首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Purpose

To investigate cellular uptake pathways of novel anionic siRNA-lipoplexes as a function of formulation composition.

Methods

Anionic formulations with anionic lipid/Ca2+/siRNA ratio of 1.3/2.5/1 (AF1) and 1.3/0.3/1 (AF2) were utilized. Uptake mechanisms were investigated using uptake inhibition and co-localization approaches in breast cancer cells. Actin-mediated uptake was investigated using actin polymerization and rearrangement assays. Silencing efficiency and endosomal escaping capability of lipoplexes were evaluated. The cationic formulation Lipofectamine-2000 was used as a control.

Results

Anionic lipoplexes entered the breast cancer cells via endocytosis specifically via macropinocytosis or via both macropinocytosis and HSPG (heparin sulfate proteoglycans) pathways, depending on the Ca2+/siRNA ratio. Additionally, uptake of these lipoplexes was both microtubule and actin dependent. The control cationic lipid-siRNA complexes (Lipofectamine-2000) were internalized via both endocytic (phagocytosis, HSPG) and non-endocytic (membrane fusion) pathways. Their uptake was microtubule independent but actin dependent. Silencing efficiency of the AF2 formulation was negligible mainly due to poor endosomal release (rate-limiting step).

Conclusions

Formulation composition significantly influences the internalization mechanism of anionic lipoplexes. Uptake mechanism together with formulation bioactivity helped in identification of the rate-limiting steps to efficient siRNA delivery. Such studies are extremely useful for formulation optimization to achieve enhanced intracellular delivery of nucleic acids.  相似文献   

2.
The utility of using a protammine/DNA complex coated with a lipid envelope made of cationic 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) for transfecting CHO (Chinese hamster ovary cells), HEK293 (human embryonic kidney cells), NIH 3T3 (mouse embryonal cells), and A17 (murine cancer cells) cells was examined. The widely used DOTAP/DNA lipoplex was employed as a reference. In all the tested cell lines lipid/protamine/DNA (LPD) nanoparticles were more efficient in transfecting cells than lipoplexes even though the lipid composition of the lipid envelope was the same in both devices. Physical-chemical properties were found to control the ability of nanocarriers to release DNA upon interaction with cellular membranes. LPD complexes easily release their DNA payload, while lipoplexes remain largely intact and accumulate at the cell nucleus. Collectively, these data explain why LPD nanoparticles often exhibit superior performances compared to lipoplexes in trasfecting cells and represent a promising class of nanocarriers for gene delivery.  相似文献   

3.
Novel formulations based on physiologically occurring anionic lipids have been designed to achieve safe and efficient siRNA delivery. Anionic liposomes (DOPG/DOPE) were complexed with siRNA using calcium ion bridges to prepare anionic lipoplexes. Various formulation parameters (liposome composition, lipid and calcium concentration) were evaluated and optimized to achieve efficient silencing and high cell viability in breast cancer cells. The optimal anionic lipoplexes composed of 1μg/mL lipid (40:60 (DOPG/DOPE m/m)), 2.4mM calcium and 10nM siRNA, showed maximum silencing (~70% knockdown) without being cytotoxic. These lipoplexes also showed stability and high efficiency in the presence of serum. Additionally, optimal anionic lipoplexes showed efficient intracellular uptake and endosomal escape. Characterization studies indicated the optimal anionic formulations were 324.2±19.6nm with a surface charge of (-22.9±0.1)mV and 98.5±1.4% encapsulation efficiency. Control cationic lipoplexes (Lipofectamine 2000) showed silencing comparable to the anionic lipoplexes but were highly cytotoxic as indicated by IC50 values (cationic - 22.9μg/mL, compared to anionic - greater than 10(7)μg/mL). Calcium-siRNA complexes (without liposomes) showed low efficiency (~50% silencing), and highly variable results. The optimized anionic formulations may offer a safer alternative to conventional cationic based systems for efficient in vitro as well as in vivo delivery of therapeutic siRNAs.  相似文献   

4.
The cellular uptake of antisense oligodeoxynucleotides (ODNs) may be enhanced by the use of carriers such as cationic liposomes or lipoplexes, but little is known about the intracellular fate and subcellular trafficking of these systems in target cells. In this study, we report on the cellular uptake and biodistribution of ODNs in the presence and absence of optimised self-assembled cationic lipoplexes using the C6 glioma cell line as an in vitro model. Biotin or radiolabelled 15-mer phosphorothioate (PS) ODNs were synthesised and their cellular uptake and subcellular biodistribution characterised in the presence and absence of an optimised cationic lipoplex delivery system using studies ranging from cellular association, cellular efflux and transmission electron microscopy (TEM). Ultrastructural studies clearly showed PS ODNs in the absence of liposomal delivery to be sequestered within endosomal and lysosomal vesicular bodies indicative of endocytic uptake. ODNs were also visible, to a lesser extent, in the nucleus and cytoplasm. By employing DOSPA (2'-(1",2"-dioleoyloxypropyldimethyl-ammonium bromide)-N-ethyl-6-amidospermine tetra trifluoroacetic acid) and DOPE (dioleoylphosphatidylethanolamine) complex in a 3 : 1 ratio, as a delivery system for ODNs at a optimal lipid/DNA charge ratio of 1 : 1, the level of ODN cellular association was significantly increased by approximately 10-12 fold with a concomitant change in subcellular distribution of PS ODN. TEM studies indicated enhanced penetration of ODN within the cytosol and the cell nucleus with reduced presence in vesicular compartments. Efflux studies confirmed that cationic lipoplexes promoted entry of ODNs into 'deeper' cellular compartments, consistent with endosomal release. Optimised cationic lipoplexes improved cellular delivery of ODNs by enhancing cell association, uptake and by favourably modulating the intracellular trafficking and distribution of ODNs into non-vesicular compartments including the cytosol and nucleus.  相似文献   

5.
Cationic lipid-mediated gene transfection involves uptake of the lipid/DNA complexes via endocytosis, a cellular pathway characterized by a significant drop in pH. Thus, in the present study, we aimed to explore the impact on transfection efficiency of the inclusion of an acid-sensitive acylhydrazone function in the cationic lipid structure. We synthesized and evaluated the transfection properties of a series of four cationic steroid derivatives characterized by an acylhydrazone linkage connecting a guanidinium-based headgroup to a saturated cholestanone or an unsaturated cholest-4-enone hydrophobic domain. Acid-catalyzed hydrolysis was confirmed for all lipids, its rate being highest for those with a cholestanone moiety. The compound bis-guanidinium bis(2-aminoethyl)amine hydrazone (BGBH)-cholest-4-enone was found to mediate efficient gene transfection into various mammalian cell lines in vitro and into the mouse airways in vivo. In vitro transfection studies with BGBH-cholest-4-enone formulations also showed that incorporation of a degradable acylhydrazone bond led to low cytotoxicity and impacted the intracellular trafficking of the lipoplexes. Thus, our work allowed us to identify a cationic lipid structure with an acid-cleavable acylhydrazone linker capable of mediating efficient gene transfection in vitro and in vivo and it thereby provides a basis for further development of related acid-sensitive gene delivery systems.  相似文献   

6.
Nonviral gene delivery systems are a promising approach for gene therapy applications, despite their low in vivo gene transfer efficiency. One approach to enhance this efficiency is to incorporate targeting elements into cationic lipid/DNA complexes (lipoplexes). Ligand-containing lipoplexes have to retain their efficiency while exposing accessible ligand on their surface. Physicochemical properties (particle size, surface charge, and efficacy of DNA complexation) of the lipoplexes largely determine their gene transfer efficiency. We synthesized glycolipids with various galactosylated head ligand and incorporated them into lipoplexes. We showed that incorporation of up to 33% mol of glycolipid did not change the physicochemical properties of lipoplexes. Some of our glycolipids yielded lipoplexes whose galactosyl heads were well exposed on the surface as demonstrated by a strong interaction with Ricinus communis agglutinin. Glycolipid-containing lipoplexes gave an efficient gene transfer on hepatocytes, although no ligand-targeted transfection could be observed.  相似文献   

7.
The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl- sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl- sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 degrees C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 degrees C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl- sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.  相似文献   

8.
The present study investigates the use of novel anionic lipoplexes composed of physiological components for plasmid DNA delivery into mammalian cells in vitro. Liposomes were prepared from mixtures of endogenously occurring anionic and zwitterionic lipids, 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DOPG) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), respectively, at a molar ratio of 17:83 (DOPG:DOPE). Anionic lipoplexes were formed by complexation between anionic liposomes and plasmid DNA molecules encoding green fluorescence protein (GFP) using Ca2+ ions. Transfection and toxicity were evaluated in CHO-K1 cells using flow cytometry and propidium iodide staining, respectively. Controls included Ca2+-DNA complexes (without lipids), anionic liposomes (no Ca2+), and a cationic liposomal formulation. Efficient delivery of plasmid DNA and subsequent GFP expression was achieved using anionic lipoplexes. Transfection efficiency increased with Ca2+ concentration up to 14 mM Ca2+, where transfection efficiency was 7-fold higher than in untreated cells, with minimum toxicity. Further increase in Ca2+ decreased transfection. Transfection efficiency of anionic lipoplexes was similar to that of cationic liposomes (lipofectAmine), whereas their toxicity was significantly lower. Ca2+-DNA complexes exhibited minimal and irregular transfection with relatively high cytotoxicity. A model was developed to explain the basis of anionic lipoplex uptake and transfection efficacy. Effective transfection is explained on the formation of nonbilayer hexagonal lipid phases. Efficient and relatively safe DNA transfection using anionic lipoplexes makes them an appealing alternative to be explored for gene delivery.  相似文献   

9.
Nonviral gene delivery systems are a promising approach for gene therapy applications, despite their low in vivo gene transfer efficiency. One approach to enhance this efficiency is to incorporate targeting elements into cationic lipid/DNA complexes (lipoplexes). Ligand-containing lipoplexes have to retain their efficiency while exposing accessible ligand on their surface. Physicochemical properties (particle size, surface charge, and efficacy of DNA complexation) of the lipoplexes largely determine their gene transfer efficiency. We synthesized glycolipids with various galactosylated head ligand and incorporated them into lipoplexes. We showed that incorporation of up to 33% mol of glycolipid did not change the physicochemical properties of lipoplexes. Some of our glycolipids yielded lipoplexes whose galactosyl heads were well exposed on the surface as demonstrated by a strong interaction with Ricinus communis agglutinin. Glycolipid-containing lipoplexes gave an efficient gene transfer on hepatocytes, although no ligand-targeted transfection could be observed.  相似文献   

10.
For the optimization of plasmid DNA (pDNA)-cationic lipid complexes and lipoplex delivery, proper indexes of the physicochemical properties of lipoplexes are required. In general, the characteristics of lipoplexes are defined by particle size and zeta-potential at various mixing ratios of cationic liposomes and pDNA. In this study, we characterized the hydration level of surfactant-modified and PEGylated cationic cholesterol-based (OH-Chol) liposomes and their lipoplexes by monitoring both the fluorescent probe laurdan and the dielectric relaxation time. Fluorescence measurement using laurdan detected hydration of the headgroup of lipids in surfactant-modified liposomes and PEGylated DOTAP-liposomes, but hardly any fluorescence was detected in PEGylated OH-Chol-liposomes because the PEG layers may extend and cover the fluorescent maker. On the other hand, the measurement of dielectric relaxation time of water molecules revealed total hydration, including hydration of the PEG layer and the headgroup of cationic lipids. Furthermore, we found an inverse correlation between hydration level and cellular uptake of PEGylated lipoplexes (R=0.946). This finding indicated that the dielectric relaxation time of water molecules provides an important indicator of hydration of liposome and lipoplexes along with the fluorescence intensity of laurdan.  相似文献   

11.
We previously developed complexes of lipoplexes containing 3beta-(N-(N',N'-dimethylaminoethane)carbamoyl)cholesterol (DC-chol) and succinylated poly(glycidol)-modified liposome, which becomes fusogenic under weakly acidic condition, for use as a novel gene delivery system. This study explored the effect of lipoplex structures--the type of cationic lipid and cationic lipid/DNA charge ratio--on the transfection activity of those complexes. Three types of cationic lipid with different polar groups were used for the preparation of lipoplexes: DC-chol, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methylsulfate (DOTAP), and 3,5-dipentadecyloxybenzamidine (TRX-20) with dimethylamino group, trimethylammonium group, and benzamidine group, respectively. Complexation with the SucPG-modified transferrin-bearing liposomes affected transfection activity of these lipoplexes differently. The TRX-20 lipoplexes exhibited the most marked enhancement of transfection activity upon complexation with the SucPG-modified liposomes among these lipoplexes. The cationic lipid/DNA charge ratio of the lipoplex and the amount of the transferrin-bearing SucPG-modified liposomes associated to the lipoplex also affected the transfection activity of the resultant complexes. Highly potent gene vectors were obtained by adjusting these factors.  相似文献   

12.
《Nanotoxicology》2013,7(9):1161-1175
Abstract

Cationic lipids are well-known excipients for nanometric liposomal gene delivery systems. However, because of the suspected, collateral toxicity in normal cells, the use of cationic lipids for the treatment of human tumor is largely limited. Recently, we developed a glucocorticoid receptor (GR)-targeted liposomal, anticancer delivery system (DXE nano-lipoplex), which carried cationic lipid of saturated twin aliphatic chains. It exhibited efficient anti-tumor effect in aggressive and drug-resistant tumor models. Toward exploring lipoplex’s human clinical use, we incorporated another nano-lipoplex (D1XE) group that carried cationic lipid with one of its aliphatic chain carrying unsaturation and compared in vivo genotoxicological profiling-based safety assessment and the respective anti-tumor efficacy of the lipoplexes. Thus, both the lipoplexes differ only by the chemical identity of one of their constituent cationic lipid. Unsaturated aliphatic chains in lipid generally impart efficient cell surface fusogenic property in lipid formulations. Herein, we report that nanoplex with unsaturated cationic lipid (D1XE) exhibited better physical appearance with less flocculent behavior than nanoplex with saturated lipid (DXE). Upon multiple injections, D1XE nanoplex imparted better tumor regression but most importantly, exhibited much lower overall toxicity (e.g. genotoxicity, weight loss, etc.) than DXE nanoplex. With a higher antitumor effect but a lower genotoxic effect, D1XE is proved to be a better nanoplex than DXE for the potential clinical trial. Thus, this study clearly delineates the importance of incorporating a constituent lipid that carries a single unsaturated aliphatic chain toward developing efficient anti-tumor nano-lipoplexes with reduced genotoxicity.  相似文献   

13.
In this work we have examined the ability of various lipopolyplexes to deliver genes into liver cancer cells. We evaluated different parameters such as the protocol of preparation, the lipid/DNA molar ratio, and the molecular weight and type of PEI, to optimize the formulation to achieve high transfection activity. Our hypothesis was that the association of PEI with cationic liposomes (lipopolyplexes) would increase luciferase expression compared to lipoplexes (cationic lipid and DNA) and polyplexes (cationic polymer and DNA) alone.  相似文献   

14.
In this work we have examined the ability of various lipopolyplexes to deliver genes into liver cancer cells. We evaluated different parameters such as the protocol of preparation, the lipid/DNA molar ratio, and the molecular weight and type of PEI, to optimize the formulation to achieve high transfection activity. Our hypothesis was that the association of PEI with cationic liposomes (lipopolyplexes) would increase luciferase expression compared to lipoplexes (cationic lipid and DNA) and polyplexes (cationic polymer and DNA) alone.  相似文献   

15.
Serum is a major obstacle to efficient cationic liposome-mediated gene transfection. In this paper, three alkaline amino acids based cationic lipids including lysinylated cholesterol (lipid 1), histidinylated cholesterol (lipid 2) and argininylated cholesterol (lipid 3) were used as non-viral gene vectors. The physicochemical properties such as size, Zeta potential, stability and cellular uptake of the lipoplexes formed from lipids 1-3 as well as the transfection efficacies with or without serum were investigated. The results demonstrated that lipid 1 and lipid 3 showed good properties in lipoplex stability and cellular uptake. Interestingly, lipid 3-based liposome showed serum-enhanced effect on the gene transfection. The transfection efficiency of lipid 1 and lipid 3 was remarkably higher than that of lipid 2. Moreover, they exhibited 10-20-fold more efficaciously than the control, 1,2-dioleoyloxy-3-(trimethylammonio)-propane (DOTAP) liposome in serum-containing media. The data suggested the strong effect of the type of the headgroup on gene transfection. The lysine/arginine derivative cationic lipids could be promising nonviral vectors for gene delivery in vivo.  相似文献   

16.
Wu Y  Ho YP  Mao Y  Wang X  Yu B  Leong KW  Lee LJ 《Molecular pharmaceutics》2011,8(5):1662-1668
Lipoplexes and polyplexes represent the two major nanocarrier systems for nucleic acid delivery. Previous studies examining their uptake and intracellular unpacking rely on organic fluorophores fraught with low signal intensity and photobleaching. In this work quantum dot mediated F?rster resonance energy transfer (QD-FRET) was first used to study and compare the cellular uptake and the intracellular fate of oligodeoxynucelotide (ODN)-based lipoplexes and polyplexes. QD605-amine and Cy5-labeled ODN (Cy5-GTI2040) were chosen as the FRET pair. By adjusting the lipid/ODN ratio of lipoplexes and the nitrogen/phosphate (N/P) ratio of polyplexes, lipoplexes and polyplexes with comparable physical properties were produced. The biological activities of dual-labeled lipoplexes and polyplexes remained unaltered compared to their unlabeled counterparts as evidenced by their comparable antisense activities against protein R2 in KB cells. Flow cytometry and confocal microscopy revealed similar pattern of uptake for these two types of nanoparticles, although polyplexes had a higher dissociation rate than lipoplexes in KB cells. We demonstrate that QD-FRET is a sensitive tool to study the uptake and intracellular unpacking of lipoplexes and polyplexes, which may help optimize their formulations for various theranostics applications.  相似文献   

17.
Lung cancer is the leading cause of cancer deaths in western countries and carries a poor overall five year survival rate. Several studies demonstrate that microRNAs (miRNAs or miRs) are actively involved in tumor development by serving as tumor suppressors, oncogenes or both. In lung cancer, miRNAs may serve as both diagnostic and prognostic biomarkers as well as regulate in vitro and in vivo tumor progression. However, miRNA-based therapy is faced with several challenges including lack of tissue specificity, lack of optimal delivery systems, poor cellular uptake and risk of systemic toxicity. Here, we report a cationic lipid based miRNA delivery system to address some of these challenges. Among many lung cancer related miRNAs, miR-133b, a tumor suppressor, was selected as a therapeutic target because it directly targets the prosurvival gene MCL-1 thus regulating cell survival and sensitivity of lung cancer cells to chemotherapeutic agents. The efficacy of pre-miR-133b containing lipoplexes was evaluated in A549 non-small cell lung cancer (NSCLC) cells. Compared with siPORT NeoFX transfection agent, lipoplexes delivered pre-miR-133b in a more efficient manner with ~2.3-fold increase in mature miR-133b expression and ~1.8-fold difference in MCL-1 protein downregulation in vitro. In the in vivo biodistribution study, lipoplexes achieved ~30% accumulation in lung tissue, which was ~50-fold higher than siPORT NeoFX transfection agent. Mice treated with pre-miR-133b containing lipoplexes had mature miR-133b expression in lung ~52-fold higher than untreated mice. Our results demonstrated that cationic lipoplexes are a promising carrier system for the development of miRNA-based therapeutics in lung cancer treatment.  相似文献   

18.
Peptides can potentiate lipid-mediated gene delivery by modifying lipoplex physiochemical properties to overcome rate-limiting steps to gene transfer. The objectives of this study were to determine the regimes over which cationic peptides enhance lipofection and to investigate the mechanism of action, such as increased cellular association resulting from changes in lipoplex physical properties. Short, cationic peptides were incorporated into lipoplexes by mixing peptide, lipid and DNA. Lipoplexes were characterized using gel retardation, dynamic light scattering, and fluorescent microscopy, and the amount of surface-displayed amines was quantified by fluorescamine. Size, zeta potential, and surface amines for lipoplexes were dependent on peptide/DNA ratio. Inclusion of peptides in lipoplexes resulted in up to a 13-fold increase in percentage of cells transfected, and up to a 76-fold increase in protein expression. This transfection enhancement corresponded to a small particle diameter and positive zeta potential of lipoplexes, as well as increased amount of surface-displayed amines. Relative to lipid alone, these properties of the peptide-modified lipoplexes enhanced cellular association, which has been reported as a rate-limiting step for transfection with lipoplexes. The addition of peptides is a simple method of lipofection enhancement, as direct chemical modification of lipids is not necessary for increased transfection.  相似文献   

19.
Characterization of DNA-lipid complexes commonly used for gene delivery.   总被引:1,自引:0,他引:1  
Cationic liposomes are used to deliver genes into cells. Here we describe some poorly understood basic features of DNA-lipid complexes (lipoplexes), especially the electrostatics, stability and DNA structure of lipoplexes, and their effects on transfection (lipofection). Use of the lipophilic, pH-sensitive fluorophore 4-heptadecyl-7-hydroxycoumarin, in combination with Gouy-Chapman calculations, showed that cationic liposomes had a large positive surface potential (180-240 mV) and a high pH (10-11.5) at the location of the probe on the liposomal surface in 20 mM Hepes buffer (pH 7.4). Other electrostatic characteristics were also found, such as the existence of protonable groups of cationic or helper lipids or salt bridges between those. Addition of DNA resulted in neutralization of cationic lipids, which was lower than expected and depending on the type of lipid and the DNA/cationic lipid ratio. The liposomes containing DOTAP (N-(1-(2,3-dioleoyloxy)propyl)-N,N, N-trimethylammonium chloride) were unstable upon dilution, probably due to the high critical micellar concentration of DOTAP, 7x10(-5) M. Large instability expressed as continuous size increase was demonstrated by the time-dependent static changes in light-scattering monitored following the mixing of cationic liposomes and DNA at DNA/cationic lipid molar ratios between 0.2 and 0.8. Addition of cationic liposomes composed of 100% DOTAP or DOTAP/DOPE (1/1) liposomes, induced instantaneous transition of the plasmid DNA from the B- toward a partial C-type conformation as shown by circular dichroism (CD) spectroscopy and at certain conditions Psi--DNA could be found as well. The Psi--DNA is characterized by inter-helical interaction between parallel helices. The highest lipofection was obtained under conditions of lipoplex instability, and when the DNA was partially dehydrated and had a partial Psi-- structure.  相似文献   

20.
The successful delivery of therapeutic genes to the designated target cells and their availability at the intracellular site of action are crucial requirements for successful gene therapy. Nonviral gene delivery is currently a subject of increasing attention because of its relative safety and simplicity of use; however, its use is still far from being ideal because of its comparatively low efficiency. Most of the currently available nonviral gene vectors rely on two main components, cationic lipids and cationic polymers, and a variety of functional devices can be added to further optimize the systems. The design of these functional devices depends mainly on our understanding of the mechanisms involved in the cellular uptake and intracellular disposition of the therapeutic genes as well as their carriers. Macromolecules are internalized into cells by a variety of mechanisms, and their intracellular fate is usually linked to the entry mechanism. Therefore, the successful design of a nonviral gene delivery system requires a deep understanding of gene/carrier interactions as well as the mechanisms involved in the interaction of the systems with the target cells. In this article, we review the different uptake pathways that are involved in nonviral gene delivery from a gene delivery point of view. In addition, available knowledge concerning cellular entry and the intracellular trafficking of cationic lipid-DNA complexes (lipoplexes) and cationic polymer-DNA complexes (polyplexes) is summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号