首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both poly(ethylene glycol) (PEG) grafting and layer-by-layer polyelectrolyte multilayer (PEM) deposition for surface modification of biomaterials have been shown to decrease cell adhesion. The aim of this study was to investigate the synergic efficacy of PEGylated PEM films on reducing cell adhesion. PEG grafted to poly(ethylene imine) (PEI) was deposited onto the top of PEI/PAA (poly(acrylic acid)) multilayer films which were deposited onto cytophilic substrates, including tissue culture polystyrene and collagen-based substrate. The efficacy of the PEGylated PEM films in blocking adhesion of L929 cells was investigated by varying the amount of conjugated PEG and the layer numbers of PEM films. We found that cell adhesion was reduced on the swollen PEM films and further decreased by deposition of PEI-g-PEG as the topmost layer. The ability in cell resistance was enhanced with increasing PEG contents of PEGylated PEM films. PEGylated PEM films were stable for long-term incubation in phosphate-buffered saline. We demonstrated that cell affinity of cytophilic surfaces could be depressed by deposition of PEGylated PEM films.  相似文献   

2.
Cellular patterning on biomaterial surfaces is important in fundamental studies of cell–cell and cell–substrate interactions, and in biomedical applications such as tissue engineering, cell-based biosensors, and diagnostic devices. In this study, we combined the layer-by-layer polyelectrolyte multilayer deposition and photolithographic technique to create an easy and versatile technique for cell patterning. Poly(acrylic acid) (PAA) conjugated with 4-azidoaniline was interwoven in PAA/polyacrylamide (PAM) multilayer films. After UV irradiation through a photo mask, the UV-exposed areas were crosslinked and the unexposed areas were rinsed away by alkaline water, resulting in micropatterns. Cell patterns were formed when the cell adhesion was limited to the base substrate, but not on the multilayer films. The stability of cell patterns could be modulated by simply modification of the surface chemistry of base substrate and PEM films with conjugation of bioactive macromolecules. This technique can be also applied to other PEM systems with proper rinsing protocol, and many types of substrates. Cell co-culture systems can be also achieved by this technique.  相似文献   

3.
Hyaluronan (HA) hydrogels resist attachment and spreading of fibroblasts and most other mammalian cell types. A thiol-modified HA (3,3'-dithiobis(propanoic dihydrazide) [HA-DTPH]) was modified with peptides containing the Arg-Gly-Asp (RGD) sequence and then crosslinked with polyethylene glycol (PEG) diacrylate (PEGDA) to create a biomaterial that supported cell attachment, spreading, and proliferation. The hydrogels were evaluated in vitro and in vivo in three assay systems. First, the behavior of human and murine fibroblasts on the surface of the hydrogels was evaluated. The concentration and structure of the RGD peptides and the length of the PEG spacer influenced cell attachment and spreading. Second, murine fibroblasts were seeded into HA-DTPH solutions and encapsulated via in situ crosslinking with or without bound RGD peptides. Cells remained viable and proliferated within the hydrogel for 15 days in vitro. Although the RGD peptides significantly enhanced cell proliferation on the hydrogel surface, the cell proliferation inside the hydrogel in vitro was increased only modestly. Third, HA-DTPH/PEGDA/peptide hydrogels were evaluated as injectable tissue engineering materials in vivo. A suspension of murine fibroblasts in HA-DTPH was crosslinked using PEGDA plus PEGDA peptide, and the viscous, gelling mixture was injected subcutaneously into the flanks of nude mice; gels formed in vivo following injection. After 4 weeks, growth of new fibrous tissue had been accelerated by the sense RGD peptides. Thus, attachment, spreading, and proliferation of cells is dramatically enhanced on RGD-modified surfaces but only modestly accelerated in vivo tissue formation.  相似文献   

4.
Alginate (ALG) hydrogels incorporating vascular endothelial growth factor (VEGF) were nano-coated with polyelectrolyte multilayer (PEM) films composed of chitosan (CT) and dextran sulfate (DEX) in order to control the VEGF release from the hydrogels. When non- and nano-coated ALG hydrogels containing VEGF were incubated in phosphate-buffered saline (PBS) at 37 degrees C for the prescribed times, the nano-coated hydrogels were stable, even after incubation for a week, whereas the non-coated hydrogels collapsed after 6 h. The release profile of VEGF from the non- and nano-coated ALG hydrogels was evaluated by an enzyme-linked immunosorbent assay (ELISA). Although all of the VEGF incorporated into the non-coated ALG hydrogels was released within 6 h by the collapse, only a few percent of the VEGF incorporated in the nano-coated hydrogels was released. Furthermore, the incorporated VEGF in the nano-coated hydrogels was released continuously, even after a month, without any initial burst release. The release percentage of VEGF was easily controlled by the PEM film thickness on the surface of the ALG hydrogels. The VEGF released from the nano-coated hydrogels retained its activity without denaturation. Consequently, the nano-coating of hydrogel surfaces with PEM films may be useful for controlled and sustained drug-delivery systems.  相似文献   

5.
The use of surface coating on biomaterials can render the original substratum with new functionalities that can improve the chemical, physical, and mechanical properties as well as enhance cellular cues such as attachment, proliferation, and differentiation. In this work, we combined biocompatible polydimethylsiloxane (PDMS) with a biomimetic polyelectrolyte multilayer (PEM) film made of poly(L-lysine) and hyaluronic acid (PLL/HA) for skeletal muscle tissue engineering. By microstructuring PDMS in grooves of a different width (5, 10, 30, and 100?μm) and by modulating the stiffness of the (PLL/HA) films, we guided skeletal muscle cell differentiation into myotubes. We found optimal conditions for both the formation of parallel-oriented myotubes and their maturation. Significantly, the myoblasts were collectively prealigned to the grooves before their differentiation. Before fusion, the highest aspect ratio and orientation of nuclei were observed for the 5 and 10?μm wide micropatterns. The formation of myotubes was observed regardless of the size of the micropatterns, and we found that their typical width was 10-12?μm. Their maturation was characterized by the immunolabeling of type II isomyosin. The amount of myosin striation was not affected by the topography, except for the 5?μm wide micropatterns. We highlighted the spatial constraints that led to an important nuclei deformation and further impairment of maturation within the 5?μm grooves. Altogether, our results show that the PEM film combined with PDMS is a powerful tool that is used for skeletal muscle engineering. This work opens perspectives for the development of skeletal muscle tissue in contact with films containing bioactive peptides or growth factors as well as for the study of pathogenic myotubes.  相似文献   

6.
Electrostatically driven layer-by-layer (LbL) assembly is a simple and robust method for producing structurally tailored thin film biomaterials, of thickness ca. 10nm, containing biofunctional ligands. We investigate the LbL formation of multilayer films composed of polymers of biological origin (poly(L-lysine) (PLL) and dextran sulfate (DS)), the adsorption of fibronectin (Fn)--a matrix protein known to promote cell adhesion--onto these films, and the subsequent spreading behavior of human umbilical vein endothelial cells (HUVEC). We employ optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microgravimetry with dissipation (QCMD) to characterize multilayer assembly in situ, and find adsorbed Fn mass on PLL-terminated films to exceed that on DS terminated films by 40%, correlating with the positive charge and lower degree of hydration of PLL terminated films. The extent and initial rate of Fn adsorption to both PLL and DS-terminated films exceed those onto the bare substrate, indicating the important role of electrostatic complexation between negatively charged protein and positively charged PLL at or near the film surface. We use phase-contrast optical microscopy to investigate the time-dependent morphological changes of HUVEC as a function of layer number, charge of terminal layer, and the presence of Fn. We observe HUVEC to attach, spread, and lose circularity on all surfaces. Positively charged PLL-terminated films exhibit a greater extent of cell spreading than do (negatively charged) DS-terminated films, and spreading is enhanced while circularity loss is suppressed by the presence of adsorbed Fn. The number of layers plays a significant role only for DS-terminated films with Fn, where spreading on a bilayer greatly exceeds that on a multilayer, and PLL-terminated films without Fn, where initial spreading is significantly higher on a monolayer. We observe initial cell spreading to be followed by retraction (i.e. decreased cell area and circularity with time) for films without Fn, and for DS-terminated films with Fn. Overall, the Fn-coated PLL monolayer and the Fn-coated PLL-terminated multilayer are the best performing films in promoting cell spreading. We conclude the presence of Fn to be an important factor (more so than film charge or layer number) in controlling the interaction between multilayer films and living cells, and thus to represent a promising strategy toward in vivo applications such as tissue engineering.  相似文献   

7.
The physiological activity of hyaluronic acid (HA) polymers and oligomers makes it a promising material for a variety of applications. The development of HA-hydrogel scaffolds with improved mechanical stability against degradation and biochemical functionality may enhance their application to tissue engineering. In this report, a crosslinking strategy targeting the alcohol groups via a poly(ethylene glycol) diepoxide crosslinker was investigated for the generation of degradable HA hydrogels. To provide support for cell adhesion in vitro, collagen was incorporated into the HA solution prior to the crosslinking process. The hydrogels have a continuous exterior and a porous interior, with pore diameters ranging from 6 to 9 microm. HA and HA-collagen hydrogels degrade in the presence of hyaluronidase and collagenase enzymes, indicating that the chemical modification does not prevent biodegradation. Complete degradation of the hydrogels occurred within 14 days in hyaluronidase (100 U/ml) and 3 days in collagenase (66 U/ml). Pattern transfer was employed to introduce a surface topography onto the hydrogel, which was able to orient cell growth. Furthermore, the hydrogels could be functionalized with the biomolecule neutravidin by incorporation of biotin along the HA backbone. This biotinylation approach may allow attachment of bioactive molecules that are conjugated to avidin.  相似文献   

8.
The using of layer-by-layer assembly polyelectrolyte (PE) films has been suggested as a new versatile technique for surface modification aimed at tissue engineering and cell-based chips. In this study, we investigated the surface morphology of the hyaluronic acid (HA)-based PE films deposited on the amino-functionalized glass slides using atomic force microscopy. These thin films (bilayer number <9) were measured to have nanoscale roughness ranging from 10 to 100 nm. Then the primary hippocampal and cortical neural cells were cultured on the PE films, respectively. After 5 days of culturing, the cytocompatibility to neural cells was evaluated by cellular morphology, neurite outgrowth, and microtubule-associated protein 2 expressions. From the present results, the HA-based PE films were found to be able to support neural cell adhesion and neurite development, especially for the polycation-ending films. It is suggested these HA-based multilayer PE films or similar build-ups could thus be used in the future as a way to modify surfaces for nerve scaffolds and neuron-based chips.  相似文献   

9.
The adherence and activation of primary human monocytes was investigated on a polyelectrolyte multilayer film containing hyaluronic acid (HA) and poly-L-lysine (PLL). The sequential layer-by-layer deposition of the multilayer film was characterized by surface plasmon resonance. Eight alternating bilayers displayed an effective thickness of 16.15 nm with a total polymer coverage of 2.10 microg/cm2. For cell studies, HA-PLL multilayers were constructed on tissue culture polystyrene (TCPS) substrates and characterized by time of flight second ion mass spectrometry (ToF-SIMS) analysis. Principal component analysis of the ToF-SIMS spectra resolved no significant difference in surface chemistry between PLL-terminated and HA-terminated multilayer surfaces. Monocyte adhesion on PLL- and HA-terminated surfaces was measured by the lactate dehydrogenase assay and showed a significant decrease in cell adhesion after 24 h incubation. Cell viability measured by Live/Dead fluorescent staining showed significant cell death in the adherent cell population over these 24 h. Tumor necrosis factor-alpha (TNF-alpha) production, a measure of monocyte activation, was quantified by ELISA and normalized to the number of adherent monocytes. The activation of monocytes on PLL-terminated and HA-terminated surfaces was nearly identical, and both surfaces had TNF-alpha levels that were 8-fold higher than TCPS. These results demonstrate that sufficient PLL had diffused into the surface layer to direct monocyte adherence and to induce cytokine activation and cell death on the HA-terminated multilayer films. The diffusion of the second multilayer component to the coating surface should, thus, be taken into account in the design of polyelectrolyte-based biomaterial coating strategies.  相似文献   

10.
为探讨同时接枝Nogo-A受体(NgR)的抗体和多聚赖氨酸(PLL)的透明质酸(HA)水凝胶用于中枢神经系统损伤修复的可行性,本研究在碳二亚胺盐酸盐的介导下用己二酸二酰肼交联的方法制备HA水凝胶,并接枝PLL和NgR抗体。取新生大鼠海马神经元接种于水凝胶支架材料上,分为HA-NgR抗体-PLL水凝胶组和纯HA水凝胶组。培养7d后,用吖啶橙(AO)染色、抗神经丝蛋白(NF)和胶质纤维酸性蛋白(GFAP)免疫荧光染色和扫描电镜观察两组细胞的生长情况。结果显示:纯HA水凝胶不利于神经细胞在材料上粘附和突起生长;HA-NgR抗体-PLL水凝胶可以显著增加海马神经元的粘附数量、促进神经元突起形成,同时也能使星形胶质细胞在材料表面生长。上述结果提示:接枝NgR抗体和PLL的HA水凝胶与海马神经元相容性良好,为中枢神经系统损伤修复提供了一种较理想的支架材料。  相似文献   

11.
Layer-by-layer deposition of polyelectrolyte multilayer (PEM) thin films has recently been applied to biomaterial applications. This simple and versatile technique provides a wide variety of potential utilization by insertion of biomolecules such as cell adhesion peptides. In this work dual peptides containing RGD (a cell-binding domain) and LHRRVKI (a heparin-binding domain) were immobilized onto polystyrene by the PEM technique and the effects on osteoblast cell culture were investigated. These peptides were conjugated to the amino groups of poly(allylamine hydrochloride) and then adsorbed onto the top of a 10 layer poly(allylamine hydrochloride)/poly(acrylic acid) film assembled at either pH 2.0 or pH 6.5. Osteoblasts, isolated from neonatal rat calvariae, were then seeded and cultured on the peptide-conjugated surfaces. We found that the cells adhered and grew better on the RGD-conjugated PEM films. The osteoblasts exhibited a better differentiated phenotype on the pH 2.0 films than the pH 6.5 films with respect to calcium deposition. The incorporation of LHRRVKI did not support cell adhesion, growth and matrix mineral deposition. Our results showed that the efficacy of RGD conjugation on osteoblast behavior was affected by the base PEM film.  相似文献   

12.
Boura C  Menu P  Payan E  Picart C  Voegel JC  Muller S  Stoltz JF 《Biomaterials》2003,24(20):3521-3530
Endothelial cell seeding constitutes an appreciated method to improve blood compatibility of small-diameter vascular grafts. In this study, we report the development of a simple innovative technique based on multilayered polyelectrolyte films as cell adhesive substrates. Polyelectrolyte multilayered films ending by poly(sodium-4-styrenesulfonate)/poly(allylamine hydrochloride) (PSS/PAH) or poly(L-glutamic acid)/poly(D-lysine) (PGA/PDL) could enhance cell adhesion by modification of the physico-chemical properties of the surface. The biological responses of human umbilical vein endothelial cells seeded on the polyelectrolyte multilayer films, on PDL or PAH monolayers, and on control surfaces, were evaluated in terms of initial attachment, growth, cellular metabolic activity, endothelial phenotype, and adhesion. The results showed that polyelectrolyte multilayers neither induce cytotoxic effects nor alter the phenotype of the endothelial cells. The polyelectrolyte multilayered films enhanced initial cell attachment as compared to the polyelectrolyte monolayer. Cell growth observed on the films was similar to that on TCPS. Among the different coating tested, the film ending by PSS/PAH exhibited an excellent cellular biocompatibility and appeared to be the most interesting surface in terms of cellular adhesion and growth. Such films could be used to cover hydrophobic (cell resistant) substrates in order to promote cell colonization, thereby constituting an excellent material for endothelial cell seeding.  相似文献   

13.
Polyvinyl alcohol (PVA) hydrogels blended with chitosan or other biological macromolecules have shown promise for cell culture and tissue engineering. This study investigates the attachment and growth of bovine aortic endothelial (BAEC) and smooth muscle cells (BASMC) on the PVA hydrogels modified with water soluble and water insoluble chitosan. Cell adhesion on the surface of the membranes was examined by phase contrast microscopy while cell morphologies were studied using immunocytochemistry staining with EC and SMC specific biomarkers (F-actin and alpha actin respectively). Cells cultured on 6% PVA, 0.4% chitosan (water soluble and insoluble) hydrogel membranes displayed excellent adhesion and spreading characteristics, in addition to negligible cell structural morphological changes in comparison to a polystyrene control. Similar vascular cell adhesion features were apparent on PVA membranes blended with water-soluble and -insoluble chitosan. Fluorescent activated cell sorter (FACS) analysis was used to determine BAEC and BASMC proliferation and cell viability. Apoptotic levels in BAEC after 7 days were 12.8% +/- 2.5% on the PVA- chitosan WS-1 membrane and 10.1% +/- 1.5% on the control well (n = 3) while comparable results were also noted for BASMC. Equivalent proliferative activity was apparent for BAEC on the control and PVA-chitosan membrane after 7 days, while BASMC showed increased proliferative activity on the membranes. These results indicate that the PVA-chitosan blended hydrogel membranes show promise for cell culture and tissue engineering applications.  相似文献   

14.
Skeletal muscle tissue engineering holds promise for the replacement of muscle damaged by injury and for the treatment of muscle diseases. Although arginylglycylaspartic acid (RGD) substrates have been widely explored in tissue engineering, there have been no studies aimed at investigating the combined effects of RGD nanoscale presentation and matrix stiffness on myogenesis. In the present work we use polyelectrolyte multilayer films made of poly(l-lysine) (PLL) and poly(l-glutamic) acid (PGA) as substrates of tunable stiffness that can be functionalized by a RGD adhesive peptide to investigate important events in myogenesis, including adhesion, migration, proliferation and differentiation. C2C12 myoblasts were used as cellular models. RGD presentation on soft films and increasing film stiffness could both induce cell adhesion, but the integrins involved in adhesion were different in the case of soft and stiff films. Soft films with RGD peptide appeared to be the most appropriate substrate for myogenic differentiation, while the stiff PLL/PGA films induced significant cell migration and proliferation and inhibited myogenic differentiation. ROCK kinase was found to be involved in the myoblast response to the different films. Indeed, its inhibition was sufficient to rescue differentiation on stiff films, but no significant changes were observed on stiff films with the RGD peptide. These results suggest that different signaling pathways may be activated depending on the mechanical and biochemical properties of multilayer films. This study emphasizes the advantage of soft PLL/PGA films presenting the RGD peptide in terms of myogenic differentiation. This soft RGD-presenting film may be further used as a coating of various polymeric scaffolds for muscle tissue engineering.  相似文献   

15.
目的:评价神经干细胞与改性透明质酸水凝胶支架新材料的生物相容性,研究该透明质酸水凝胶支架作为中枢神经组织工程载体材料的可行性,为用组织工程及干细胞技术治疗中枢神经系统损伤提供基础。方法:以冷冻干燥法制备透明质酸水凝胶材料支架,通过化学接枝法将抗Nogo受体抗体(Anti-NogoR)和多聚赖氨酸(poly-l-lysine,PLL)分子接枝到水凝胶上对其改性,制成新的支架材料。体外培养胚胎13.5d大鼠前脑泡神经干细胞.将神经干细胞与生物支架共培养,通过扫描电镜观察透明质酸水凝胶的内部结构及神经干细胞在支架材料上的粘附与生长情况,通过细胞免疫组织化学技术观察神经干细胞在透明质酸水凝胶材料上的存活与分化情况。结果:制备的透明质酸水凝胶材料具有疏松的三维多孔结构,神经干细胞在支架材料上能够粘附并且有突起长出,生长良好。神经干细胞在支架材料上能够分化。结论:神经干细胞与经过改性的透明质酸水凝胶新材料有很好的生物相容性,能够在材料上存活分化。该新透明质酸水凝胶材料有望作为修复中枢神经损伤的组织工程载体。  相似文献   

16.
The modification of hyaluronan (HA) and gelatin using dithiobis(propanoic dihydrazide) (DTP) has provided two thiolated macromolecular components of the extracellular matrix (ECM), specifically HA-DTPH and gelatin-DTPH. Blends of these thiolated ECM components were crosslinked in air to form hydrogels that were interpenetrating disulfide-crosslinked networks. Lyophilization of the hydrogels afforded sponge-like macroporous scaffolds suitable for cell attachment and proliferation. Increasing percentages of gelatin-DTPH (0, 25, 50, and 75%) were blended with HA-DTPH, and the resulting sponges were evaluated in vitro and in vivo as scaffolds for tissue engineering by seeding with human tracheal scar (HTS) fibroblasts. While cells failed to attach and grow in HA-only sponges, the gelatin-modified HA sponges promoted cell adhesion, proliferation, and spreading in vitro. Optimal attachment and growth was observed with 50% gelatin-HA sponges. Cell attachment to the gelatin-HA sponge could be blocked by preincubation of cells with a soluble fibronectin peptide Gly-Arg-Gly-Asp (GRGD). Finally, HTS fibroblast-seeded gelatin-HA sponges were implanted into the flanks of nude mice and evaluated at 2 and 8 weeks postimplantation. The sponges were fully biocompatible and new fibrous tissue formed, gradually replacing the sponge-like scaffold. The gelatin-HA sponges act as synthetic, macroporous, covalent mimics of the ECM and constitute novel scaffolds for cell growth and tissue augmentation.  相似文献   

17.
18.
Krishna OD  Jha AK  Jia X  Kiick KL 《Biomaterials》2011,32(27):6412-6424
In this study, we evaluated the competence of a rationally designed collagen-like peptide (CLP-Cys) sequence - containing the minimal essential Glycine-Glutamic acid-Arginine (GER) triplet but lacking the hydroxyproline residue - for supporting human mesenchymal stem cell (hMSC) adhesion, spreading and proliferation. Cellular responses to the CLP-Cys sequence were analyzed by conjugating the peptide to two different substrates - a hard, planar glass surface and a soft hyaluronic acid (HA) particle-based hydrogel. Integrin-mediated cell spreading and adhesion were observed for hMSCs cultivated on the CLP-Cys functionalized surfaces, whereas on control surfaces lacking the peptide motif, cells either did not adhere or maintained a round morphology. On the glass surface, CLP-Cys-mediated spreading led to the formation of extended and well developed stress fibers composed of F-actin bundles and focal adhesion complexes while on the soft gel surface, less cytoskeletal reorganization organization was observed. The hMSCs proliferated significantly on the surfaces presenting CLP-Cys, compared to the control surfaces lacking CLP-Cys. Competitive binding assay employing soluble CLP-Cys revealed a dose-dependent inhibition of hMSC adhesion to the CLP-Cys-presenting surfaces. Blocking the α(2)β(1) receptor on hMSC also resulted in a reduction of cell adhesion on both types of CLP-Cys surfaces, confirming the affinity of CLP-Cys to α(2)β(1) receptors. These results established the competence of the hydroxyproline-free CLP-Cys for eliciting integrin-mediated cellular responses including adhesion, spreading and proliferation. Thus, CLP-Cys-modified HA hydrogels are attractive candidates as bioactive scaffolds for tissue engineering applications.  相似文献   

19.
Hydrogels have been used in biology and medicine for many years, and they possess many properties that make them advantageous for tissue engineering applications. Their high water content and tissue-like elasticity are similar to the native extracellular matrix of many tissues. In this work, we investigated the potential of a modified poly(vinyl alcohol) (PVA) hydrogel as a biomaterial for tissue engineering applications. First, the ability of NIH3T3 fibroblast cells to attach to PVA hydrogels was evaluated. Because of PVA's extremely hydrophilic nature, important cell adhesion proteins do not adsorb to PVA hydrogels, and consequently, cells are unable to adhere to the hydrogel. By covalently attaching the important cell adhesion protein fibronectin onto the PVA hydrogel surface, the rate of fibroblast attachment and proliferation was dramatically improved, and promoted two-dimensional cell migration. These studies illustrate that a fibronectin-modified PVA hydrogel is a potential biomaterial for tissue engineering applications.  相似文献   

20.
The cell membrane establishes an important paradigm for the molecular engineering of coatings for implantable devices because of its intrinsic biocompatibility and ability to act as a template for the assembly of diverse membrane-associated macromolecules. A stabilized membrane-mimetic film was assembled on alginate/Ca(2+) hydrogel microcapsules by in situ polymerization of an acrylate functionalized phospholipid. The phospholipid monomer was prepared as unilamellar vesicles and fused onto octadecyl chains that were components of an amphiphilic terpolymer anchored onto a polyelectrolyte multilayer (PEM) by electrostatic interactions. Microcapsules coated with a membrane-mimetic film were implanted into the peritoneal cavity of C57BL/6 mice, and the short-term biostability and biocompatibility of membrane-mimetic films assembled on two different alginate/poly(l-lysine) PEM cushions were compared. The nature of the underlying PEM support had a profound impact on the biocompatibility of the membrane-mimetic film, as the percentage of retrieved microcapsules completely overgrown with host cells shifted from 66+/-5.9% to less than 1% when modifications to the PEM were made. When assembled on the appropriate PEM support, biocompatibility of membrane-mimetic-coated microspheres was high wherein 87.5+/-5.7% of the implanted microspheres were retrieved 4 weeks after implantation and 92.6+/-6.4% of the retrieved capsules were free of cell adhesion or fibrotic overgrowth. Finally, 4 weeks after implantation, microspheres coated with a Texas red-labeled membrane-mimetic film were imaged with confocal microscopy and exhibited a uniform film around the periphery of the implant, indicating a high degree of film biostability. Hence, membrane-mimetic films provide a new route for generating robust, biocompatible, and biochemically heterogeneous coatings for implantable devices through molecular self-assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号