首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrethroid insecticides disrupt nerve function by modifying the gating kinetics of transitions between the conducting and nonconducting states of voltage-gated sodium channels. Pyrethroids modify rat Na(v)1.6+β1+β2 channels expressed in Xenopus oocytes in both the resting state and in one or more states that require channel activation by repeated depolarization. The state dependence of modification depends on the pyrethroid examined: deltamethrin modification requires repeated channel activation, tefluthrin modification is significantly enhanced by repeated channel activation, and S-bioallethrin modification is unaffected by repeated activation. Use-dependent modification by deltamethrin and tefluthrin implies that these compounds bind preferentially to open channels. We constructed the rat Na(v)1.6Q3 cDNA, which contained the IFM/QQQ mutation in the inactivation gate domain that prevents fast inactivation and results in a persistently open channel. We expressed Na(v)1.6Q3+β1+β2 sodium channels in Xenopus oocytes and assessed the modification of open channels by pyrethroids by determining the effect of depolarizing pulse length on the normalized conductance of the pyrethroid-induced sodium tail current. Deltamethrin caused little modification of Na(v)1.6Q3 following short (10ms) depolarizations, but prolonged depolarizations (up to 150ms) caused a progressive increase in channel modification measured as an increase in the conductance of the pyrethroid-induced sodium tail current. Modification by tefluthrin was clearly detectable following short depolarizations and was increased by long depolarizations. By contrast modification by S-bioallethrin following short depolarizations was not altered by prolonged depolarization. These studies provide direct evidence for the preferential binding of deltamethrin and tefluthrin (but not S-bioallethrin) to Na(v)1.6Q3 channels in the open state and imply that the pyrethroid receptor of resting and open channels occupies different conformations that exhibit distinct structure-activity relationships.  相似文献   

2.
The effects of 4 different pyrethroid insecticides on sodium channel gating in internally perfused, cultured mouse neuroblastoma cells (N1E-115) were studied using the suction pipette, voltage clamp technique. Pyrethroids increased the amplitude of the sodium current, sometimes by more than 200%. Activation of the sodium current occurred at more hyperpolarized potentials than under control conditions. The declining phase of the sodium current during depolarization was markedly slowed down and after repolarization of the membrane a large, slowly decaying sodium tail current developed. Pyrethroids did not affect the sodium current reversal potential, steady-state sodium inactivation or recovery from sodium channel inactivation. The amplitude of the pyrethroid-induced slow tail current was always proportional to the sodium current at the end of the preceding depolarizing pulse. The rate of decay of the slow tail current strongly depended on pyrethroid structure and increased in the order deltamethrin, cyphenothrin, fenfluthrin and phenothrin. The rate of decay further depended on membrane potential and temperature. Below -85 m V the instantaneous current-voltage relationship of the slow tail current showed a negative slope conductance. The tail current decayed more slowly at low temperatures. Arrhenius plots indicated that the relaxation of open sodium channels to a closed state involved a higher energy barrier for pyrethroid-affected than for normal channels. The energy barrier was higher after deltamethrin than after the non-cyano pyrethroid fenfluthrin. It is concluded that in mammalian neuronal membrane pyrethroids selectively reduce the rate of closing of sodium channels both during depolarization and after repolarization of the nerve membrane.  相似文献   

3.
Kinetics of pyrethroid-modified sodium channels and the interaction of N-octylguanidine with the modified channels have been studied with internally perfused and voltage-clamped squid giant axons. The pyrethroids used were 1R-cis-phenothrin; 1R-cis-permethrin; 1R-cis-cyphenothrin; and 1R-cis-deltamethrin. Modification of sodium channels by pyrethroids resulted in marked slowing of opening and closing kinetics. The rate at which sodium channels arrived at the open pyrethroid-modified state during a depolarizing step was independent of the concentration of pyrethroids applied. The time of exposure to pyrethroids required for the pyrethroid-induced sodium tail current following a step depolarization to reach a steady-state amplitude was independent of the frequency of short (5 ms) depolarizing pulses, and in the pronase-treated axons was independent of the membrane potential (0 mV or -90 mV). We conclude that sodium channels are modified by pyrethroids primarily in the closed resting state. A small fraction of sodium channels is modified in the open state. The dose-response curve for N-octylguanidine block of sodium channels was not shifted by pyrethroids. The rate at which the pyrethroid-modified sodium channels were blocked by octylguanidine during a depolarizing step depended neither on the concentration of pyrethroids nor on the depolarizing potential, but depended on the concentration of octylguanidine. The time course of the pyrethroid-induced slow sodium tail current was not altered by octylguanidine. We conclude that the actions of pyrethroids and N-octylguanidine on sodium channels are independent of each other.  相似文献   

4.
The interaction of pyrethroids with the voltage-dependent sodium channel was studied in voltage-clamped nodes of Ranvier and isolated spinal ganglion neurons of the clawed frog, Xenopus laevis. In the node, pyrethroids prolonged the sodium tail current associated with a step repolarization of the membrane. It was found that the amplitude of the slow, pyrethroid-induced, sodium tail current (PIT) first increased and then decreased as a function of the duration of membrane depolarization (to -5 mV). This decrease of the PIT amplitude was absent when depolarizations to the sodium equilibrium potential (+40 mV) were used. Measurements of changes in sodium reversal potential indicated that sodium ion depletion in the perinodal space is largely responsible for the inactivation of the pyrethroid-modified sodium current. Inactivation is not completely abolished by pyrethroid treatment since the probability of channel opening, measured in membrane patches excised from spinal ganglion cells, decreased slowly during prolonged depolarization. Analysis of unitary currents indicated that both activation and inactivation are retarded by pyrethroids. The arrival of sodium channels in the pyrethroid-modified open state followed a time course that was slower than both activation and inactivation of unmodified sodium channels. Our findings indicate that sodium channels are modified when in the closed resting state and that both opening and closing kinetics are delayed by pyrethroids.  相似文献   

5.
Key effects of the pyrethroid insecticide allethrin, delivered to or washed out from cells at 10 or 100 μM in 0.1% DMSO, on neuronal Na+ channel currents were studied in rat dorsal root ganglion (DRG) cells under whole-cell patch clamp. Tetrodotoxin-resistant (TTX-R) Na+ channels were more responsive to allethrin than tetrodotoxin-sensitive (TTX-S) Na+ channels. On application of 10 or 100 μM allethrin to cells with TTX-R Na+ channels, the Na+ tail current during repolarization developed a large slowly decaying component within 10 min. This slow tail developed multiphasically, suggesting that allethrin gains access to Na+ channels by a multiorder process. On washout (with 0.1% DMSO present), the slow tail current disappeared monophasically (exponential τ=188±44 s). Development and washout rates did not depend systematically on temperature (12°, 18°, or 27°C), but washout was slowed severely if DMSO was absent. As the duration of a depolarizing pulse was increased (range 0.32–10 ms), the amplitude of the slow component of the succeeding tail conductance first increased then decreased. Tail current amplitude had the same dependence on preceding pulse duration (at 18°) at 10 or 100 μM, consistent with allethrin modification of Na+ channels at rest before opening. At 10 μM, slow tail conductance was at maximum 40% of the peak conductance during the previous depolarization, independent of temperature; evidently, the fraction of open modified channels did not change. However, at low temperature, the tail is more prolonged, bringing more Na+ ions into a cell. In functioning neurons, this Na+ influx would cause a larger depolarizing afterpotential, a condition favoring the repetitive discharges, which are signatory of pyrethroid intoxication.  相似文献   

6.
Kinetic and steady-state characteristics of aconitine-modified sodium channels were studied in the Ranvier node membrane. Aconitine-modified sodium channels are shown to be inactivated only partially. The voltage dependence of the fraction of noninactivated channels (h infinity) may be described by a three-state model of the channel with closed, open and inactivated states. A reasonable agreement with the data was obtained when parameters of the inactivated state were supposed to be not changed after aconitine modification of the channels. The membrane repolarization to -70 divided by -110 mV, after long (10 ms) depolarizing shift induces firstly fast current decay ("tail") and then its rather slow increase to a steady-state level. Kinetics of this current requires two or more open states to be postulated.  相似文献   

7.
Pyrethriods are known to increase the steady-state sodium current during a step depolarization and to increase and prolong the tail sodium current associated with a step repolarization of the membrane. The pyrethroid-induced tail sodium current of squid axons developed as a function of the duration of the conditioning depolarizing pulse. However, with further lengthening the conditioning pulse duration, it decreased, further increased, or remained constant depending on the direction of sodium current during the depolarization, irrespective of the membrane potential per se. The depletion or accumulation of sodium in the periaxonal space during a 200-ms conditioning depolarizing pulse in the axon internally treated with pronase, pyrethroids, or both, was demonstrated by measurements of the changes in sodium reversal potential. Thus the observed changes in tail current amplitude as a function of the conditioning pulse duration are explicable in terms of changes in sodium concentration in the periaxonal space without assuming inactivation of the pyrethroid-modified channel.  相似文献   

8.
Pyrethroid insecticides exert toxic effects by prolonging the opening of voltage-gated sodium channels. More than 20 sodium channel mutations from arthropod pests and disease vectors have been confirmed to confer pyrethroid resistance. These mutations have been valuable in elucidating the molecular interaction between pyrethroids and sodium channels, including identification of two pyrethroid receptor sites. Previously, two alanine to valine substitutions, one in the pore helix IIIP1 and the other in the linker-helix connecting S4 and S5 in domain III (IIIL45), were found in Drosophila melanogaster mutants that are resistant to DDT and deltamethrin (a type II pyrethroid with an α-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids), but their role in target-site-mediated insecticide resistance has not been functionally confirmed. In this study, we functionally examined the two mutations in cockroach sodium channels expressed in Xenopus laevis oocytes. Both mutations caused depolarizing shifts in the voltage dependence of activation, conferred DDT resistance and also resistance to two Type I pyrethroids by almost abolishing the tail currents induced by Type I pyrethroids. In contrast, neither mutation reduced the amplitude of tail currents induced by the Type II pyrethroids, deltamethrin or cypermethrin. However, both mutations accelerated the decay of Type II pyrethroid-induced tail currents, which normally decay extremely slowly. These results provided new insight into the molecular basis of different actions of Type I and Type II pyrethroids on sodium channels. Computer modeling predicts that both mutations may allosterically affect pyrethroid binding.  相似文献   

9.
Action potentials and afterpotentials were recorded via a microelectrode inserted into motor axons innervating the lizard ceratomandibularis muscle. Intra-axonal injection of Lucifer yellow dye indicated that these axons innervate multiple (at least 6-25) motor terminals. In 10 mM tetraethylammonium (TEA), the action potential was followed by a sequence of afterpotentials, whose amplitude and duration increased with increasing proximity to motor nerve terminals. In axons impaled within 1 mm of their most distal terminals, these afterpotentials included a depolarizing plateau (mean amplitude and duration: 32 mV, 24 msec) and a subsequent smaller depolarization that decayed over a time course of several hundred milliseconds. These depolarizing afterpotentials were Ca dependent: They increased with increasing bath [Ca] and were abolished by low [Ca]-high [Mg] solutions, by omega-conotoxin (GVIA, 1 microM), by addition of Cd (1 microM) or Mn (0.3-1 mM) to the bath, and by selective perfusion of Cd over the terminal region. In [Ca]-free solutions the afterpotentials were restored by selective perfusion of Ca over the terminal region but not by Ca applied to the more proximal nerve trunk. When Na influx was eliminated by 1-10 microM tetrodotoxin or by substitution of TEA for bath Na, passage of depolarizing current into the axon evoked prolonged depolarizing afterpotentials that were blocked by Mn. Bay K 8644 (0.1-1 microM), a dihydropyridine that prolongs the opening of certain calcium channels, enhanced mainly the slower component of the depolarizing afterpotential. Nimodipine (0.1-1 microM), a dihydropyridine that favors the closed state of some calcium channels, shortened the plateau phase of the depolarizing afterpotential. Another antagonist dihydropyridine, nitrendipine (0.1-1 microM), had little or no effect on the depolarizing afterpotential but did antagonize the actions of Bay K 8644. These results suggest that the intraaxonally recorded Ca-dependent afterpotentials are caused by electrotonic spread of depolarizations produced by calcium influx into that axon's terminals and that some motor nerve terminal calcium channels are sensitive to certain dihydropyridines.  相似文献   

10.
Depolarization of nerve membranes is an important component of the mode of action of pyrethroids, and its negative temperature dependence parallels that of insecticidal activity. We studied the mechanism and temperature dependence of depolarization of crayfish giant axons by pyrethroids, using intracellular microelectrode and voltage clamp techniques. Membrane depolarization caused by tetramethrin and fenvalerate was greater at 10 degrees C than at 21 degrees C, and was reversible upon changing the temperature. Short-duration depolarizing pulses in voltage-clamped fenvalerate-treated axons induced prolonged sodium currents that are typical of other pyrethroids, but the decay of the tail current following repolarization was extremely slow, lasting several minutes at the large negative holding potential of -120 mV. At the normal resting potential, the tail current did not decay completely, and even without stimulation, a steady-state sodium current developed, which could account for the depolarization. The steady-state current induced by fenvalerate at the resting potential was much larger at 8 degrees C than at 21 degrees C, accounting for the negative temperature dependence of the depolarization. The negative temperature dependence of the steady-state current seems to be due ultimately to the great stabilizing effect of low temperature on the open-modified channel. When the steady-state current was induced at the resting potential, hyperpolarization to more negative potentials caused it to decay with exactly the same time course as tail currents induced by short-duration depolarizing pulses, indicating that both types of currents are carried by identically-modified channels. The modified channels were shown to be inactivated very slowly at potentials more positive than - 100 mV, accounting for the limited depolarization observed in micro-electrode experiments. Even when applied directly to the internal face of the membrane, the effect of fenvalerate on the sodium channel developed slowly, taking more than 90 min to reach its final level. Fenvalerate did not significantly affect potassium currents.  相似文献   

11.
We studied the mode of action of type I pyrethroids on the voltage-dependent sodium current from honeybee olfactory receptor neurons (ORNs), whose proper function in antenna is crucial for interindividual communication in this species. Under voltage-clamp, tetramethrin and permethrin induce a long lasting TTX-sensitive tail current upon repolarization, which is the hallmark of an abnormal prolongation of the open channel configuration. Permethrin and tetramethrin also slow down the sodium current fast inactivation. Tetramethrin and permethrin both bind to the closed state of the channel as suggested by the presence of an obvious tail current after the first single depolarization applied in the presence of either compounds. Moreover, at first sight, channel opening seems to promote tetramethrin and permethrin binding as evidenced by the progressive tail current summation along with trains of stimulations, tetramethrin being more potent at modifying channels than permethrin. However, a use-dependent increase in the sodium peak current along with stimulations suggests that the tail current accumulation could also be a consequence of progressively unmasked silent channels. Experiments with the sea anemone toxin ATX-II that suppresses sodium channels fast inactivation are consistent with the hypothesis that these silent channels are either in an inactivated state at rest, or that they normally inactivate before they open so that they do not participate to the control sodium current. In honeybee ORNs, three processes lead to a use-dependent pyrethroid-induced tail current accumulation: (i) a recruitment of silent channels that produces an increase in the peak sodium current, (ii) a slowing down of the sodium current inactivation produced by prolongation of channels opening and (iii) a typical deceleration in current deactivation. The use-dependent recruitment of silent sodium channels in honeybee ORNs makes pyrethroids more potent at modifying neuronal excitability.  相似文献   

12.
D-600 blocks open Ca2+ channels more profoundly than closed ones   总被引:1,自引:0,他引:1  
Y Oyama  N Hori  N Tokutomi  N Akaike 《Brain research》1987,417(1):143-147
The open channel blocking action of the Ca2+ antagonists, D-600 and Cd2+, was investigated in single neurons isolated by enzymatic treatment from dorsal root ganglia of frog. Using a 'concentration clamp' (jump) technique Ca2+ antagonists were applied to the preparation just before (less than 100 ms) or during a depolarizing step which induced the maximal peak amplitude of Ca2+ current (ICa). The inhibitory action of D-600 was more pronounced when applied during a depolarizing step than when applied just before a depolarizing step. In contrast, Cd2+ was equally inhibitory, whether applied before or during the depolarization. Thus, D-600 affects open channels more quickly or more profoundly than closed ones, while Cd2+ acts equally on both open and closed Ca2+ channels.  相似文献   

13.
Effects of local anesthetics and anticonvulsants on the pyrethroid-modified sodium current in cultured mouse neuroblastoma cells have been investigated using the suction pipette voltage clamp technique. In the presence of 10 microM of the pyrethroid deltamethrin the sodium current consists of an enhanced peak current during membrane depolarization and a slowly decaying, deltamethrin-induced tail current remaining after repolarization. At the onset of block the local anesthetics tetracaine, lidocaine and QX 314 reduced the deltamethrin-induced tail current more effectively than the peak current. Lidocaine, but not phenytoin, caused a time-dependent block of tail currents evoked by membrane depolarizations lasting 10-1000 ms. Both lidocaine- and phenytoin-induced blocks were independent of the membrane potential during the tail current. The anticonvulsants phenytoin, phenobarbital and valproate blocked the tail and the peak sodium current to the same extent, but diazepam, mephenesin and urethane blocked the peak current more effectively. Vitamin E, which suppresses pyrethroid-induced paresthesia of the skin, had no effect on the voltage-dependent sodium current. It is concluded that indirect effects of anticonvulsants on pyrethroid-induced toxic symptoms predominate, whereas local anesthetics preferentially block the pyrethroid-induced tail current. Therefore, local anesthetics are potentially useful pyrethroid antidotes.  相似文献   

14.
Type I and type II pyrethroids are known to modulate the sodium channel to cause persistent openings during depolarization and upon repolarization. Although there are some similarities between the two types of pyrethroids in their actions on sodium channels, the pattern of modification of sodium currents is different between the two types of pyrethroids. In the present study, interactions of the type I pyrethroid tetramethrin and the type II pyrethroid deltamethrin at rat hippocampal neuron sodium channels were investigated using the inside-out single-channel patch clamp technique. Deltamethrin-modified sodium channels opened much longer than tetramethrin-modified sodium channels. When 10 microM tetramethrin was applied to membrane patches that had been exposed to 10 microM deltamethrin, deltamethrin-modified prolonged single sodium currents disappeared and were replaced by shorter openings which were characteristic of tetramethrin-modified channel openings. These single-channel data are compatible with previous whole-cell competition study between type I and type II pyrethroids. These results are interpreted as being due to the displacement of the type II pyrethroid molecule by the type I pyrethroid molecule from the same binding site or to the allosteric interaction of the two pyrethroid molecules at separate sodium channel sites.  相似文献   

15.
Effects of methylmercury on electrical responses of neuroblastoma cells   总被引:1,自引:0,他引:1  
The effects of methylmercury on a variety of electrophysiological properties of the N1E-115 neuroblastoma cells were studied using microelectrode and voltage clamp techniques. The action potential was reduced in amplitude with an apparent dissociation constant of the order of 20 microM in the face of relatively small membrane depolarization. Voltage clamp experiments revealed that both peak sodium current and steady-state potassium current were suppressed by 20-60 microM methylmercury, with a stronger effect on the sodium current than on the potassium current. The protein reagents dithiodipyridine and N-ethylmaleimide suppressed both currents. Acetylcholine receptor/channel complexes are vulnerable to the action of methylmercury; the nicotinic fast depolarizing response, the muscarinic hyperpolarizing response, and the muscarinic slow depolarizing response, were all suppressed by 10-30 microM methylmercury. In contrast, the dopamine induced response was not affected by methylmercury at 30 microM. It was concluded that methylmercury impairs both sodium and potassium channel gating mechanisms and suppresses acetylcholine receptor/channel complexes. It remains to be seen whether the effect of chronic exposure is similar to that seen after acute and high level exposure in the present study.  相似文献   

16.
A characterization of the properties of voltage-gated sodium channels expressed in the human cerebellar medulloblastoma cell line TE671 is presented. Membrane currents were recorded under voltage clamp conditions using the patch clamp technique in both the whole-cell and the excised-patch configurations. Macroscopic sodium currents display a typical transient time course with a sigmoidal rise to a peak followed by an exponential decay. The rates of early activation and subsequent inactivation accelerate and approach a maximum in response to test potentials, V, of greater depolarization. The magnitude of peak sodium current increased from negligible values below V = -50 mV and reached a maximum at V = -3.6 mV +/- 2.7 mV (mean +/- S.E.M., n = 12). Sodium currents reversed at V = + 70 mV, near the predicted Nernst equilibrium potential for a Na+ selective channel. The peak sodium conductance, gpeak increased with depolarizing voltages to a maximum at V = approximately 0 mV, exhibiting half-activation voltage at V approximately equal to -36.8 mV and an e-fold change in gpeak/9.5 mV. The Hodgkin-Huxley inactivation parameter h infinity indicates that at V = -73.6 mV half of the sodium currents were inactivated. Single channel current recordings demonstrated the occurrence of discrete events: the latency for first opening was shorter as the depolarizing pulse became more positive. The single-channel current amplitude was ohmic with a slope conductance, gamma = 17.13 pS +/- 0.66 pS. Sodium channel currents were reversibly blocked by tetrodotoxin (TTX).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A scorpion alpha-toxin-sensitive background sodium channel was characterized in short-term cultured adult cockroach dorsal unpaired median (DUM) neurons using the cell-attached patch-clamp configuration. Under control conditions, spontaneous sodium currents were recorded at different steady-state holding potentials, including the range of normal resting membrane potential. At -50 mV, the sodium current was observed as unclustered, single openings. For potentials more negative than -70 mV, investigated patches contained large unitary current steps appearing generally in bursts. These background channels were blocked by tetrodotoxin (TTX, 100 nm), and replacing sodium with TMA-Cl led to a complete loss of channel activity. The current-voltage relationship has a slope conductance of 36 pS. At -50 mV, the mean open time constant was 0.22 +/- 0.05 ms (n = 5). The curve of the open probability versus holding potentials was bell-shaped, with its maximum (0.008 +/- 0.004; n = 5) at -50 mV. LqhalphaIT (10-8 m) altered the background channel activity in a time-dependent manner. At -50 mV, the channel activity appeared in bursts. The linear current-voltage relationship of the LqhalphaIT-modified sodium current determined for the first three well-resolved open states gave three conductance levels: 34, 69 and 104 pS, and reversed at the same extrapolated reversal potential (+52 mV). LqhalphaIT increased the open probability but did not affect either the bell-shaped voltage dependence or the open time constant. Mammal toxin AaHII induced very similar effects on background sodium channels but at a concentration 100 x higher than LqhalphaIT. At 10-7 m, LqhalphaIT produced longer silence periods interrupted by bursts of increased channel activity. Whole-cell experiments suggested that background sodium channels can provide the depolarizing drive for DUM neurons essential to maintain beating pacemaker activity, and revealed that 10-7 m LqhalphaIT transformed a beating pacemaker activity into a rhythmic bursting.  相似文献   

18.
Whole-cell and single-channel voltage-clamp techniques were used to identify and characterize the ionic currents of insect olfactory receptor neurons (ORNs) in vitro. The cells were isolated from the antennae of male Manduca sexta pupae at stages 3-5 of adult development and maintained in primary cell culture. After 2-3 weeks in vitro, the presumptive ORNs had resting potentials of -62 +/- 12 mV (n = 18) and expressed at least 1 type of Na+ channel and at least 3 types of K+ channels. Na+ currents, recorded in the whole-cell mode, were reversibly blocked by 0.1 microM tetrodotoxin. The predominant type of K+ channel observed was a voltage-activated K+ channel (gamma = 30 pS) with characteristics similar to those of the delayed rectifier. The activity of the 30-pS K+ channel could be inhibited by the application of nucleotides to the cytoplasmic face of inside-out patches of membrane. The nucleotides had relative potencies as follows: ATP greater than cGMP greater than cAMP, with an inhibition constant for ATP of Ki = 0.18 mM. Raising the intracellular Ca2+ concentration from 0.1 to 5 microM induced the opening of a Ca2(+)-activated K+ channel (gamma = 66 pS at 0 mV) that had a low voltage sensitivity. A third, transient type of K+ channel (gamma = 12-18 pS) could be activated by depolarizing voltage steps from very negative resting potentials. Properties of this channel were similar to those of the "A-channel." These results support the conclusion that M. sexta ORNs differentiate in vitro and provide the basis for studying primary mechanisms of olfactory transduction.  相似文献   

19.
Cellular properties have been examined in ventrally located Xenopus spinal cord neurons that are rhythmically active during fictive swimming and presumed to be motoneurons. Resting potentials and input resistances of such neurons are - 75 +/- 2 mV (mean +/- standard error) and 118 +/- 17 M ohm respectively. Most cells fire a single impulse, 0.5 to 2.0 ms in duration and 48.5 +/- 1.8 mV in amplitude, in response to a depolarizing current step. A minority fire several spikes of diminishing amplitude to more strongly depolarizing current. Cells held above spike, threshold fire on rebound from brief hyperpolarizing pulses. Spikes are blocked by 0.1 to 1.0 microM tetrodotoxin (TTX) and are therefore Na+-dependent. Current/voltage (I/V) plots to injected current are approximately linear near the resting potential but become non-linear at more depolarized levels. Cells recorded in TTX with CsCI-filled microelectrodes show a linearized I/V plot at depolarized membrane potentials suggesting the normal presence of a voltage-dependent K+ conductance activated at relatively depolarized levels. Most cells recorded in this way but without TTX fire long trains of spikes of near constant amplitude, pointing to a role of the K+ conductance in limiting firing in normal cells. Spike blockage with TTX reveals, in some cells, a transient depolarizing Cd2+-sensitive and therefore presumably Ca2+-dependent potential that increases in amplitude with depolarization. Cells in TTX, Cd2+, and strychnine, and recorded with CsCI-filled microelectrodes to block active conductances respond to hyperpolarizing current steps with a two component exponential response. The cell time constant (tau0) obtained from the longer of these by exponential peeling is relatively long (mean 15.7 ms). These findings contribute to an increased understanding of the cellular properties involved in spinal rhythm generation in this simple vertebrate.  相似文献   

20.
Calcium channel currents have been recorded from cultured rat sensory neurons at clamp potentials of between -30 and +120 mV. At large depolarizing potentials between +50 and +120 mV, the current was outward. This outward current was shown to be largely due to ions passing through calcium channels, because it was substantially although generally incompletely blocked by Cd2+ (1 mM) and omega-conotoxin (1 microM). Internal GTP-gamma-S (100 microM) and to a lesser extent GTP (1 mM) reduced the amplitude and slowed the activation of the outward, as well as the inward calcium channel current. Baclofen (100 microM) reversibly inhibited both the inward and outward currents. These results suggest that the effect of baclofen and G protein activation on calcium channel currents is not due to a shift in the voltage-dependence of channel availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号