首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of invariant CD1d-dependent NK T cells (iNKT cells) in vivo through administration of the glycolipid ligand alpha-galactosylceramide (alpha-GalCer) or the sphingosine-truncated alpha-GalCer analog OCH leads to CD40 signaling as well as the release of soluble molecules including type 1 and gamma interferons that contribute to DC maturation. This process enhances T cell immunity to antigens presented by the DC. The adjuvant activity is further amplified if APCs are stimulated through Toll-like receptor 4, suggesting that iNKT cell signals can amplify maturation induced by microbial stimuli. The adjuvant activity of alpha-GalCer enhances both priming and boosting of CD8(+) T cells to coadministered peptide or protein antigens, including a peptide encoding the clinically relevant, HLA-A2-restricted epitope of the human tumor antigen NY-ESO-1. Importantly, alpha-GalCer was used to induce CD8(+) T cells to antigens delivered orally, despite the fact that this route of administration is normally associated with blunted responses. Only T cell responses induced in the presence of iNKT cell stimulation, whether by the i.v. or oral route, were capable of eradicating established tumors. Together these data highlight the therapeutic potential of iNKT cell ligands in vaccination strategies, particularly "heterologous prime-boost" strategies against tumors, and provide evidence that iNKT cell stimulation may be exploited in the development of oral vaccines.  相似文献   

2.
Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic model for T cell-mediated autoimmunity. V(alpha)14 natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the nonpolymorphic major histocompatibility complex (MHC) class I-like protein CD1d. Here, we show that activation of V(alpha)14 NKT cells by the glycosphingolipid alpha-galactosylceramide (alpha-GalCer) protects susceptible mice against EAE. beta-GalCer, which binds CD1d but is not recognized by NKT cells, failed to protect mice against EAE. Furthermore, alpha-GalCer was unable to protect CD1d knockout (KO) mice against EAE, indicating the requirement for an intact CD1d antigen presentation pathway. Protection of disease conferred by alpha-GalCer correlated with its ability to suppress myelin antigen-specific Th1 responses and/or to promote myelin antigen-specific Th2 cell responses. alpha-GalCer was unable to protect IL-4 KO and IL-10 KO mice against EAE, indicating a critical role for both of these cytokines. Because recognition of alpha-GalCer by NKT cells is phylogenetically conserved, our findings have identified NKT cells as novel target cells for treatment of inflammatory diseases of the central nervous system.  相似文献   

3.
We have previously reported that hepatitis B virus (HBV)-specific CD8(+) cytotoxic T lymphocytes and CD4(+) helper T lymphocytes can inhibit HBV replication in the liver of HBV transgenic mice by secreting interferon (IFN)-gamma when they recognize viral antigen. To determine whether an activated innate immune system can also inhibit HBV replication, in this study we activated natural killer T (NKT) cells in the liver of HBV transgenic mice by a single injection of alpha-galactosylceramide (alpha-GalCer), a glycolipid antigen presented to Valpha14(+)NK1.1(+) T cells by the nonclassical major histocompatibility complex class I-like molecule CD1d. Within 24 h of alpha-GalCer injection, IFN-gamma and IFN-alpha/beta were detected in the liver of HBV transgenic mice and HBV replication was abolished. Both of these events were temporally associated with the rapid disappearance of NKT cells from the liver, presumably reflecting activation-induced cell death, and by the recruitment of activated NK cells into the organ. In addition, prior antibody-mediated depletion of CD4(+) and CD8(+) T cells from the mice did not diminish the ability of alpha-GalCer to trigger the disappearance of HBV from the liver, indicating that conventional T cells were not downstream mediators of this effect. Finally, the antiviral effect of alpha-GalCer was inhibited in mice that are genetically deficient for either IFN-gamma or the IFN-alpha/beta receptor, indicating that most of the antiviral activity of alpha-GalCer is mediated by these cytokines. Based on these results, we conclude that alpha-GalCer inhibits HBV replication by directly activating NKT cells and by secondarily activating NK cells to secrete antiviral cytokines in the liver. In view of these findings, we suggest that, if activated, the innate immune response, like the adaptive immune response, has the potential to control viral replication during natural HBV infection. In addition, the data suggest that therapeutic activation of NKT cells may represent a new strategy for the treatment of chronic HBV infection.  相似文献   

4.
Natural killer T (NKT) cells recognize glycolipid antigens presented by the MHC class I-related glycoprotein CD1d. The in vivo dynamics of the NKT cell population in response to glycolipid activation remain poorly understood. Here, we show that a single administration of the synthetic glycolipid alpha-galactosylceramide (alpha-GalCer) induces long-term NKT cell unresponsiveness in mice. NKT cells failed to proliferate and produce IFN-gamma upon alpha-GalCer restimulation but retained the capacity to produce IL-4. Consequently, we found that activation of anergic NKT cells with alpha-GalCer exacerbated, rather than prevented, B16 metastasis formation, but that these cells retained their capacity to protect mice against experimental autoimmune encephalomyelitis. NKT cell anergy was induced in a thymus-independent manner and maintained in an NKT cell-autonomous manner. The anergic state could be broken by IL-2 and by stimuli that bypass proximal TCR signaling events. Collectively, the kinetics of initial NKT cell activation, expansion, and induction of anergy in response to alpha-GalCer administration resemble the responses of conventional T cells to strong stimuli such as superantigens. Our findings have important implications for the development of NKT cell-based vaccines and immunotherapies.  相似文献   

5.
Infection, sepsis, and multiple organ failure continue to be significant factors leading to morbidity and mortality after severe injury. Studies by our laboratory and others have identified injury-induced defects in both innate and adaptive components of host defense. We previously reported that CD1d-restricted natural killer T (NKT) cells actively suppress effector T-cell immunity after burn injury via production of excess IL-4 and failure to produce IFN-gamma. alpha-Galactosylceramide (alpha-GalCer) is a synthetic NKT cell-specific ligand presented exclusively to invariant NKT cells and is known to improve immunity against tumors and infection by promoting IFN-gamma production. Here, we confirmed the role of Valpha14-Jalpha281 invariant NKT cells in mouse model of burn injury-induced suppression of T-cell immunity and further asked whether alpha-GalCer can improve immunity after injury via similar mechanisms. We observed that systemic treatment with alpha-GalCer prevented the injury-induced suppression of Ag-specific T-cell responsiveness both in vitro and in vivo and restored the ability of splenic lymphocytes to produce both IL-2 and IFN-gamma. Moreover, burn injury was associated with diminished expression of major histocompatibility complex II and CD40 on antigen presenting cells that were both restored by alpha-GalCer treatment to levels seen in sham-treated mice. Collectively, these data suggest that, via manipulation of the NKT cell population, we may be able to maintain T-cell function and improve host defense after burn injury.  相似文献   

6.
Programmed death 1 (PD-1) signaling through its ligands, PD-L1 and PD-L2, has been known to negatively regulate T-cell responses. In addition, PD-L1 has been shown to interact with B7-1 costimulatory molecule to inhibit T-cell responses. Extensive studies have shown that PD-1/PD-L blockade restores exhausted T cells during chronic viral infections and tumors. In this study, we evaluated the effects of soluble PD-1 (sPD-1) as a blockade of PD-1 and PD-L1 on vaccine-elicited antigen-specific T-cell responses in mice. Coadministration of sPD-1 DNA with human papilloma virus-16 E7 DNA vaccine significantly enhanced E7-specific CD8(+) T-cell responses, resulting in potent antitumor effects against E7-expressing tumors. We also found that sPD-1, codelivered with adenovirus-based vaccine, could increase antigen-specific CD8(+) T-cell responses, indicating vaccine type-independent adjuvant effect of sPD-1. In addition, the frequency and functional activity of adoptively transferred OT-I cells, particularly memory CD8(+) T cells, were augmented by coadministration of sPD-1 DNA, which was closely associated with increased T-cell proliferation and reduced T-cell apoptosis through upregulation of Bcl-xL expression during T-cell activation. Codelivery of sPD-1 DNA also enhanced maturation of dendritic cells (DCs) in vivo which was accompanied by upregulation of DC maturation markers such as major histocompatibility complex class II. Taken together, our findings show that sPD-1 potently enhances codelivered antigen-specific CD8(+) T-cell responses and in vivo maturation of DCs during activation of naive CD8(+) T cells, suggesting that an immunization strategy with sPD-1 as an adjuvant can be used to increase antigen-specific T-cell immunity elicited by vaccination.  相似文献   

7.
The natural killer T (NKT) cell ligand alpha-galactosylceramide (alpha-GalCer) exhibits profound antitumor activities in vivo that resemble interleukin (IL)-12-mediated antitumor activities. Because of these similarities between the activities of alpha-GalCer and IL-12, we investigated the involvement of IL-12 in the activation of NKT cells by alpha-GalCer. We first established, using purified subsets of various lymphocyte populations, that alpha-GalCer selectively activates NKT cells for production of interferon (IFN)-gamma. Production of IFN-gamma by NKT cells in response to alpha-GalCer required IL-12 produced by dendritic cells (DCs) and direct contact between NKT cells and DCs through CD40/CD40 ligand interactions. Moreover, alpha-GalCer strongly induced the expression of IL-12 receptor on NKT cells from wild-type but not CD1(-/-) or Valpha14(-/-) mice. This effect of alpha-GalCer required the production of IFN-gamma by NKT cells and production of IL-12 by DCs. Finally, we showed that treatment of mice with suboptimal doses of alpha-GalCer together with suboptimal doses of IL-12 resulted in strongly enhanced natural killing activity and IFN-gamma production. Collectively, these findings indicate an important role for DC-produced IL-12 in the activation of NKT cells by alpha-GalCer and suggest that NKT cells may be able to condition DCs for subsequent immune responses. Our results also suggest a novel approach for immunotherapy of cancer.  相似文献   

8.
It is thought that both helper and effector functions of CD4(+) T cells contribute to protective immunity to blood stage malaria infection. However, malaria infection does not induce long-term immunity and its mechanisms are not defined. In this study, we show that protective parasite-specific CD4(+) T cells were depleted after infection with both lethal and nonlethal species of rodent PLASMODIUM: It is further shown that the depletion is confined to parasite-specific T cells because (a) ovalbumin (OVA)-specific CD4(+) T cells are not depleted after either malaria infection or direct OVA antigen challenge, and (b) the depletion of parasite-specific T cells during infection does not kill bystander OVA-specific T cells. A significant consequence of the depletion of malaria parasite-specific CD4(+) T cells is impaired immunity, demonstrated in mice that were less able to control parasitemia after depletion of transferred parasite-specific T cells. Using tumor necrosis factor (TNF)-RI knockout- and Fas-deficient mice, we demonstrate that the depletion of parasite-specific CD4(+) T cells is not via TNF or Fas pathways. However, in vivo administration of anti-interferon (IFN)-gamma antibody blocks depletion, suggesting that IFN-gamma is involved in the process. Taken together, these data suggest that long-term immunity to malaria infection may be affected by an IFN-gamma-mediated depletion of parasite-specific CD4(+) T cells during infection. This study provides further insight into the nature of immunity to malaria and may have a significant impact on approaches taken to develop a malaria vaccine.  相似文献   

9.
Concomitant tumor immunity describes immune responses in a host with a progressive tumor that rejects the same tumor at a remote site. In this work, concomitant tumor immunity was investigated in mice bearing poorly immunogenic B16 melanoma. Progression of B16 tumors did not spontaneously elicit concomitant immunity. However, depletion of CD4(+) T cells in tumor-bearing mice resulted in CD8(+) T cell-mediated rejection of challenge tumors given on day 6. Concomitant immunity was also elicited by treatment with cyclophosphamide or DTA-1 monoclonal antibody against the glucocorticoid-induced tumor necrosis factor receptor. Immunity elicited by B16 melanoma cross-reacted with a distinct syngeneic melanoma, but not with nonmelanoma tumors. Furthermore, CD8(+) T cells from mice with concomitant immunity specifically responded to major histocompatibility complex class I-restricted epitopes of two melanocyte differentiation antigens. RAG1(-/-) mice adoptively transferred with CD8(+) and CD4(+) T cells lacking the CD4(+)CD25(+) compartment mounted robust concomitant immunity, which was suppressed by readdition of CD4(+)CD25(+) cells. Naturally occurring CD4(+)CD25(+) T cells efficiently suppressed concomitant immunity mediated by previously activated CD8(+) T cells, demonstrating that precursor regulatory T cells in naive hosts give rise to effective suppressors. These results show that regulatory T cells are the major regulators of concomitant tumor immunity against this weakly immunogenic tumor.  相似文献   

10.
Dendritic cell-based (DC-based) immunotherapy represents a promising approach to the prevention and treatment of many diseases, including cancer, but current strategies have met with only limited success in clinical and preclinical studies. Previous studies have demonstrated that a TAT peptide derived from the HIV TAT protein has the ability to transduce peptides or proteins into various cells. Here, we describe the use of TAT-mediated delivery of T cell peptides into DCs to prolong antigen presentation and enhance T cell responses. While immunization of mice with DCs pulsed with an antigenic peptide derived from the human TRP2 protein generated partial protective immunity against B16 tumor, immunization with DCs loaded with a TAT-TRP2 peptide resulted in complete protective immunity, as well as significant inhibition of lung metastases in a 3-day tumor model. Although both DC/TRP2 and DC/TAT-TRP2 immunization increased the number of TRP2-specific CD8(+) T cells detected by K(b)/TRP2 tetramers, T cell activity elicited by DC/TAT-TRP2 was three- to tenfold higher than that induced by DC/TRP2. Furthermore, both CD4(+) and CD8(+) T cells were required for antitumor immunity demonstrated by experiments with antibody depletion of subsets of T cells, as well as with various knockout mice. These results suggest that a TAT-mediated antigen delivery system may have important clinical applications for cancer therapy.  相似文献   

11.
We have previously shown that intradermal coadministration of DNA encoding Bcl-x(L), an antiapoptotic protein, with DNA encoding E7 antigen linked to the sorting signal of the lysosome-associated membrane protein type 1 (Sig/E7/LAMP-1) prolongs dendritic cell life and enhances antigen presentation through the MHC class I and II pathways. In the current study, we compared this approach with a conventional DNA prime-vaccinia boost protocol on the basis of their ability to generate antigen-specific CD8(+) memory T cells and longterm antitumor effects against an E7-expressing tumor. Mice primed and boosted with Sig/E7/LAMP-1 DNA mixed with Bcl-x(L) DNA generated significantly higher numbers of E7-specific CD8(+) memory T cells and a better long-term protective antitumor effect compared with mice primed with Sig/E7/LAMP-1 DNA and boosted with Sig/E7/LAMP-1 vaccinia (Vac-Sig/E7/LAMP-1). Furthermore, coadministration of Sig/E7 /LAMP-1 DNA mixed with Bcl-x(L) DNA also generated higher avidity E7-specific CD8(+) T cells than did vaccination with Sig/E7/LAMP-1 DNA followed by a Vac-Sig/E7/LAMP-1 booster. Our results indicate that coadministration of a DNA vaccine employing intracellular targeting strategies and a DNA encoding antiapoptotic proteins may potentially generate a higher number of memory CD8(+) T cells and better long-term protective antitumor effects compared with the conventional DNA prime-vaccinia boost regimen.  相似文献   

12.
Dendritic cell (DC) maturation is an innate response that leads to adaptive immunity to coadministered proteins. To begin to identify underlying mechanisms in intact lymphoid tissues, we studied alpha-galactosylceramide. This glycolipid activates innate Valpha14(+) natural killer T cell (NKT) lymphocytes, which drive DC maturation and T cell responses to ovalbumin antigen. Hours after giving glycolipid i.v., tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma were released primarily by DCs. These cytokines induced rapid surface remodeling of DCs, including increased CD80/86 costimulatory molecules. Surprisingly, DCs from CD40(-/-) and CD40L(-/-) mice did not elicit CD4(+) and CD8(+) T cell immunity, even though the DCs exhibited presented ovalbumin on major histocompatibility complex class I and II products and expressed high levels of CD80/86. Likewise, an injection of TNF-alpha up-regulated CD80/86 on DCs, but CD40 was required for immunity. CD40 was needed for DC interleukin (IL)-12 production, but IL-12p40(-/-) mice generated normal ovalbumin-specific responses. Therefore, the link between innate and adaptive immunity via splenic DCs and innate NKT cells has several components under distinct controls: antigen presentation in the steady state, increases in costimulatory molecules dependent on inflammatory cytokines, and a distinct CD40/CD40L signal that functions together with antigen presentation ("signal one") and costimulation ("signal two") to generate functioning CD4(+) T helper cell 1 and CD8(+) cytolytic T lymphocytes.  相似文献   

13.
Exposure of BALB/c mice to mosquitoes infected with irradiated Plasmodium berghei confers protective immunity against subsequent sporozoite challenge. Immunized mice challenged with viable sporozoites develop parasitemia when treated orally with substrate inhibitors of nitric oxide synthase (NOS). This suggests that the production of nitric oxide (NO) prevents the development of exoerythrocytic stages of malaria in liver. Liver tissue from immunized mice expressed maximal levels of mRNA for inducible NOS (iNOS) between 12 and 24 h after challenge with sporozoites. Intraperitoneal injection of neutralizing monoclonal antibody against interferon gamma (IFN-gamma) or in vivo depletion of CD8+ T cells, but not CD4+ T cells, at the time of challenge blocked expression of iNOS mRNA and ablated protection in immunized mice. These results show that both CD8+ T cells and IFN-gamma are important components in the regulation of iNOS in liver which contributes to the protective response of mice immunized with irradiated malaria sporozoites. IFN-gamma, likely provided by malaria- specific CD8+ T cells, induces liver cells, hepatocytes and/or Kupffer cells, to produce NO for the destruction of infected hepatocytes or the parasite within these cells.  相似文献   

14.
Although CD4(+) T cells have been shown to mediate protective cellular immunity against respiratory virus infections, the underlying mechanisms are poorly understood. For example, although phenotypically distinct populations of memory CD4(+) T cells have been identified in different secondary lymphoid tissues, it is not known which subpopulations mediate protective cellular immunity. In this report, we demonstrate that virus-specific CD4(+) T cells persist in the lung tissues and airways for several months after Sendai virus infection of C57BL/6 mice. A large proportion of these cells possess a highly activated phenotype (CD44(hi), CD62L(lo), CD43(hi), and CD25(hi)) and express immediate effector function as indicated by the production of interferon gamma after a 5-h restimulation in vitro. Furthermore, intratracheal adoptive transfer of lung memory cells into beta2m-deficient mice demonstrated that lung-resident virus-specific CD4(+) T cells mediated a substantial degree of protection against secondary virus infection. Taken together, these data demonstrate that activated memory CD4(+) T cells persisting at mucosal sites play a critical role in mediating protective cellular immunity.  相似文献   

15.
Natural killer (NK) T cells initiate potent antitumor responses when stimulated by exogenous factors such as interleukin (IL)-12 or alpha-galactosylceramide (alpha-GalCer), however, it is not clear whether this reflects a physiological role for these cells in tumor immunity. Through adoptive transfer of NK T cells from wild-type to NK T cell-deficient (T cell receptor [TCR] Jalpha281-/-) mice, we demonstrate a critical role for NK T cells in immunosurveillance of methylcholanthrene (MCA)-induced fibrosarcomas, in the absence of exogenous stimulatory factors. Using the same approach with gene-targeted and/or antibody-depleted donor or recipient mice, we have shown that this effect depends on CD1d recognition and requires the additional involvement of both NK and CD8+ T cells. Interferon-gamma production by both NK T cells and downstream, non-NK T cells, is essential for protection, and perforin production by effector cells, but not NK T cells, is also critical. The protective mechanisms in this more physiologically relevant system are distinct from those associated with alpha-GalCer-induced, NK T cell-mediated, tumor rejection. This study demonstrates that, in addition to their importance in tumor immunotherapy induced by IL-12 or alpha-GalCer, NK T cells can play a critical role in tumor immunosurveillance, at least against MCA-induced sarcomas, in the absence of exogenous stimulation.  相似文献   

16.
17.
The development of CD1d-dependent natural killer T (NKT) cells is poorly understood. We have used both CD1d/alpha-galactosylceramide (CD1d/alphaGC) tetramers and anti-NK1.1 to investigate NKT cell development in vitro and in vivo. Confirming the thymus-dependence of these cells, we show that CD1d/alphaGC tetramer-binding NKT cells, including NK1.1(+) and NK1.1(-) subsets, develop in fetal thymus organ culture (FTOC) and are completely absent in nude mice. Ontogenically, CD1d/alphaGC tetramer-binding NKT cells first appear in the thymus, at day 5 after birth, as CD4(+)CD8(-)NK1.1(-)cells. NK1.1(+) NKT cells, including CD4(+) and CD4(-)CD8(-) subsets, appeared at days 7-8 but remained a minor subset until at least 3 wk of age. Using intrathymic transfer experiments, CD4(+)NK1.1(-) NKT cells gave rise to NK1.1(+) NKT cells (including CD4(+) and CD4(-) subsets), but not vice-versa. This maturation step was not required for NKT cells to migrate to other tissues, as NK1.1(-) NKT cells were detected in liver and spleen as early as day 8 after birth, and the majority of NKT cells among recent thymic emigrants (RTE) were NK1.1(-). Further elucidation of this NKT cell developmental pathway should prove to be invaluable for studying the mechanisms that regulate the development of these cells.  相似文献   

18.
19.
Previous studies have shown that secondary lymphoid chemokine, CCL21, can be used for modulation of tumor-specific immune responses. Here, using B16F0 melanoma cells stably expressing CCL21 under the control of cytomegalovirus and ubiquitin promoters, we showed that CCL21-activated immune responses depend on the amount of melanoma-derived chemokine, which, in turn, depends on the strength of the promoter. We showed that ubiquitin promoter-driven expression of CCL21 enabled massive infiltration of tumors with CD4(+)CD25(-), CD8(+) T lymphocytes, and CD11c(+) dendritic cells, and consequent activation of cellular and humoral immune responses sufficient for complete rejection of CCL21-positive melanomas within 3 weeks in all tumor-inoculated mice. Mice that rejected CCL21-positive tumors acquired protective immunity against melanoma, which was transferable to naive mice via splenocytes and central memory T cells. Moreover, melanoma-derived CCL21 facilitated immune-mediated remission of preestablished, distant wild-type melanomas. Overall, these results suggest that elevated levels of tumor-derived CCL21 are required for the activation of strong melanoma-specific immune responses and generation of protective immunologic memory. They also open new perspectives for the development of novel vaccination strategies against melanoma, which use intratumoral delivery of the optimized CCL21-encoding vectors in conjunction with DNA-based vaccines.  相似文献   

20.
Human natural killer (NK) T cells are unique T lymphocytes that express an invariant T cell receptor (TCR) Valpha24-Vbeta11 and have been implicated to play a role in various diseases. A subset of NKT cells express CD4 and hence are potential targets for human immunodeficiency virus (HIV)-1 infection. We demonstrate that both resting and activated human Valpha24(+) T cells express high levels of the HIV-1 coreceptors CCR5 and Bonzo (CXCR6), but low levels of CCR7, as compared with conventional T cells. Remarkably NKT cells activated with alpha-galactosylceramide (alpha-GalCer)-pulsed dendritic cells were profoundly more susceptible to infection with R5-tropic, but not X4-tropic, strains of HIV-1, compared with conventional CD4(+) T cells. Furthermore, resting CD4(+) NKT cells were also more susceptible to infection. After initial infection, HIV-1 rapidly replicated and depleted the CD4(+) subset of NKT cells. In addition, peripheral blood NKT cells were markedly and selectively depleted in HIV-1 infected individuals. Although the mechanisms of this decline are not clear, low numbers or absence of NKT cells may affect the course of HIV-1 infection. Taken together, our findings indicate that CD4(+) NKT cells are directly targeted by HIV-1 and may have a potential role during viral transmission and spread in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号