首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
PURPOSE: The purpose of the study was to develop a method for the quantitative prediction of the bitterness suppression of elemental diets by various flavors and to predict the optimum composition of such elemental diets for oral administration using a multichannel taste sensor. METHODS: We examined the effects of varying the volume of water used for dilution and of adding varying quantities of five flavors (pineapple, apple, milky coffee, powdered green tea, and banana) on the bitterness of the elemental diet, Aminoreban EN. Gustatory sensation tests with human volunteers (n = 9) and measurements using the artificial taste sensor were performed on 50 g Aminoreban EN dissolved in various volumes (140), 180, 220, 260, 300, 420, 660, 1140, and 2100 ml) of water, and on 50 g Aminoreban EN dissolved in 180 ml of water with the addition of 3-9 g of various flavors for taste masking. RESULTS: In gustatory sensation tests, the relationship between the logarithmic values of the volumes of water used for dilution and the bitterness intensity scores awarded by the volunteers proved to be linear. The addition of flavors also reduced the bitterness of elemental diets in gustatory sensation tests; the magnitude of this effect was, in decreasing order, apple, pineapple, milky coffee, powdered green tea, and banana. With the artificial taste sensor, large changes of membrane potential in channel 1, caused by adsorption (CPA values, corresponding to a bitter aftertaste), were observed for Aminoreban EN but not for any of the flavors. There was a good correlation between the CPA values in channel 1 and the results of the human gustatory tests, indicating that the taste sensor is capable of evaluating not only the bitterness of Aminoreban EN itself but also the bitterness-suppressing effect of the five flavors, which contained many elements such as organic acids and flavor components, and the effect of dilution (by water) on this bitterness. Using regression analysis of data derived from the taste sensor and from human gustatory data for four representative points, we were able to predict the bitterness of 50 g Aminoreban EN solutions diluted with various volumes of water (14-300 ml), with or without the addition of a selected flavor. CONCLUSIONS: Even though this prediction method does not offer perfect simulation of human taste sensations, the artificial taste sensor may be useful for predicting the bitterness intensity of elemental diets containing various flavors in the absence of results from full gustatory sensation tests.  相似文献   

2.
The purpose of this study was to assess the bitterness intensity and pH of the solutions of clarithromycin dry syrup (CAM-DS), carbocisteine preparation (CC), and the concomitant use of both drugs. We conducted 6 types of human gustatory sensation tests with 6 healthy male volunteers. As a result, there was almost no difference in the bitterness intensity of CAM-DS between the branded (the latest and former preparations) and the generic formulations. The bitterness intensity of CAM-DS (the latest and former preparations of the branded as well as the generic formulations) was almost equally enhanced by mixing it with either the branded CC-DS or the branded and the generic carbocisteine granule (CC-Gr). On this occasion, the enhancing the bitterness of the branded CAM-DS (latest and former preparation) was nearly avoided safely by dosage form's changing CC-DS or CC-Gr to the branded CC-Sy. However, unlike the branded CC-Sy, some generic CC-Sy failed to suppress the bitterness. Furthermore, it was proven that some generic CAM-DS were shown to exhibit bitterness when mixed with even branded CC-Sy. In conclusion, it should be noted that the extent of bitterness of the mixture of CAM-DS and CC highly varies among the generic formulations.  相似文献   

3.
The present research was conducted to investigate the inclusion complexation of artemether (ARM) with beta-cyclodextrin (CD) with the aim of masking the bitterness along with improving the drug release and preparing a stable palatable formulation of ARM especially for pediatrics. A physical mixture and kneaded system were prepared to study the inclusion complexation. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM) were performed to identify the physicochemical interaction between drug and carrier, hence its effect on drug release. Reconstitutable dry suspension was evaluated for angle of repose, sedimentation characterization and pH. In vitro drug release studies for physical mixture and kneaded system were performed at pH, 1.2 and 6.8. Bitterness score was evaluated using gustatory sensation test. The FTIR, DSC and XRPD studies indicated inclusion complexation in physical mixture and kneaded system. In addition, physical mixture and kneaded system exhibited improved drug release at pH, 1.2 and 6.8. To formulate palatable reconstitutable dry suspension of ARM, the 1:20M physical mixture was selected based on bitterness score. Reconstitutable dry suspension prepared using physical mixture (DS4), showed complete bitter taste masking, good flowability and ease of redispersibility. Taste evaluation of reconstitutable dry suspension in human volunteers rated tasteless with a score of 0 to DS4 and 3 to DS5 (reconstitutable dry suspension prepared using pure ARM). This conclusively demonstrated a stable and palatable reconstitutable dry suspension of ARM using CD inclusion complexation for flexible pediatric dosing.  相似文献   

4.
The present research was conducted to investigate the inclusion complexation of artemether (ARM) with beta-cyclodextrin (CD) with the aim of masking the bitterness along with improving the drug release and preparing a stable palatable formulation of ARM especially for pediatrics. A physical mixture and kneaded system were prepared to study the inclusion complexation. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM) were performed to identify the physicochemical interaction between drug and carrier, hence its effect on drug release. Reconstitutable dry suspension was evaluated for angle of repose, sedimentation characterization and pH. In vitro drug release studies for physical mixture and kneaded system were performed at pH, 1.2 and 6.8. Bitterness score was evaluated using gustatory sensation test. The FTIR, DSC and XRPD studies indicated inclusion complexation in physical mixture and kneaded system. In addition, physical mixture and kneaded system exhibited improved drug release at pH, 1.2 and 6.8. To formulate palatable reconstitutable dry suspension of ARM, the 1:20M physical mixture was selected based on bitterness score. Reconstitutable dry suspension prepared using physical mixture (DS4), showed complete bitter taste masking, good flowability and ease of redispersibility. Taste evaluation of reconstitutable dry suspension in human volunteers rated tasteless with a score of 0 to DS4 and 3 to DS5 (reconstitutable dry suspension prepared using pure ARM). This conclusively demonstrated a stable and palatable reconstitutable dry suspension of ARM using CD inclusion complexation for flexible pediatric dosing.  相似文献   

5.
This work examines the influence of various process parameters on artemether entrapped in crosslinked chitosan microparticles for masking bitterness. A central composite design was used to optimize the experimental conditions for bitterness masking. Critical parameters such as the amounts of artemether, chitosan and crosslinking agent have been studied to evaluate how they affect responses such as incorporation efficiency, particle size and drug release at pH 6.8. The desirability function approach has been used to find the best compromise between the experimental results. The optimized microparticles were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Bitterness score was evaluated by human gustatory sensation test. Multiple linear regression analysis revealed that the crosslinking of chitosan significantly affects incorporation efficiency, particle size and drug release at pH 6.8. The bitterness score of microparticles was decreased to 0, compared with 3+ for pure artemether. The proposed method completed masked the bitter taste of artemether.  相似文献   

6.
The present work examines the influence of various process and product parameters on mefloquine hydrochloride (MFL) entrapped in crosslinked chitosan microparticles for masking the bitterness. A central composite design (CCD) was employed to investigate the effect of three process and product variables, namely amount of MFL, chitosan and sodium hydroxide (crosslinking agent) on the incorporation efficiency, particle size, drug release at pH 6.8 and bitterness score. The microparticles were prepared by ionotropic gelation method, with a hardening time of 60 min. The optimum condition for process and product variables was evaluated using desirability function. The model is further cross validated for bias. The optimized microparticles were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Bitterness score was evaluated by human gustatory sensation test. Multiple linear regression analysis revealed that the crosslinking of chitosan significantly affects incorporation efficiency, particle size, drug release and bitterness score. The bitterness score was decreased to zero compared to 3+ of pure MFL. It can be inferred that the proposed methodology can be used to prepare MFL microparticles for bitter taste masking.  相似文献   

7.
The purpose of this study is to assess the feasibility for taste masking and comparison of taste intensity during formulation development using a multichannel taste sensor system (e-Tongue). Seven taste sensors used in the e-Tongue were cross-selective for five basic tastes while having different sensitivity or responsibility for different tastes. Each of the individual sensors concurrently contributes to the detection of most substances in a complicated sample through the different electronic output. Taste-masking efficiency was evaluated using quinine as a bitter model compound and a sweetener, acesulfame K, as a bitterness inhibitor. In a 0.2 mM quinine solution, the group distance obtained from e-Tongue analysis was reduced with increasing concentration of acesulfame K. This result suggests that the sensors could detect the inhibition of bitterness by a sweetener and could be used for optimization of the sweetener level in a liquid formulation. In addition, the bitterness inhibition of quinine by using other known taste-masking excipients including sodium acetate, NaCl, Prosweet® flavor, and Debittering® powder or soft drinks could be detected by the e-Tongue. These results further suggest that the e-Tongue should be useful in a taste-masking evaluation study on selecting appropriate taste-masking excipients for a solution formulation or a reconstitution vehicle for a drug-in-bottle formulation. In another study, the intensity of the taste for several drug substances known to be bitter was compared using the e-Tongue. It was found that the group distance was 695 for prednisolone and 686 for quinine, which is much higher than that of caffeine (102). These results indicate that the taste of prednisolone and quinine is stronger or more bitter than that of caffeine as expected. Based on the group distance, the relative intensity of bitterness for these compounds could be ranked in the following order: ranitidine HCl > prednisolone Na > quinine HClphenylthiourea > paracetamol  sucrose octaacetate > caffeine. In conclusion, the multichannel taste sensor or e-Tongue may be a useful tool to evaluate taste-masking efficiency for solution formulations and to compare bitterness intensity of formulations and drug substances during pharmaceutical product development.  相似文献   

8.
Previous methods of microencapsulation are unable to process particles smaller than 100 microm without organic solvents or the use of multistep processes. The present study investigates the feasiblity of a one-step spray-drying process to microencapsulate erythromycin and clarithromycin, antibiotics known to have an unpleasant, bitter taste. Mixtures of clarithromycin (5% by weight) or erythromycin (30% by weight) with a biodegradable polymer were prepared and spray-dried under specific conditions of temperature and turbine speed. This process resulted in the microencapsulation of 80% of each drug as determined by high pressure liquid chromatography. Particle size ranged from 1 to 80 microm as determined by electron microscopy. These data show that microencapsulation of macrolides using a spray-drying technique is feasible. Spray-drying microencapsulation might be useful in the formulation of palatable oral suspensions of bitter tasting drugs.  相似文献   

9.
Reduction of bitterness of antihistaminic drugs by cyclodextrin (CyD) complexation was examined. The stability constant (Kc) of the 1:1 CyD inclusion complexes with antihistaminic drugs increased in the order of 2-hydroxypropyl-β-CyD (HP-β-CyD) ≈ β-CyD > γ-CyD > α-CyD for diphenhydramine and epinastine, and HP-β-CyD ≈ β-CyD > α-CyD > γ-CyD for hydroxyzine, cetirizine, and dl-chlorpheniramine. The inclusion complexes inhibited the adsorption of antihistaminic drugs to lipid membrane using liposomes, as the magnitude of Kc increased. From human gustatory sensation tests, β-CyD and HP-β-CyD potently suppressed the bitterness of antihistaminic drugs in a dose-dependent manner. Further, an artificial taste sensor analysis revealed that β-CyD and HP-β-CyD inhibited the bitterness of antihistaminic drugs in solution. The results suggest that CyDs suppress the bitterness of antihistaminic drugs in solutions through the formation of inclusion complexes. These results may provide useful information for masking or elimination of bitterness of drugs using CyDs.  相似文献   

10.
A unique modification of simplex design was applied to an electronic tongue (E-Tongue) analysis in bitterness masking formulation optimization. Three formulation variables were evaluated in the simplex design, i.e. concentrations of two taste masking polymers, Amberlite and Carbopol, and pH of the granulating fluid. Response of the design was a bitterness distance measured using an E-Tongue by applying a principle component analysis, which represents taste masking efficiency of the formulation. The smaller the distance, the better the bitterness masking effect. Contour plots and polynomial equations of the bitterness distance response were generated as a function of formulation composition and pH. It was found that interactions between polymer and pH reduced the bitterness of the formulation, attributed to pH-dependent ionization and complexation properties of the ionic polymers, thus keeping the drug out of solution and unavailable to bitterness perception. At pH 4.9 and an Amberlite/Carbopol ratio of 1.4:1 (w/w), the optimal taste masking formulation was achieved and in agreement with human gustatory sensation study results. Therefore, adopting a modified simplex experimental design on response measured using an E-Tongue provided an efficient approach to taste masking formulation optimization using ionic binding polymers.  相似文献   

11.
The bitterness of a drug is a major challenge for patient acceptability and compliance, especially for children. Due to the toxicity of medication, a human taste panel test has certain limitations. Atomoxetine hydrochloride (HCl), which is used for the treatment of attention deficit/hyperactivity disorder (ADHD), has an extremely bitter taste. The aim of this work is to quantitatively predict the bitterness of atomoxetine HCl by a biosensor system. Based on the mechanism of detection of the electronic tongue (E-tongue), the bitterness of atomoxetine HCl was evaluated, and it was found that its bitterness was similar to that of quinine HCl. The bitterness threshold of atomoxetine HCl was 8.61 µg/ml based on the Change of membrane Potential caused by Adsorption (CPA) value of the BT0 sensor. In this study, the taste-masking efficiency of 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) was assessed by Euclidean distances on a principle component analysis (PCA) map with the SA402B Taste Sensing System, and the host–guest interactions were investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR) spectroscopy and scanning electron microscopy (SEM). Biosensor evaluation and characterization of the inclusion complex indicated that atomoxetine HCl could actively react with 2-hydroxypropyl-β-cyclodextrin.  相似文献   

12.

Background and the purpose of the study

Because of its intense bitter taste and susceptibility to moisture Cefetamet Pivoxil (CPH) is presently available only in the form of tablet. The aim of this study was to develop taste masked CPH dry powder suspension.

Methods

Methods employed for formulations were: a) Film coating of CPH using Eudragit E100 and subsequent adsorption on different carriers such as spray-dried lactose, sodium starch glycolate and spray-dried mannitol and b) Complexation of CPH with three different ion exchange resins indion 234 amberlite IRP64 and amberlite IRP69.

Results

Taste viz evaluation as recognized by volunteers revealed that coating with Eudragit E100 and subsequent adsorption on different carriers do not mask the bitter taste of the drug. Suspensions prepared using amberlite IRP64 and amberlite IRP69 were extremely palatable with no bitter after taste. They showed pseudoplastic flow behavior and were too viscous even after shearing for sufficient duration of time and exhibited poor pourability. The suspension made with indion 234 was palatable with slight or no bitter after taste. It demonstrated plastic flow with negligible thixotropy. It had moderate viscosity at rest and could be poured after a reasonable amount of shaking. CPH dry powder suspensions were very unstable under different conditions except under refrigeration. A 5% degradation of drug was occurred in reconstituted suspension in 4 days period when stored at room temperature.

Conclusion

Dry powder suspension prepared with indion 234 having 5% overages was stable even after 4th day of reconstitution and palatable with slight or no bitter after taste.  相似文献   

13.
Objectives The aim of this study was to prepare a microsphere formulation in order to mask the bitter taste of azithromycin. Methods Microspheres of azithromycin with ethyl cellulose were prepared by the modified solvent diffusion method. The microspheres were mixed with other excipients to form orally dry suspensions and the sensory test for taste masking was evaluated. Key findings Results demonstrated that the suspension could significantly mask the bitter taste of azithromycin and the relative bioavailability of suspensions to reference preparations was 102.7%. Conclusions The results indicate that the microsphere formulation can be a promising drug carrier for masking the bitter taste of azithromycin.  相似文献   

14.
Two kinds of ibuprofen syrups were prepared and evaluated. One was a suspending syrup, prepared by using hydroxypropyl methylcellulose (HPMC) as a dispersing agent, and the other was a dry syrup containing low-molecular-weight gelatin (LM gelatin). The dissolution behaviors of ibuprofen from syrups were studied, and both syrups showed size-dependent dissolution; the smaller particles exhibited faster dissolution. The in vivo absorption behaviors of the syrups were compared with that of commercial tablets of ibuprofen in beagle dogs and human volunteers. The absorption rates following oral administrations of syrups were much greater than those following administration of commercial tablets. Moreover, both syrups reduced the bitter taste and irritation of the oral mucosa caused by ibuprofen; the dry syrup markedly masked these side effects. These results suggest that the dry syrup containing LM gelatin improves some of the pharmaceutical properties of ibuprofen, and that the LM gelatin may be used in a variety of oral dosage forms.  相似文献   

15.
Taste acceptability of ground Polymyxin B sulfate and Bactramin C tablets was examined when flavored BMI-60, a food additive, was added. Both adult and child volunteers found the bitter taste of the two drugs markedly inhibited, making it clinically useful. Noncompliance, due to this bitterness, was improved using flavored BMI-60. The most striking characteristic of flavored BMI-60 is the ease of preparation compared with the manufacture of other hospital pharmaceuticals such as jelly, gummi and candy done to mask bitterness.  相似文献   

16.
赵昌军  高新贞 《齐鲁药事》2009,28(12):741-744
目的为掩盖药物苦味提供参考依据。方法将近年来国内外的有关文献分类、整理,归纳。结果和结论近年来涌现出许多掩盖药物苦味的新技术,如流化床技术、熔融制粒技术等;这些技术可有效掩盖药物的苦味,增加患者尤其是儿童和老年患者服药时的顺应性。  相似文献   

17.
The number and variety of bitter compounds originating from plants are vast. Whereas some bitter chemicals are toxic and should not be ingested, other compounds exhibit health beneficial effects, which is manifest in the cross‐cultural believe that the bitterness of medicine is correlated with the desired medicinal activity. The bitter taste receptors in the oral cavity serve as sensors for bitter compounds and, as they are expressed in numerous extraoral tissues throughout the body, may also be responsible for some physiological effects exerted by bitter compounds. Chinese herbal medicine uses bitter herbs since ancient times for the treatment of various diseases; however, the routes by which these herbs modify physiology are frequently not well understood. We therefore screened 26 bitter substances extracted from medical herbs for the activation of the 25 human bitter taste receptors. We identified six receptors activated by in total 17 different bitter compounds. Interestingly, we observed a bias in bitter taste receptor activation with 10 newly identified agonists for the broadly tuned receptor TAS2R46, seven agonists activating the TAS2R14 and two compounds activating narrowly tuned receptors, suggesting that these receptors play dominant roles in the evaluation and perhaps physiological activities of Chinese herbal medicines.  相似文献   

18.
Previously, we demonstrated that lipoprotein composed of phosphatidic acid (PA) and -lactoglobulin (LG) selectively and reversibly suppress the frog taste nerve response to bitter substances. In the present study, we examined the effects of various lipoproteins on the taste sensation to various stimuli in humans by a psychophysical method. Among various lipoproteins composed of different of lipids and proteins, the lipoproteins composed of PA and proteins were most effective in suppressing bitter taste. The lipoproteins composed of PA and LG, bovine serum albumin, ovalbumin, -lactoalbumin or casein similarly suppressed effects on sensation of bitter taste. Using PA-LG, the effects on taste sensation to various stimuli were examined. The bitter taste of all twelve substances examined was inhibited, while saltiness of NaCl and sweetness of sucrose were not inhibited. The inhibition of bitter taste was completely reversible. Masking of the target sites for bitter substances on the taste receptor membranes with PA-LG seems to contribute to the inhibition of bitter taste. Direct binding of the bitter substances to PA-LG in the medium also contributes to the inhibition of bitter taste of certain substances. Among various drugs, basic and hydrophobic substances such as quinine, denatortium and propranolol have low taste thresholds and are said to be the most bitter. PA-LG most effectively suppressed the bitter taste of such substances. PA originates from soybeans and the proteins used except for bovine serum albumin originate from milk or eggs, and hence the lipoproteins can be safely used to mask the bitter taste of drugs.  相似文献   

19.
Purpose Zinc sulfate is known to inhibit the bitterness of the antimalarial agent quinine [R. S. J. Keast. The effect of zinc on human taste perception. J. Food Sci. 68:1871–1877 (2003)]. In the present work, we investigated whether zinc sulfate would inhibit other bitter-tasting compounds and pharmaceuticals. The utility of zinc as a general bitterness inhibitor is compromised, however, by the fact that it is also a good sweetness inhibitor [R. S. J. Keast, T. Canty, and P. A. S. Breslin. Oral zinc sulfate solutions inhibit sweet taste perception. Chem. Senses 29:513–521 (2004)] and would interfere with the taste of complex formulations. Yet, zinc sulfate does not inhibit the sweetener Na-cyclamate. Thus, we determined whether a mixture of zinc sulfate and Na-cyclamate would be a particularly effective combination for bitterness inhibition (Zn) and masking (cyclamate). Method We used human taste psychophysical procedures with chemical solutions to assess bitterness blocking. Results Zinc sulfate significantly inhibited the bitterness of quinine–HCl, Tetralone, and denatonium benzoate (DB) (p < 0.05), but had no significant effect on the bitterness of sucrose octa-acetate, pseudoephedrine (PSE), and dextromethorphan. A second experiment examined the influence of zinc sulfate on bittersweet mixtures. The bitter compounds were DB and PSE, and the sweeteners were sucrose (inhibited by 25 mM zinc sulfate) and Na-cyclamate (not inhibited by zinc sulfate). The combination of zinc sulfate and Na-cyclamate most effectively inhibited DB bitterness (86%) (p < 0.0016), whereas the mixture's inhibition of PSE bitterness was not different from that of Na-cyclamate alone. Conclusion A combination of Na-cyclamate and zinc sulfate was most effective at inhibiting bitterness. Thus, the combined use of peripheral oral and central cognitive bitterness reduction strategies should be particularly effective for improving the flavor profile of bitter-tasting foods and pharmaceutical formulations.  相似文献   

20.
A respected number of drugs suffer from bitter taste which results in patient incompliance. With the aim of solving the bitterness of guaifenesin, dimethyl maleate, maleate, glutarate, succinate, and dimethyl succinate prodrugs were designed and synthesized. Molecular orbital methods were utilized for the design of the ester prodrugs. The density functional theory (DFT) calculations revealed that the hydrolysis efficiency of the synthesized prodrugs is significantly sensitive to the pattern of substitution on C=C bond and distance between the nucleophile and the electrophile. The hydrolysis of the prodrugs was largely affected by the pH of the medium. The experimental t1/2 for the hydrolysis of guaifenesin dimaleate ester prodrugs in 1N HCl was the least and for guaifenesin dimethyl succinate was the highest. Functional heterologous expression of TAS2R14, a broadly tuned bitter taste receptor responding to guaifenesin, and experiments using these prodrugs revealed that, while some of the prodrugs still activated the receptor similarly or even stronger than the parent substance, succinate derivatization resulted in the complete loss of receptor responses. The predicted binding modes of guaifenesin and its prodrugs to the TAS2R14 homology model suggest that the decreased activity of the succinate derivatives may be caused by a clash with Phe247.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号