首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
炎症细胞和结构细胞促进哮喘患者支气管的急性收缩和慢性气道重建。当前哮喘的治疗不能有效地抑制气道高反应性和气道重建。近来发现Rho激酶在哮喘的发病中起重要作用,而Rho激酶抑制剂可抑制气道平滑肌收缩、调节气道平滑肌特异性的基因转录、减轻气道壁增厚和气道炎症,从而减轻急性和慢性气道高反应性。  相似文献   

2.
BACKGROUND: The increase of atopic disorders in developed countries has been associated with the decline of infectious diseases, including helminthic infections. We have already demonstrated that adult worm extracts from Ascaris suum (ASC) suppress the IgE antibody production against unrelated antigens. OBJECTIVE: Here we investigated the influence of ASC on the development of pulmonary eosinophilic inflammation in a murine model of asthma. METHODS: Heat-coagulated egg white alone (EWI) or mixed with ASC (EWI + ASC) was implanted subcutaneously in B10.A or C57BL/6 mice, and 14 days later they were challenged intratracheally with OVA or exposed to aerosolized OVA for 4 days. RESULTS: The suppressive effect of ASC was demonstrated on the accumulation of cells into airways, with reduction of eosinophil numbers and of eosinophil peroxidase activity in EWI + ASC-immunized mice. This effect correlated with a marked reduction of IL-5 and IL-4 levels in the BAL from C57BL/6 and B10. A mice, respectively, and of eotaxin in BAL and lung tissue from both strains. OVA-specific IgG1 and IgE levels were also impaired in serum and BAL from these mice. Airway hyper-reactivity to methacholine was obtained in B10. A mice sensitized with EWI, but the respiratory mechanical parameters returned to normal levels in EWI + ASC-immunized mice. CONCLUSION: These results indicate that ASC has a profound inhibitory effect on lung inflammation and hyper-responsiveness and that suppression of IL-5 or IL-4 and of eotaxin contributes to this effect.  相似文献   

3.
Airway hyperresponsiveness (AHR) is a hallmark of bronchial asthma. Increased expression of smooth muscle contractile proteins or increased responsiveness of the contractile apparatus due to RhoA/Rho-kinase activation may contribute to AHR. BALB/c mice developed AHR following systemic sensitization by intraperitoneal injections of 20 microg ovalbumin (OVA) in presence of 2mg Al(OH)(3) on days 1 and 14, and airway challenge by 1% OVA-inhalation for 20 min each on days 28, 29 and 30. As assessed by Western blot, protein expression of RhoA, MLC (myosin light chain) and smMLCK (smooth muscle myosin light chain kinase) was increased in lungs of OVA/OVA-animals with AHR, as well as in lungs of OVA-sensitized and sham-challenged animals (OVA/PBS) without AHR, compared with lungs of PBS/PBS-animals. Pretreatment with the specific Rho-kinase inhibitor Y-27632 reduced MLC-phosphorylation and AHR. Contribution of Rho-kinase to bronchoconstriction was increased in lungs of OVA/OVA-animals compared with OVA/PBS- and PBS/PBS-animals, respectively. Furthermore, bronchoconstriction following MCh stimulation was significantly reduced after Y-27632 application. In conclusion, systemic allergen-sensitization increased pulmonary expression of proteins involved in smooth muscle contraction, which may contribute to development of AHR. However, this observation was independent from local allergen challenge, suggesting that additional cofactors may be required for the activation of Rho-kinase and thereby the induction of AHR. Rho-kinase may play an important role in murine AHR, and the bronchodilating action of Rho-kinase inhibition may offer a new therapeutic perspective in obstructive airway disease.  相似文献   

4.
5.
Bacterial flagellin, which activates Toll-like receptor 5 and cytosolic pattern recognition receptor Ipaf, has a strong immunomodulatory activity. In the present study, we examined whether intranasal co-administration of flagellin with allergen could modulate established airway hyperresponsiveness and Th2 response using an ovalbumin (OVA)-sensitized mouse model. Balb/c mice sensitized with OVA were treated with OVA–flagellin (FlaB) mixture three times at 1-week intervals. Seven days after the final OVA–FlaB administration, the mice were challenged with OVA inhalation, and airway responses and OVA-specific immune responses were evaluated. The OVA–FlaB treatment significantly suppressed OVA-induced airway hyperresponsiveness, airway eosinophilic inflammation, and OVA-specific Th2 cytokine productions in splenocytes. These results indicate that flagellin co-administered with allergen can modulate airway inflammatory response through inhibition of Th2 responses, and flagellin can be considered as a component for allergen-specific immunotherapy.  相似文献   

6.
The effects of an intravenous injection of Sephadex beads on lung eosinophil infiltration and eosinophil peroxydase activity and its relationship to bronchial hyperresponsiveness was examined in guinea pigs. This Sephadex beads injection led to blood, lung and airway eosinophilia in association with bronchial hyperresponsiveness. Histologic examination of the lower bronchus indicated that the eosinophil number increased markedly in the mucosa and submucosa. In addition, the eosinophils surrounding the bronchioles 1 day after the Sephadex injection migrated further in airway submucosa and mucosa 7 and 14 days after. Moreover, the bronchial hyperresponsiveness is observed without histologic evidence of airway epithelium damage. Therefore, the bronchial hyperresponsiveness seems to be more related to the eosinophil infiltration in the airway epithelium and possibly eosinophil activation rather than to the eosinophil number recovered in the BAL fluid. We conclude that the maintenance of hyperresponsiveness state could be associated with the persistence of blood and airway eosinophilia.  相似文献   

7.
BACKGROUND: Repeated low-dose allergen challenge increases airway hyperresponsiveness and sputum eosinophils in atopic asthmatics. Inhaled corticosteroids attenuate the airway responses to high-dose allergen challenge, but have not been evaluated against repeated low dose challenge. OBJECTIVE: This study evaluates the effects of once daily treatments of two doses of inhaled budesonide on airway responses to repeated low-dose allergen challenge. METHODS: Eight atopic asthmatics with a dual airway responses to inhaled allergen were recruited into a randomized, double-blind crossover, placebo-controlled study. In the mornings of four consecutive days (day 1-day 4), subjects inhaled budesonide 100 microg, 400 microg, or placebo, 30 min before inhaling a concentration of allergen causing a 5% early fall in FEV1. Airway hyperresponsiveness to methacholine and sputum eosinophils were measured at baseline, on the afternoon of day 2, day 4, and 24 h after the last challenge. There was a 1-week washout between each of the three treatment periods. RESULTS: The repeated low-dose allergen challenge induced increases in the percentage sputum eosinophils from 2.0 +/- 0.7% at baseline to 16.6 +/- 7.1% on day 4 (P = 0.002), and this effect was reduced by once daily budesonide 100 microg to 5.6 +/- 1.8% (P = 0. 01) and by once daily budesonide 400 microg to 3.1 +/- 0.9% (P = 0. 004). Also, the allergen-induced methacholine airway hyperresponsiveness which occurred by day 4 (P = 0.03) of the repeated low dose challenge was inhibited by budesonide 400 microg (P = 0.017). CONCLUSION: Both budesonide 100 microg and 400 microg inhaled once daily significantly reduces allergen-induced sputum eosinophilia after repeated low dose challenge; however, only the higher dose also attenuates the allergen-induced airway hyperresponsiveness.  相似文献   

8.
为探讨肥大细胞、嗜酸粒细胞和气道高反应性相互关系 ,本文检测了 36例哮喘患者 (哮喘组 )及 2 9例健康人 (对照组 )血浆中激活肥大细胞的特征性标志物类胰蛋白酶值、血嗜酸粒细胞 (EOS )值及乙酰甲胆碱的支气管激发试验 (PC2 0 )值 ,并对三者关系进行分析比较 ,结果 :(1)哮喘组血浆类胰蛋白酶增高率为 36 11% (13/ 36)和EOS增高率为 38 89% (14/ 36 ) ,明显高于对照组 (P分别 <0 0 0 5 ) ;(2 )哮喘组PC2 0 值 <8g/L者占 81 82 % (2 7/ 33) ,显著低于对照组 (P <0 0 0 5 ) ;(3)哮喘EOS增高组的PC2 0 值为 1 2 1g/L ,明显低于EOS正常组的 5 11g/L (P <0 0 1) ;(4 )哮喘类胰蛋白酶增高组中有 61 5 3% (8/13)EOS值增高 ,明显高于类胰蛋白酶正常组的 2 6 0 9% (6/ 2 3) (P <0 0 5 )。综上所述 ,哮喘患者呈气道高反应 ,血EOS和类胰蛋白酶值增高 ;EOS与气道高反应性有关 ;类胰蛋白酶与EOS增高有关 ,但未直接与气道高反应性相关  相似文献   

9.
10.
BACKGROUND: The effect of ageing on several pathologic features of allergic asthma (pulmonary inflammation, eosinophilia, mucus hypersecretion), and their relationship with airway hyperresponsiveness (AHR) is not well characterized. OBJECTIVE: To evaluate lung inflammation, mucus metaplasia and AHR in relationship with age in murine models of allergic asthma comparing young and older mice. METHODS: Young (6 weeks) and older (6, 12, 18 months) BALB/c mice were sensitized and challenged with ovalbumin (OVA). AHR and bronchoalveolar fluid (BALF), total inflammatory cell count and differential were measured. To evaluate mucus metaplasia, quantitative PCR for the major airway mucin-associated gene, MUC-5AC, from lung tissue was measured, and lung tissue sections stained with periodic acid-Schiff (PAS) for goblet-cell enumeration. Lung tissue cytokine gene expression was determined by quantitative PCR, and systemic cytokine protein levels by ELISA from spleen-cell cultures. Antigen-specific serum IgE was determined by ELISA. RESULTS: AHR developed in both aged and young OVA-sensitized/challenged mice (OVA mice), and was more significantly increased in young OVA mice than in aged OVA mice. However, BALF eosinophil numbers were significantly higher, and lung histology showed greater inflammation in aged OVA mice than in young OVA mice. MUC-5AC expression and numbers of PAS+ staining bronchial epithelial cells were significantly increased in the aged OVA mice. All aged OVA mice had increased IL-5 and IFN-gamma mRNA expression in the lung and IL-5 and IFN-gamma protein levels from spleen cell cultures compared with young OVA mice. OVA-IgE was elevated to a greater extent in aged OVA mice. CONCLUSIONS: Although pulmonary inflammation and mucus metaplasia after antigen sensitization/challenge occurred to a greater degree in older mice, the increase in AHR was significantly less compared with younger OVA mice. Antigen treatment produced a unique cytokine profile in older mice (elevated IFN-gamma and IL-5) compared with young mice (elevated IL-4 and IL-13). Thus, the airway response to inflammation is lessened in ageing animals, and may represent age-associated events leading to different phenotypes in response to antigen provocation.  相似文献   

11.
12.
BACKGROUND: IL-13 is a central mediator of allergen-induced airway hyperresponsiveness (AHR), but its role in respiratory syncytial virus (RSV)-induced AHR is not defined. The combination of allergen exposure and RSV infection is known to increase AHR and lung inflammation, but whether IL-13 regulates this increase is similarly not known. OBJECTIVE: Our objective was to determine the role of RSV infection and IL-13 on airway responsiveness and lung inflammation on sensitized and challenged mice. METHODS: Using a murine model of RSV infection and allergen exposure, we examined the role of IL-13 in the development of AHR and lung inflammation in IL-13 knockout mice, as well as using a potent IL-13 inhibitor (IL-13i). Mice were sensitized and challenged to allergen, and 6 days after the last challenge, they were infected with RSV. IL-13 was inhibited using an IL-13 receptor alpha(2)-human IgG fusion protein. AHR to inhaled methacholine was measured 6 days after infection, as was bronchoalveolar lavage fluid and lung inflammatory and cytokine responses. RESULTS: RSV-induced AHR was unaffected by the IL-13i, despite prevention of goblet cell hyperplasia. Similar results were seen in IL-13-deficient mice. In sensitized and challenged mice, RSV infection significantly increased AHR, and after IL-13i treatment, AHR was significantly reduced, but to the levels seen in RSV-infected mice alone. CONCLUSIONS: These results indicate that despite some similarities, the mechanisms leading to AHR induced by RSV are different from those that follow allergen sensitization and challenge. Because IL-13 inhibition is effective in preventing the increases in AHR and mucus production in sensitized and challenged mice infected with RSV, IL-13i could play an important role in preventing the consequences of viral infection in patients with allergic asthma.  相似文献   

13.
BACKGROUND: There is increasing evidence that in allergic asthma the inflammatory process is regulated by T lymphocytes. In BALB/c mice the majority of ovalbumin responsive T lymphocytes express the Vbeta8.1+ and Vbeta8.2+ T-cell receptor. OBJECTIVE: We analysed the contribution of Vbeta8+ T lymphocytes during the sensitization and challenge phase in the regulation of antigen-specific IgE, airway hyperresponsiveness and cellular infiltration in the airways in a murine model of allergic asthma. METHODS: Mice strains genetically lacking (SJL/J and SJA/9) and expressing (BALB/c) the Vbeta8+ T cell receptor were used. In addition, prior to the sensitization and prior to the challenge BALB/c mice were treated with antibodies to Vbeta8. Mice were sensitized with ovalbumin, followed by repeated challenge with ovalbumin or saline aerosols. RESULTS: In ovalbumin challenged BALB/c mice treated with control antibody a significant increase in eosinophils in the bronchoalveolar lavage, airway hyperresponsiveness and increased serum levels of ovalbumin-specific IgE were observed compared to control mice. Treatment of BALB/c mice with antibodies to Vbeta8 prior to the sensitization or prior to the challenge period completely inhibited the ovalbumin induced infiltration of eosinophils and airway hyperresponsiveness, while ovalbumin-specific IgE was slightly decreased. In SJA/9 and SJL/J mice ovalbumin challenge did not induce eosinophilic infiltration and airway hyperresponsiveness. In SJL/J mice ovalbumin challenge induced an upregulation of ovalbumin-specific IgE, however, in SJA/9 mice no upregulation was observed. CONCLUSION: It is demonstrated that Vbeta8+ T lymphocytes are essential for infiltration of eosinophils in the airways and development of airway hyperresponsiveness in a murine model of allergic asthma. In contrast, although Vbeta8+ T lymphocytes seem to be important for the extent of IgE levels, no essential role for Vbeta8+ T lymphocytes in the induction of antigen-specific IgE was observed.  相似文献   

14.
15.
There is renewed interest in the role of respiratory virus infections in the pathogenesis of asthma and in the development of exacerbations in pre-existing disease. This is due to the availability of new molecular and experimental tools. Circumstantial evidence points towards a potentially causative role as well as to possibly protective effects of certain respiratory viruses in the cause of allergic asthma during early childhood. In addition, it now has become clear that exacerbations of asthma, in children as well as adults, are mostly associated with respiratory virus infections, with a predominant role of the common cold virus: rhinovirus. Careful human in vitro and in vivo experiments have shown that rhinovirus can potentially stimulate bronchial epithelial cells to produce pro-inflammatory chemokines and cytokines, may activate cholinergic- or noncholinergic nerves, increase epithelial-derived nitric oxide synthesis, upregulate local ICAM-1 expression, and can lead to nonspecific T-cell responses and/or virus-specific T-cell proliferation. Experimental rhinovirus infections in patients with asthma demonstrate features of exacerbation, such as lower airway symptoms, variable airways obstruction, and bronchial hyperresponsiveness, the latter being associated with eosinophil counts and eosinophilic cationic protein levels in induced sputum. This suggests that multiple cellular pathways can be involved in rhinovirus-induced asthma exacerbations. It is still unknown whether these mechanisms are a distinguishing characteristic of asthma. Because of the limited effects of inhaled steroids during asthma exacerbations, new therapeutic interventions need to be developed based on the increasing pathophysiological knowledge about the role of viruses in asthma.  相似文献   

16.
BACKGROUND: Levels of endotoxins greatly differ according to environmental settings. OBJECTIVE: To study the effect of lipopolysaccharide (LPS) at increasing doses (0.1-1000 ng) on allergen sensitization and challenge in the mouse. METHODS: Mice were sensitized systemically and challenged locally with ovalbumin (OVA) in the presence or absence of LPS. Inflammation was assessed by determining total and differential cell counts and T-helper type 2 (Th)2 cytokine (IL-4 and IL-5) levels in bronchoalveolar lavage fluid (BALF). Total and OVA-specific IgE levels were quantified in serum. Airway hyper-responsiveness (AHR) was assessed by whole-body barometric plethysmography. RESULTS: Administered prior to sensitization, LPS at 100 or 1000 ng dose-dependently decreased allergen- induced total and OVA-specific IgE, airway eosinophilia and Th2 cytokines in BALF, without changing AHR. Administered during OVA challenge, LPS at 1 ng (an infra-clinical dose) or 100 ng (a dose triggering neutrophilia) enhanced airway eosinophilia, without affecting IgE levels or AHR. CONCLUSION: Our data clearly demonstrate that exposure to LPS influences allergen-induced IgE production and airway eosinophilia in a time and dose-dependent manner, preventing IgE production and development of eosinophilia when administered during allergen sensitization at high doses, and inducing exacerbation of eosinophilia when administered upon allergen challenge at low doses, including infra-clinical doses.  相似文献   

17.
目的: 探讨Rho激酶在血管紧张素Ⅱ(AngⅡ)刺激心肌成纤维细胞(CFBs)增殖和胶原合成中的作用。方法: 采用胰酶消化、差速贴壁法培养新生Sprague-Dawley (SD) 大鼠CFBs,并用AngⅡ诱导CFBs增殖和胶原合成。采用四氮唑盐(MTT)比色法测定细胞增殖,羟脯氨酸法测定CFBs胶原含量, RT-PCR检测Rho激酶mRNA表达,Western blotting检测肌球蛋白结合亚基磷酸化(MBS-P)表达作为Rho激酶功能活化的标志。结果:(1)AngⅡ(10-7 mol/L)刺激48h可诱导CFBs增殖和胶原合成(均P<0.01);(2) AngⅡ(10-7 mol/L)可显著上调新生SD大鼠CFBs的Rho激酶mRNA表达并诱导Rho激酶快速活化;(3)在一定浓度范围内,Rho激酶特异性抑制剂hydroxyfasudil (H4413)对AngⅡ(10-7 mol/L)刺激的CFBs增殖与胶原合成具有明显的抑制作用(P<0.05或P<0.01)。结论: AngⅡ可诱导新生SD大鼠CFBs的Rho激酶mRNA转录并活化Rho激酶,抑制Rho激酶活化对AngⅡ刺激的CFBs增殖与胶原合成具有明显的抑制作用,提示Rho激酶在调控AngⅡ刺激大鼠CFBs增殖与胶原合成中可能具有重要作用。  相似文献   

18.
19.
BACKGROUND: Epidemiological evidence suggests that infection with Mycobacterium tuberculosis protects children against asthma. Several laboratories have shown that, in mouse models of allergic inflammation, administration of the whole live tuberculosis vaccine, Mycobacterium bovis bacillus Calmette-Guerin (BCG), prevents ovalbumin (OVA)-induced pulmonary eosinophilia. OBJECTIVE: The aim of this study was to characterize specific M. tuberculosis molecules that are known to modulate immune responses to see if they affected pulmonary eosinophilia and bronchial hyper-responsiveness. METHODS: C57Bl/6 mice were sensitized to OVA on days 0 and 7 and subsequently challenged with OVA on day 14 over a 3-day period. Pulmonary eosinophilia and bronchial hyper-responsiveness were measured 24 h following the last antigen challenge. In some groups, mice were pre-treated with M. tuberculosis or M. tuberculosis chaperonins (Cpns)60.1, 60.2 and 10, and the effect of this treatment on the allergic inflammatory response to aerosolized OVA was established. RESULTS: We show that M. tuberculosis Cpns inhibit allergen-induced pulmonary eosinophilia in the mouse. Of the three Cpns produced by M. tuberculosis, Cpn60.1, Cpn10 and Cpn60.2, the first two are effective in preventing eosinophilia when administered by the intra-tracheal route. Furthermore, the increase in airways sensitivity to inhaled methacholine following OVA challenge of immunized mice was suppressed following treatment with Cpn60.1. The allergic inflammatory response was also characterized by an increase in Th2 cytokines IL-4 and IL-5 in bronchoalveolar lavage fluid, which was also suppressed following treatment with Cpn60.1. CONCLUSION: These data show that bacterial Cpns can suppress eosinophil recruitment and bronchial hyper-responsiveness in a murine model of allergic inflammation.  相似文献   

20.
The effect of allergen challenge on the number of leucocytes and the concentration of endothelin 1-like immunoreactivity (ET-LI) in bronchoalveolar lavage fluid (BALE) was investigated in guinea-pigs sensitized to Ascaris suum. The animals were twice exposed to allergen aerosol. All animals responded to the second challenge with bronchoconstriction. Twelve hours later, a significant increase in the number of eosinophilic granulocytes in BALE, compared to unsensitized and unprovoked control animals, was noted. Twenty-four hours after provocation, there was also an elevation of ET-LI concentration and content of neutrophils. During the first day post-challenge, the ET-LI values were moderately correlated to the eosinophil levels. One week after challenge, the ET-LI level and the neutrophil count did not differ from corresponding values in control animals whereas the number of eosinophils remained elevated. Pretreatment with dexamethasone before the second allergen challenge did not consistently affect the parameters studied during the first 24 h. Bronchoconstriction induced by carbachol aerosol affected significantly neither the ET-LI concentration nor the number of inflammatory cells in BALE. It is concluded that the allergen-induced inflammation in the guinea-pig airways causes an elevation in the ET-LI concentration in BALE and that this is moderately correlated to the influx of eosinophils during the first 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号