首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of mutations in the Src homology 2 (SH2) domain of the BCR/ABL oncogene on leukemogenesis was tested in a quantitative murine bone marrow transduction/transplantation assay that accurately models human Philadelphia-positive B-lymphoid leukemia and chronic myeloid leukemia (CML). The SH2 domain was not required for induction of B-lymphoid leukemia in mice by BCR/ABL. Under conditions where the p190 and p210 forms of BCR/ABL induce fatal CML-like myeloproliferative disease within 4 weeks, p210 SH2 mutants induced CML-like disease in some mice only after a significant delay, with other recipients succumbing to B-lymphoid leukemia instead. In contrast, p190 BCR/ABL SH2 point and deletion mutants rapidly induced CML-like disease. These results provide the first direct evidence of significant differences in cell signaling by the Bcr/Abl tyrosine kinase between these distinct leukemias. Contrary to previous observations, high levels of phosphatidylinositol 3-kinase (PI 3-kinase) activity in primary malignant lymphoblasts and myeloid cells from recipients of marrow transduced with the BCR/ABL SH2 mutants were found. Hence, the decreased induction of CML-like disease by the p210 BCR/ABL SH2 mutants is not due to impaired activation of PI 3-kinase.  相似文献   

2.
Phosphotyrosine cannot be detected on normal human ABL protein-tyrosine kinases, but activated oncogenic forms of the human ABL protein are phosphorylated on tyrosine in vivo. Activation of ABL can occur by substitution of the ABL first exon with breakpoint cluster region (BCR) sequences or by deletion of the noncatalytic SH3 (src homology region 3) domain. An alternative mode for the activation of the ABL kinases is hyperexpression at greater than 500-fold over endogenous levels. This is not a consequence of transphosphorylation of the hyperexpressed ABL molecules. ABL proteins translated in vitro lack phosphotyrosine, but tyrosine kinase activity is uncovered after immunoprecipitation and removal of lysate components. The rates of dephosphorylation of ABL and BCR-ABL fusion protein by phosphotyrosine-specific phosphatases are approximately the same. These combined results indicate that inhibition of ABL activity is reversible and suggest that a cellular component interacts noncovalently with ABL to inhibit its autophosphorylation.  相似文献   

3.
4.
Chronic myelogenous leukemia (CML) is a myeloproliferative disorder associated with the Philadelphia chromosome (Ph1) in more than 95% of these patients. The Ph1 and the resulting BCR-ABL fused genes are markers for this type of leukemia. In CML, the product of the fused BCR- ABL gene is typically a protein of approximately 2,000 amino acids termed P210 BCR-ABL. We have developed an assay for the BCR-ABL protein involving Western blotting of circulating white blood cells (WBC) with an anti-ABL monoclonal antibody that can detect P210 BCR-ABL and P145 ABL in peripheral blood cells from chronic phase Ph1-positive leukemia patients. This assay was used to analyze the BCR-ABL protein content of circulating WBC from CML patients before and after various treatments. In parallel to changes in percentages of Ph1-positive blood cells as determined by cytogenetic analyses of bone marrow samples, BCR-ABL protein expression in blood cells decreased or increased as patients entered remission or underwent relapse. Of interest, six Ph1-negative CML patients were BCR-ABL protein-positive. All except one had a rearrangement in the major breakpoint cluster region and that patient expressed P185 BCR-ABL and not P210. Our results indicate that the BCR- ABL Western blotting assay has clinical applications for both diagnosis and prospective evaluation of Ph1-positive and Ph1-negative CML patients.  相似文献   

5.
6.
7.
8.
9.
Aim: Through a preliminary test on a novel protein containing an HIV1-TAT domain and a SH3 domain of oncoprotein P210(BCR-ABL) (we named it after PTD-BCR/ABL SH3), we found that this protein shows inhibition activity of hepatocarcinoma cell HepG-2. The purpose of the present study is to explore the biological behavior of PTD-BCR/ABL SH3 fusion protein in hepatocarcinoma cells in vitro and in vivo. Methods: HepG-2 cells were cocultured with the fusion protein for the indicated time and studied in vitro by immunocytochemistry staining to demonstrate the localization of the protein, light and electron microscope observation in morphology research, MTT assay to draw a growth curve and to analyze inhibition ratio, DNA ladder and TUNEL staining to study apoptosis. Nude mice bearing HepG-2 tumors were used to test the antitumor activity of the fusion protein. Results: PTD-BCR/ABL SH3 fusion protein successfully entered into HepG-2 cells and localized in the nucleus. The protein had shown high cytotoxity through inducing HepG-2 cells to apoptosis, and in vivo. The growth speed of tumors in the treatment group was distinctly slower than those in the control group, and the survival time of mice in the treatment group was longer than those in the control group. The growth of the tumors had been inhibited in the treatment group, while other tissues, such as heart, liver, lung and kidney displayed normal morphology. Conclusion: PTD-BCR/ABL SH3 fusion protein displays significant inhibitory activity of inducing hepatocarcinoma HepG-2 cells to apoptosis in vitro. It also showed therapeutic effects in vivo.  相似文献   

10.
11.
12.
13.
14.
Tyrosine phosphorylation of CRKL in Philadelphia+ leukemia   总被引:6,自引:7,他引:6  
The chimeric BCR/ABL protein is characteristic of Philadelphia (Ph)+ leukemia because it is the direct product of the Ph translocation and it has been shown to play a causal role in the genesis of leukemia. The BCR/ABL protein exhibits a deregulated tyrosine-kinase activity capable of phosphorylating different cellular substrates in vivo and in vitro. CRKL, an adaptor protein consisting of SH2 and SH3 domains in the absence of a catalytic domain, is one potential in vivo substrate of BCR/ABL. Previous experiments have shown that CRKL is phosphorylated on tyrosine in the chronic myelogenous leukemia (CML) cell line K562 and that CRKL is a substrate for ABL and for BCR/ABL in COS-1 cells. In the current study, we show that in peripheral blood cells a direct correlation exists between the presence of BCR/ABL and the phosphorylation status of CRKL. In Ph- peripheral blood cells, CRKL is present only in the nonphosphorylated form. In contrast, all BCR/ABL+ CML and acute lymphoblastic leukemia patient samples examined showed clear tyrosine-phosphorylation of CRKL. This result strongly suggests that CRKL is a biologically significant substrate for BCR/ABL and is likely to play a major role in the development of Ph+ leukemia.  相似文献   

15.
16.
Cytogenetic and molecular genetic aspects of chronic myeloid leukaemia   总被引:3,自引:0,他引:3  
  相似文献   

17.
18.
19.
Ray A  Cowan-Jacob SW  Manley PW  Mestan J  Griffin JD 《Blood》2007,109(11):5011-5015
Patients with advanced stages of chronic myeloid leukemia (CML) often manifest imatinib mesylate resistance associated with point mutations in BCR-ABL. AMN107 is a new higher-potency inhibitor of BCR-ABL. To identify mutations in BCR-ABL that could result in resistance to AMN107, a cDNA library of BCR-ABL mutants was introduced into Ba/F3 cells followed by selection in AMN107 (0.125-0.5 microM). A total of 86 individual, drug-resistant colonies were recovered, and the SH3, SH2, and kinase domains of BCR-ABL were sequenced. A total of 46 colonies had single point mutations in BCR-ABL, with a total of 17 different mutations, all within the kinase domain. The other 40 colonies had multiple point mutations and were not analyzed further. Each of the 17 single point mutants were reconstructed by site-directed mutagenesis of native BCR-ABL and found to be approximately 2.5- to 800-fold more resistant to AMN107 than native BCR-ABL. The mutations included 6 known imatinib mesylate-resistant mutations, including T315I, which showed complete resistance to AMN107. Interestingly, most AMN107-resistant mutants were also resistant to imatinib mesylate. These results may predict some of the resistance mutations that will be detected in clinical trials with this kinase inhibitor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号