temperature, food intake, cognitive performance and mood. Clocks with endogenous periods near or at 24 h (called circadian clocks from the Latin, circa dies, meaning about one day) have been documented from prokaryotes to single cell eukaryotes to multi-cellular, complex animals such as flies, rodents and humans. Over the past few years, a revolution in the understanding of the molecular basis of these clocks has led to the identification of a number of core clock genes and their proteins, and the development of elegant feedback models to explain the molecular gears of circadian clocks. At least eight human orthologs of mouse core clock genes have been identified, and polymorphisms in two of these, hClock and hPer2, have been implicated in human sleep disorders. Remarkably, knowledge of these core clock genes and the development of sophisticated reporter systems to monitor clock gene promoter activity have led to the astonishing observation that our body is actually composed of millions of cellular clocks and oscillators whose co-ordinated activity gives rise to pronounced daily, monthly, and seasonal rhythms in physiology and behaviour. An idea that is gaining favour is that our physical and mental well-being is probably determined by the appropriate phasing of these millions of cellular clocks with recurring, meaningful events in the environment.  相似文献   

6.
Human clock genes   总被引:8,自引:0,他引:8  
Rhythmic variations in physiological and behavioural processes are mediated by both endogenous and exogenous factors. Endogenous factors include self-sustaining biological pacemakers or clocks which in the absence of strong external influences self-sustain periodic rhythms in such diverse physiological and psychological processes as core body temperature, food intake, cognitive performance and mood. Clocks with endogenous periods near or at 24 h (called circadian clocks from the Latin, circa dies, meaning about one day) have been documented from prokaryotes to single cell eukaryotes to multi-cellular, complex animals such as flies, rodents and humans. Over the past few years, a revolution in the understanding of the molecular basis of these clocks has led to the identification of a number of core clock genes and their proteins, and the development of elegant feedback models to explain the molecular gears of circadian clocks. At least eight human orthologs of mouse core clock genes have been identified, and polymorphisms in two of these, hClock and hPer2, have been implicated in human sleep disorders. Remarkably, knowledge of these core clock genes and the development of sophisticated reporter systems to monitor clock gene promoter activity have led to the astonishing observation that our body is actually composed of millions of cellular clocks and oscillators whose co-ordinated activity gives rise to pronounced daily, monthly, and seasonal rhythms in physiology and behaviour. An idea that is gaining favour is that our physical and mental well-being is probably determined by the appropriate phasing of these millions of cellular clocks with recurring, meaningful events in the environment.  相似文献   

7.
Reid KJ  Burgess HJ 《Primary care》2005,32(2):449-473
Individuals who have circadian rhythm sleep disorders present with symptoms of insomnia or excessive sleepiness and complain of an inability to sleep at their desired time. Although the primary etiology of these disorders is a misalignment between the endogenous circadian clock and the external environment, social and behavioral factors can also play important roles in perpetuating or exacerbating these disorders. Currently, the management of circadian rhythm disorders is limited to the use of bright light and melatonin to realign the circadian clock with the desired sleep time.However, as the understanding of the physiologic and genetic basis of sleep and circadian rhythm regulation advances, even more practical and effective treatments should become available.  相似文献   

8.
Circadian rhythm evolved to allow organisms to coordinate intrinsic physiological functions in anticipation of recurring environmental changes. The importance of this coordination is exemplified by the tight temporal control of cardiac metabolism. Levels of metabolites, metabolic flux, and response to nutrients all oscillate in a time-of-day–dependent fashion. While these rhythms are affected by oscillatory behavior (feeding/fasting, wake/sleep) and neurohormonal changes, recent data have unequivocally demonstrated an intrinsic circadian regulation at the tissue and cellular level. The circadian clock — through a network of a core clock, slave clock, and effectors — exerts intricate temporal control of cardiac metabolism, which is also integrated with environmental cues. The combined anticipation and adaptability that the circadian clock enables provide maximum advantage to cardiac function. Disruption of the circadian rhythm, or dyssynchrony, leads to cardiometabolic disorders seen not only in shift workers but in most individuals in modern society. In this Review, we describe current findings on rhythmic cardiac metabolism and discuss the intricate regulation of circadian rhythm and the consequences of rhythm disruption. An in-depth understanding of the circadian biology in cardiac metabolism is critical in translating preclinical findings from nocturnal-animal models as well as in developing novel chronotherapeutic strategies.  相似文献   

9.
It is increasingly recognized that obesity is an important health problem. The mechanisms that underlie obesity have not been fully elucidated, and effective therapeutic approaches are currently of general interest. Recent studies have provided evidence that circadian clock is a crucial factor in the development of obesity and related metabolic disease. Genetic disruption of clock genes in mice displayed metabolic dysfunctions of specific tissues at distinct phases of the sleep/wake cycle. In addition, circadian desynchrony, a characteristic of shift work and short sleep, are associated with obesity in human. Here, I describe the advances in understanding the interrelationship among circadian disruption, sleep deprivation and obesity.  相似文献   

10.
11.
Recent human studies reveal a widespread association between short sleep and obesity. Two hypotheses, which are not mutually exclusive, might explain this association. First, genetic factors that reduce endogenous sleep times might also impact energy stores, an assertion that we confirmed in a previous study. Second, metabolism may be altered by chronic partial sleep deprivation. Here we address the second assertion by measuring the impact of long-term partial sleep deprivation on energy stores using Drosophila as a model. We subjected flies to long-term partial sleep deprivation via two different methods: a mechanical stimulus and a light stimulus. We then measured whole-body triglycerides and glycogen, two important sources of energy for the fly, and compared them to un-stimulated controls. We also measured changes in energy stores in response to a random circadian clock shift. Sex and line-dependent alterations in glycogen and/or triglyceride levels occurred in response to the circadian clock shift and in flies subjected to a single night of sleep deprivation using light. Thus, consistent with previous studies, our findings suggest that acute sleep loss and changes to the circadian clock can alter metabolism. Significant changes in energy stores were also observed when flies were subjected to chronic sleep loss via the mechanical stimulus, although not the light stimulus. Interestingly, mechanical stimulation resulted in the same change in energy stores even when it was not associated with sleep deprivation, suggesting that the changes are caused by stress rather than sleep loss. These findings emphasize the importance of taking stress into account when evaluating the relationship between sleep loss and metabolism.  相似文献   

12.
13.

Background

Various endocrine signals oscillate over the 24‐hour period and so does the responsiveness of target tissues. These daily oscillations do not occur solely in response to external stimuli but are also under the control of an intrinsic circadian clock.

Design

We searched the PubMed database to identify studies describing the associations of clock genes with endocrine diseases.

Results

Various human single nucleotide polymorphisms of brain and muscle ARNT‐like 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK) genes exhibited significant associations with type 2 diabetes mellitus. ARNTL2 gene expression and upregulation of BMAL1 and PER1 were associated with the development of type 1 diabetes mellitus. Thyroid hormones modulated PER2 expression in a tissue‐specific way, whereas BMAL1 regulated the expression of type 2 iodothyronine deiodinase in specific tissues. Adrenal gland and adrenal adenoma expressed PER1, PER2, CRY2, CLOCK and BMAL1 genes. Adrenal sensitivity to adrenocorticotrophin was also affected by circadian oscillations. A significant correlation between the expression of propio‐melanocorticotrophin and PER 2, as well as between prolactin and CLOCK, was found in corticotroph and lactosomatotroph cells, respectively, in the pituitary. Clock genes and especially BMAL1 showed an important role in fertility, whereas oestradiol and androgens exhibited tissue‐specific effects on clock gene expression. Metabolic disorders were also associated with circadian dysregulation according to studies in shift workers.

Conclusions

Clock genes are associated with various endocrine disorders through complex mechanisms. However, data on humans are scarce. Moreover, clock genes exhibit a tissue‐specific expression representing an additional level of regulation. Their specific role in endocrine disorders and their potential implications remain to be further clarified.  相似文献   

14.
《Annals of medicine》2013,45(4):208-220
Abstract

Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment.  相似文献   

15.
The length of the endogenous period of the human circadian clock (tau) is slightly greater than 24 hours. There are individual differences in tau, which influence the phase angle of entrainment to the light/dark (LD) cycle, and in doing so contribute to morningness-eveningness. We have recently reported that tau measured in subjects living on an ultradian LD cycle averaged 24.2 hours, and is similar to tau measured using different experimental methods. Here we report racial differences in tau. Subjects lived on an ultradian LD cycle (1.5 hours sleep, 2.5 hours wake) for 3 days. Circadian phase assessments were conducted before and after the ultradian days to determine the change in circadian phase, which was attributed to tau. African American subjects had a significantly shorter tau than subjects of other races. We also tested for racial differences in our previous circadian phase advancing and phase delaying studies. In the phase advancing study, subjects underwent 4 days of a gradually advancing sleep schedule combined with a bright light pulse upon awakening each morning. In the phase delaying study, subjects underwent 4 days of a gradually delaying sleep schedule combined with evening light pulses before bedtime. African American subjects had larger phase advances and smaller phase delays, relative to Caucasian subjects. The racial differences in tau and circadian phase shifting have important implications for understanding normal phase differences between individuals, for developing solutions to the problems of jet lag and shift work, and for the diagnosis and treatment of circadian rhythm based sleep disorders such as advanced and delayed sleep phase disorder.  相似文献   

16.
《Annals of medicine》2013,45(4):221-232
Abstract

The circadian clock is an endogenous timekeeper system that controls the daily rhythms of a variety of physiological processes. Accumulating evidence indicates that genetic changes or unhealthy lifestyle can lead to a disruption of circadian homeostasis, which is a risk factor for severe dysfunctions and pathologies including cancer. Cell cycle, proliferation, and cell death are closely intertwined with the circadian clock, and thus disruption of circadian rhythms appears to be linked to cancer development and progression. At the molecular level, the cell cycle machinery and the circadian clocks are controlled by similar mechanisms, including feedback loops of genes and protein products that display periodic activation and repression. Here, we review the circadian rhythmicity of genes associated with the cell cycle, proliferation, and apoptosis, and we highlight the potential connection between these processes, the circadian clock, and neoplastic transformations. Understanding these interconnections might have potential implications for the prevention and therapy of malignant diseases.  相似文献   

17.
Anesthesia and surgery are associated with fatigue and sleep disorders, suggestive of disturbance of the circadian rest-activity rhythm. Previous studies on circadian rhythm disturbance were focused on patients undergoing general anesthesia associated with surgery. This does not permit one to draw valid conclusions about the effects of general anesthesia per se on circadian rhythms. Our study was set up to determine the impact of a hypnotic dose of propofol on the circadian rest-activity rhythm in humans under real-life conditions. Seventeen healthy subjects scheduled to receive light propofol anesthesia for ambulatory colonoscopy were investigated. Their rest-activity rhythms were assessed using actigraphic monitoring. Diurnal rest was increased, whereas nocturnal sleep was unchanged in the days following anesthesia. Nonparametric analyses showed a decrease in the strength of coupling of the rhythm to stable environmental zeitgebers and increase of fragmentation of the rhythm after anesthesia. Light general anesthesia itself impairs synchronization of the circadian rest-activity rhythm to local time in patients by acting directly on the circadian clock.  相似文献   

18.
The light-entrainable circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus regulates the timing and consolidation of sleep by generating a paradoxical rhythm of sleep propensity; the circadian drive for wakefulness peaks at the end of the day spent awake, ie close to the onset of melatonin secretion at 21.00-22.00 h and the circadian drive for sleep crests shortly before habitual waking-up time. With advancing age, ie after early adulthood, sleep consolidation declines, and time of awakening and the rhythms of body temperature, plasma melatonin and cortisol shift to an earlier clock hour. The variability of the phase relationship between the sleep-wake cycle and circadian rhythms increases, and in old age sleep is more susceptible to internal arousing stimuli associated with circadian misalignment. The propensity to awaken from sleep advances relative to the body temperature nadir in older people, a change that is opposite to the phase delay of awakening relative to internal circadian rhythms associated with morningness in young people. Age-related changes do not appear to be associated with a shortening of the circadian period or a reduction of the circadian drive for wake maintenance. These changes may be related to changes in the sleep process itself, such as reductions in slow-wave sleep and sleep spindles as well as a reduced strength of the circadian signal promoting sleep in the early morning hours. Putative mediators and modulators of circadian sleep regulation are discussed.  相似文献   

19.
The circadian clock is an endogenous biological timekeeping system that controls various physiological and cellular processes with a 24 h rhythm. The crosstalk among the circadian clock, cellular metabolism, and cellular redox state has attracted much attention. To elucidate this crosstalk, chemical compounds have been used to perturb cellular metabolism and the redox state. However, an electron mediator that facilitates extracellular electron transfer (EET) has not been used to study the mammalian circadian clock due to potential cytotoxic effects of the mediator. Here, we report evidence that a cytocompatible redox polymer pMFc (2-methacryloyloxyethyl phosphorylcholine-co-vinyl ferrocene) can be used as the mediator to study the mammalian circadian clock. EET mediated by oxidized pMFc (ox-pMFc) extracted intracellular electrons from human U2OS cells, resulting in a longer circadian period. Analyses of the metabolome and intracellular redox species imply that ox-pMFc receives an electron from glutathione, thereby inducing pentose phosphate pathway activation. These results suggest novel crosstalk among the circadian clock, metabolism, and redox state. We anticipate that EET mediated by a redox cytocompatible polymer will provide new insights into the mammalian circadian clock system, which may lead to the development of new treatments for circadian clock disorders.

Cytocompatible redox polymer pMFc altered the cellular redox state and metabolism, resulting in a longer circadian period.  相似文献   

20.
The timing and synchronization of human circadian rhythms is important for health and well-being. Some individuals, for reasons that remain unclear, display less resilience or flexibility in their ability to synchronize to the 24-hour world and are thus diagnosed with a circadian schedule disorder. The objective of this article is to briefly introduce concepts about human circadian timing and to review what is known about chronic, long-term circadian schedule disorders such as delayed sleep phase syndrome, advanced sleep phase syndrome, irregular sleep-wake patterns, and non-24-hour sleep-wake disorder. Practical considerations for the clinician caring for these individuals are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号