首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

OBJECTIVE

To evaluate whether asymptomatic bacteriuria (ASB) is more common in patients with diabetes than among control subjects. In addition, we wanted to clarify the clinical significance of ASB in patients with diabetes.

RESEARCH DESIGN AND METHODS

We conducted a systematic review and meta-analysis of published data since 1966. Twenty-two studies fulfilled the inclusion criteria of the meta-analysis.

RESULTS

ASB was present in 439 of 3,579 (12.2%) patients with diabetes and in 121 of 2,702 (4.5%) healthy control subjects. ASB was more common both in patients with type 1 diabetes (odds ratio 3.0 [95% CI 1.1–8.0]) and type 2 diabetes (3.2 [2.0–5.2]) than in control subjects. The point prevalence of ASB was higher in both women (14.2 vs. 5.1%; 2.6 [1.6–4.1]) and men (2.3 vs. 0.8%; 3.7 [1.3–10.2]) as well as in children and adolescents (12.9 vs. 2.7%; 5.4 [2.7–11.0]) with diabetes than in healthy control subjects. Albuminuria was more common in patients with diabetes and ASB than those without ASB (2.9 [1.7–4.8]). History of urinary tract infections was associated with ASB (1.6 [1.1–2.3]).

CONCLUSIONS

We were able to show that the prevalence of ASB is higher in all patients with diabetes compared with control subjects. We also found that diabetic subjects with ASB more often had albuminuria and symptomatic urinary tract infections.As the prevalence of both type 1 diabetes and type 2 diabetes increases world wide, factors associated with diabetes and its complications become more important (1,2). Asymptomatic bacteriuria (ASB) refers to the presence of bacteria in bladder urine in an asymptomatic individual. Usually, samples are collected indirectly by clean-voided midstream urine, and growth of the same uropathogen (≥105 cfu/ml) in two consecutive specimens is considered to be a significant indication of the presence of bacteria in bladder urine (3). ASB is found in 2–5% of healthy adult women, is quite unusual in healthy men, and has been claimed to be three to four times more common in women with diabetes than in healthy women (3). A prevalence as high as 30% in diabetic women has been reported (4).ASB is considered clinically significant and worth treating during pregnancy because treatment effectively reduces the risk of pyelonephritis and preterm delivery (5,6). Although ASB has been found to associate with increased risk of hospitalization for urosepsis in a prospective observational study among women with diabetes (7), the treatment of ASB in one randomized controlled trial did not reduce the risk of symptomatic urinary tract infection (8). Associations between ASB, metabolic control of diabetes, and impaired renal function have been brought up repeatedly (915). To evaluate whether ASB is truly more common in patients with diabetes than among control subjects and to clarify the clinical significance of ASB in diabetic subjects we did a systematic literature search and performed a meta-analysis of the published data.  相似文献   

2.
Tseng CH 《Diabetes care》2011,34(3):616-621

OBJECTIVE

The link between diabetes and prostate cancer is rarely studied in Asians.

RESEARCH DESIGN AND METHODS

The trend of age-standardized prostate cancer incidence in 1995–2006 in the Taiwanese general population was calculated. A random sample of 1,000,000 subjects covered by the National Health Insurance in 2005 was recruited. A total of 494,630 men for all ages and 204,741 men ≥40 years old and without prostate cancer at the beginning of 2003 were followed to the end of 2005. Cumulative incidence and risk ratio between diabetic and nondiabetic men were calculated. Logistic regression estimated the adjusted odds ratios for risk factors.

RESULTS

The trend of prostate cancer incidence increased significantly (P < 0.0001). The cumulative incidence markedly increased with age in either the diabetic or nondiabetic men. The respective risk ratio (95% CI) for all ages and age 40–64, 65–74, and ≥75 years was 5.83 (5.10–6.66), 2.09 (1.60–2.74), 1.35 (1.07–1.71), and 1.39 (1.12–1.71). In logistic regression for all ages or for age ≥40 years, age, diabetes, nephropathy, ischemic heart disease, dyslipidemia, living region, and occupation were significantly associated with increased risk, but medications including insulin and oral antidiabetic agents were not.

CONCLUSIONS

Prostate cancer incidence is increasing in Taiwan. A positive link between diabetes and prostate cancer is observed, which is more remarkable in the youngest age of 40–64 years. The association between prostate cancer and comorbidities commonly seen in diabetic patients suggests a more complicated scenario in the link between prostate cancer and diabetes at different disease stages.The association between diabetes and prostate cancer has been inconsistently reported, even though two meta-analyses suggested that diabetic patients have a lower risk of prostate cancer of 9% (1) and 16% (2), respectively.While the two meta-analyses were examined, many studies were case-control and only three focused on the follow-up of cohorts of diabetic patients (35). Among the three cohorts, the cases of prostate cancer were 9 (3), 498 (4), and 2,455 (5), respectively; and only the last (5) showed a significant 9% risk reduction in diabetic patients. Except for the first study being conducted in residents with diabetes in Rochester, Minnesota (3), the diabetic patients in the other two were from hospitalized patients in Denmark (4) and Sweden (5), respectively. The meta-analyses have limitations including a mixture of case-control and cohort designs, a mixture of incident and dead cases, a small number of prostate cancer in most studies, and different sources of subjects with potential selection bias. Although the contamination of type 1 diabetes is possibly minimal because >90% of overall patients have type 2 diabetes, residual confounding could not be excluded if the two types of diabetes are not differentiated.Although some recent studies still suggested a lower risk of prostate cancer in diabetic patients including Caucasians (6,7), Iranians (8), Israelis (9), African Americans, Native Hawaiians, and Japanese Americans (6), the lower risk in African Americans and Native Hawaiians (6) was not significant. Two Japanese studies did not find any significant association (10,11). The Ohsaki Cohort Study suggested that diabetes was not predictive for total prostate cancer, but diabetic patients did show a higher risk of advanced cancer (11).Because diabetic patients are prone to develop cancer involving pancreas, liver, breast, colorectum, bladder, and endometrium (1215) and the protective effect of diabetes on prostate cancer requires confirmation, this study evaluated the possible link between diabetes and prostate cancer, and the potential risk factors, by using the reimbursement database of the National Health Insurance (NHI) in Taiwan.  相似文献   

3.
Shen HN  Lu CL  Li CY 《Diabetes care》2012,35(5):1061-1066

OBJECTIVE

Diabetes may increase the risk of acute pancreatitis (AP). We aimed to further investigate whether diabetes may also adversely affect outcomes of patients with AP.

RESEARCH DESIGN AND METHODS

In this retrospective cohort study, we compared 18,990 first-attack AP with diabetes to 37,980 matched control subjects from Taiwan’s National Health Insurance Research Database between 2000 and 2009. Primary outcomes were development of severe AP, defined by a modified Atlanta classification scheme, and hospital mortality. Analyses were performed using univariable and multivariable logistic regression model with generalized estimating equations accounting for hospital clustering effect.

RESULTS

After baseline characteristics were adjusted, AP patients with diabetes had a higher risk of a severe attack than their nondiabetic counterparts (adjusted odds ratio [OR] 1.21, 95% CI 1.16–1.26). When severity criteria were analyzed individually, diabetic AP patients had a 58% higher risk of intensive care unit admission and a 30% higher risk of local complications, but a 16% lower risk of gastrointestinal bleeding, than AP patients without diabetes. The risk of organ failure at least one system) was similar between the two groups. Conversely, AP patients with diabetes were associated with a lower risk of hospital mortality (adjusted OR 0.77, 95% CI 0.65–0.91).

CONCLUSIONS

Although diabetes may adversely affect the disease process of AP, it seems to protect patients from AP-related mortality.Acute pancreatitis (AP) is an acute inflammatory disease of the pancreas. The local inflammation is usually self-limited within a few days, but it can be destructive and cause a severe local complication and/or systemic reaction leading to organ failures and death. Although the case-fatality rate has been decreasing over the decades (1,2), severe cases still carry a high mortality (20–50%) and consume nearly half of the resources and costs incurred by all patients with AP (3). Accordingly, many efforts have been made to identify correlates of severity and predictors for mortality in patients with AP (46).In addition to older people (7), patients with certain comorbidities, such as obesity (8), hypertriglyceridemia (9), chronic renal failure (10), and systemic lupus erythematosus (11), are shown to be associated with greater risk of not only the incidence but also the severity and mortality of AP. Among various comorbidities, diabetes mellitus is relatively common in patients with AP; the prevalence was 11% in Japan (12), 17.7% in California (U.S.), (13) and 19.3% in Taiwan (3). These figures are expected to continuously increase in the future because diabetic patients not only are at risk for developing AP (1416) but also are growing in prevalence worldwide (17). Nonetheless, the effect of diabetes on outcomes of patients with AP has not been adequately studied, and the results of available reports are inconsistent (13,18). For example, Frey and colleagues examined the effect of comorbidities on patients with AP and found that diabetes was not associated with early mortality (13), whereas Graham and coworkers assessed the effect of diabetes on critically ill patients and showed a reduced risk of hospital mortality in a subgroup patients with AP (18). In both studies, however, the effect of diabetes was not specifically examined and detailed analyses were not performed (13,18).In a recent national population-based study on Taiwanese patients with first-attack AP, we found that the prevalence of diabetes increased from 15.6% in 2000 to 2001 to 19.7% in 2008 to 2009 (1). In this study, we used the same cohort (1) to further investigate the effect of diabetes on outcomes of these patients. Because diabetic patients are likely to have a higher comorbid burden and hence a poorer reserve for acute illnesses, we hypothesized that diabetes is associated with a higher risk of severe attacks and hospital mortality in adult patients with first-attack AP.  相似文献   

4.

OBJECTIVE

This meta-analysis reviews rates of progression of diabetic retinopathy to proliferative diabetic retinopathy (PDR) and/or severe visual loss (SVL) and temporal trends.

RESEARCH DESIGN AND METHODS

This systematic literature review and meta-analysis of prospective studies assesses progression of retinopathy among diabetic patients without treatment for retinopathy at baseline. Studies published between 1975 to February 2008 were identified. Outcomes of interest were rates of progression to PDR and/or SVL. Pooled baseline characteristics and outcome measures were summarized using weighted averages of counts and means. Baseline characteristics and outcomes were compared between two periods: 1975–1985 and 1986–2008.

RESULTS

A total of 28 studies comprising 27,120 diabetic patients (mean age 49.8 years) were included. After 4 years, pooled incidence rates for PDR and SVL were 11.0 and 7.2%, respectively. Rates were lower among participants in 1986–2008 than in 1975–1985. After 10 years, similar patterns were observed. Participants in 1986–2008 studies had lower proportions of PDR and non-PDR at all time points than participants in 1975–1985 studies.

CONCLUSIONS

Since 1985, diabetic patients have lower rates of progression to PDR and SVL. These findings may reflect an increased awareness of retinopathy risk factors; earlier identification and initiation of care for patients with retinopathy; and improved medical management of glucose, blood pressure, and serum lipids. Differences in baseline characteristics, particularly in the prevalence and severity of retinopathy, could also have contributed to these temporal differences.Diabetes affects more than 170 million individuals worldwide (1,2), and diabetic retinopathy is the most frequent cause of visual impairment among working-age individuals (3,4). In the last 3 decades, a relative decline in rates of diabetic retinopathy has been suggested by some studies, (58) possibly reflecting improved patient and physician awareness, screening, and prevention, as well as better management of diabetes (9). In 1985, the Early Treatment Diabetic Retinopathy Study (ETDRS) demonstrated the effectiveness of laser photocoagulation (10,11). Systemic control of both hyperglycemia and hypertension was shown to be important in the Diabetes Control and Complications Trial (DCCT) and the UK Prospective Diabetes Study (UKPDS) in the 1990s (12,13). Findings from these trials, other studies, and clinical practice guidelines may have led to increased public awareness to diabetes risk factors and a shorter time from onset to diagnosis, potentially altering the rates of diabetic retinopathy progression (9,14).Understanding the natural history of diabetic retinopathy is also important for estimating sample size for testing new interventions in clinical trials. Already, inadequate sample size estimations may have resulted in underpowered trials (15). Traditionally, progression rates from the ETDRS and the Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) were used for sample size calculations (1622). However, these studies were conducted almost 30 years ago. Contemporary estimates for diabetic retinopathy progression are clearly needed, some of which may, in part, be provided by more recent studies, such as the Daily-Dose Consensus Interferon and Ribavirin: Efficacy of Combined Therapy (DIRECT) trial (23,24).In this systematic review and meta-analysis, we summarized the best available evidence to provide contemporary data on the clinical course of diabetic retinopathy and to examine potential differences in rates of diabetic retinopathy progression over time.  相似文献   

5.

OBJECTIVE

Physical activity may modify the association of adiposity with type 2 diabetes. We investigated the independent and joint association of adiposity and physical activity with fasting plasma glucose, impaired fasting glucose, and type 2 diabetes in a Chinese population.

RESEARCH DESIGN AND METHODS

Middle-aged and older Chinese (n = 28,946, ≥50 years, 72.4%women) from the Guangzhou Biobank Cohort Study were examined in 2003–2008. Multivariable regression was used in a cross-sectional analysis.

RESULTS

BMI, waist circumference, and waist-to-hip ratio (WHR) were positively associated with type 2 diabetes after multiple adjustment, most strongly for WHR with odds ratio (OR) of 3.99 (95% CI 3.60–4.42) for highest compared with lowest tertile. Lack of moderate-to-vigorous physical activity, but not walking, was associated with diabetes with an OR of 1.29 (1.17–1.41). The association of moderate-to-vigorous activity with fasting glucose varied with WHR tertiles (P = 0.01 for interaction). Within the high WHR tertile, participants who had a lack of moderate-to-vigorous activity had an OR of 3.87 (3.22–4.65) for diabetes, whereas those who were active had an OR of 2.94 (2.41–3.59).

CONCLUSIONS

In this population, WHR was a better measure of adiposity-related diabetes risk than BMI or waist circumference. Higher moderate-to-vigorous activity was associated with lower diabetes risk, especially in abdominally obese individuals.Type 2 diabetes is a worldwide cause of morbidity and mortality. Adiposity, especially abdominal adiposity, seems to be at the core of development of hyperglycemia and type 2 diabetes (1). Increased physical activity may mitigate some of the diabetogenic impact of adiposity (24). Individuals who are obese but fit could even have a lower risk of mortality than those who are normal weight but unfit (5,6). However, being physically active does not completely abolish the obesity-related risk for cardiovascular disease and associated mortality (7). Adiposity is still the main risk factor for the development of type 2 diabetes (24,8). Although increased physical activity has been shown to be associated with reduced type 2 diabetes risk independent of adiposity, the protective effects may differ by the level of adiposity. However, the group that could benefit most from physical activity for the prevention of diabetes is still unclear (24,810).Understanding the relationship between adiposity and physical activity is important to stratify risk groups for the development of effective diabetes prevention strategies from public health and clinical perspectives. Most of the studies relate to Caucasians (24,810), whereas Asians, including Chinese and Indians, are possibly more vulnerable to insulin resistance (11). The number of Chinese adults with type 2 diabetes was estimated to be ∼28.1 million in 2000 and may double by 2030, with China being second only to India (12). The purpose of this study was to investigate the independent and joint association of adiposity and physical activity with fasting plasma glucose, impaired fasting glucose (IFG), and type 2 diabetes in 28,946 middle-aged and older Chinese participants in the Guangzhou Biobank Cohort Study.  相似文献   

6.

OBJECTIVE

Flicker light–induced retinal vasodilation may reflect endothelial function in the retinal circulation. We investigated flicker light–induced vasodilation in individuals with diabetes and diabetic retinopathy.

RESEARCH DESIGN AND METHODS

Participants consisted of 224 individuals with diabetes and 103 nondiabetic control subjects. Flicker light–induced retinal vasodilation (percentage increase over baseline diameter) was measured using the Dynamic Vessel Analyzer. Diabetic retinopathy was graded from retinal photographs.

RESULTS

Mean ± SD age was 56.5 ± 11.8 years for those with diabetes and 48.0 ± 16.3 years for control subjects. Mean arteriolar and venular dilation after flicker light stimulation were reduced in participants with diabetes compared with those in control subjects (1.43 ± 2.10 vs. 3.46 ± 2.36%, P < 0.001 for arteriolar and 2.83 ± 2.10 vs. 3.98 ± 1.84%, P < 0.001 for venular dilation). After adjustment for age, sex, diabetes duration, fasting glucose, cholesterol and triglyceride levels, current smoking status, systolic blood pressure, and use of antihypertensive and lipid-lowering medications, participants with reduced flicker light–induced vasodilation were more likely to have diabetes (odds ratio 19.7 [95% CI 6.5–59.1], P < 0.001 and 8.14 [3.1–21.4], P < 0.001, comparing lowest vs. highest tertile of arteriolar and venular dilation, respectively). Diabetic participants with reduced flicker light–induced vasodilation were more likely to have diabetic retinopathy (2.2 [1.2–4.0], P = 0.01 for arteriolar dilation and 2.5 [1.3–4.5], P = 0.004 for venular dilation).

CONCLUSIONS

Reduced retinal vasodilation after flicker light stimulation is independently associated with diabetes status and, in individuals with diabetes, with diabetic retinopathy. Our findings may therefore support endothelial dysfunction as a pathophysiological mechanism underlying diabetes and its microvascular manifestations.Diabetes affects more than 240 million individuals worldwide, and diabetic retinopathy is the leading cause of blindness in the working-age population in most developed countries (1). There is increasing recognition that early endothelial dysfunction plays a key role in the pathogenesis of diabetes (2) and the development of subsequent microvascular complications (3). In support of endothelial dysfunction in diabetic retinopathy (4) are studies showing relationships of diabetic retinopathy with cardiovascular diseases, including stroke, coronary heart disease, and heart failure, independent of traditional risk factors (57). Diabetic retinopathy has also been linked with subclinical manifestations of vascular diseases such as coronary artery calcification and cardiac remodeling (5). However, clinical and epidemiological studies have not found consistent associations of serum markers of endothelial dysfunction (e.g., soluble vascular adhesion molecule-1) with diabetic retinopathy, with some reporting positive associations (8,9), but others not finding any (10,11).The response of retinal vessels to diffuse luminance flicker can be measured noninvasively (12) and may reflect endothelial function of the retinal circulation because it has been demonstrated that nitric oxide is released in the retinal vasculature when it is stimulated by flicker light (13). One recent study showed that individuals with diabetes and diabetic retinopathy have reduced flicker-induced retinal vasodilation but did not control for concomitant risk factors including hyperglycemia, hypertension, and diabetes duration (14). In our current study, we sought to clarify whether flicker light–induced vasodilation is impaired in patients with diabetes and in those with diabetic retinopathy, signs independent of major risk factors.  相似文献   

7.

OBJECTIVE

Previous studies, largely in northern Europe, have suggested an association between type 1 diabetes and reduced serum 25-hydroxy(OH) vitamin D levels, a concept we tested in individuals residing in a solar-rich region (Florida).

RESEARCH DESIGN AND METHODS

Serum samples from 415 individuals residing in Florida were cross-sectionally analyzed: 153 control subjects, 46 new-onset type 1 diabetic patients, 110 established type 1 diabetic patients (samples ≥5 months from diagnosis), and 106 first-degree relatives of the diabetic patients.

RESULTS

In this study, 25-OH vitamin D levels (median, range, interquartile range [IQR]) were similar among control subjects (20.1, below detection [bd]–163.5, 13.0–37.4 ng/ml), new-onset type 1 diabetic patients (21.2, bd–48.6, 12.2–30.2 ng/ml), established type 1 diabetic patients (23.2, bd–263.8, 13.8–33.9 ng/ml), and first-degree relatives (22.2, bd–59.9, 12.7–33.1 ng/ml) (P = 0.87). Mean 25-OH vitamin D levels were less than the optimal World Health Organization level of 30 ng/ml in all study groups.

CONCLUSIONS

Reduced serum 25-OH vitamin D levels were not specifically associated with type 1 diabetes. The uniform suboptimal 225-OH vitamin D levels, despite residence in a zone with abundant sunshine, support additional dietary vitamin D fortification practices.The role for environment in the development of type 1 diabetes has remained elusive, with multiple factors purported to modulate risk for this disease (e.g., viruses, breast-feeding, age for cereal introduction, and childhood immunizations) (1,2). Further to this list is vitamin D levels (3), with previous studies suggesting type 1 diabetic patients had lower serum concentrations of this metabolite than healthy control subjects (46) as well as disease-associated polymorphisms in a vitamin D metabolism gene (7). Although certainly intriguing, we note the aforementioned studies were largely undertaken in northern European countries (4,5), whereas the one study performed in the U.S. failed to provide values among healthy control subjects and, hence, did not identify disease specificity (6). Therefore, we measured serum 25-hydroxy (OH) vitamin D levels from type 1 diabetic patients, their first-degree relatives, and healthy control subjects all residing in a solar-rich region (Florida).  相似文献   

8.

OBJECTIVE

We assessed the association between A1C and cardiovascular diseases (CVDs) in an observational study of patients with type 1 diabetes followed for 5 years.

RESEARCH DESIGN AND METHODS

A total of 7,454 patients were studied from the Swedish National Diabetes Register (aged 20–65 years, diabetes duration 1–35 years, followed from 2002 to 2007).

RESULTS

Hazard ratios (HRs) for fatal/nonfatal coronary heart disease (CHD) per 1% unit increase in baseline or updated mean A1C at Cox regression analysis were 1.31 and 1.34 and 1.26 and 1.32, respectively, for fatal/nonfatal CVD (all P < 0.001 after adjustment for age, sex, diabetes duration, blood pressure, total and LDL cholesterol, triglycerides, BMI, smoking, and history of CVD). HRs were only slightly lower for CHD (P = 0.002) and CVD (P = 0.002–0.007) after also adjusting for albuminuria. Adjusted 5-year event rates of CHD and CVD increased progressively with higher A1C, ranging from 5 to 12%, as well as when subgrouped by shorter (1–20 years) or longer (21–35 years) duration of diabetes. A group of 4,186 patients with A1C 5–7.9% (mean 7.2) at baseline showed risk reductions of 41% (95% confidence intervals: 15–60) (P = 0.005) for fatal/nonfatal CHD and 37% (12–55) (P = 0.008) for CVD, compared with 3,268 patients with A1C 8–11.9% (mean 9.0), fully adjusted also for albuminuria.

CONCLUSIONS

This observational study of patients in modern everyday clinical practice demonstrates progressively increasing risks for CHD and CVD with higher A1C, independently of traditional risk factors, with no J-shaped risk curves. A baseline mean A1C of 7.2% showed considerably reduced risks of CHD and CVD compared with A1C 9.0%, emphasizing A1C as a strong independent risk factor in type 1 diabetes.Patients with type 1 diabetes have long been considered to have increased risks of cardiovascular disease (CVD) and mortality (1,2), and this has recently been confirmed in two studies (3,4) from the General Practice Research Database in the U.K. Based on data from 1992 to 1999, risks of CVD and mortality were four to eight times higher in men and women with type 1 diabetes than nondiabetic individuals (3,4).While the association between glycemia and microvascular complications is established (5,6), there have been no long-term randomized clinical studies satisfactorily examining the relationship with macrovascular complications in type 1 diabetes, and epidemiological studies have shown conflicting results (714). The Epidemiology of Diabetes Interventions and Complications (EDIC) Study showed that patients who had previously been subjected to intensive glucose control during the Diabetes Control and Complications Trial (DCCT) had a considerably lower risk of CVD than patients receiving standard treatment (1983–1993) (7). A small study from Finland on late-onset type 1 diabetic patients without albuminuria showed increased risk of coronary heart disease (CHD) with poor glycemic control (9), but the EURODIAB Prospective Complications Study (PCS), the Pittsburgh Epidemiology of Diabetes Complications (EDC) Study, and the Wisconsin Epidemiologic Study of Diabetic Retinopathy did not demonstrate a significant relationship between glycemia and CHD after controlling for other cardiovascular risk factors (1013). However, a recent study (14) from the Pittsburgh EDC showed that change in A1C was related to coronary artery disease, whereas baseline A1C was not.With this background, we assessed the association between A1C and CHD, stroke, and CVD in a large cohort of patients with type 1 diabetes, aged 20–65 years, treated in everyday clinical practice from 2002 to 2007. Data were used from the Swedish National Diabetes register (NDR), a quality-assurance tool in diabetes care with nationwide coverage with recently published reports regarding type 1 and type 2 diabetes (1517).  相似文献   

9.

OBJECTIVE

Given evidence of both indirect and direct signaling, we tested the hypothesis that increased β-cell–mediated signaling of α-cells negates direct α-cell signaling in the regulation of glucagon secretion in humans.

RESEARCH DESIGN AND METHODS

We measured plasma glucagon concentrations before and after ingestion of a formula mixed meal and, on a separate occasion, ingestion of the sulfonylurea glimepiride in 24 basal insulin-infused, demonstrably β-cell–deficient patients with type 1 diabetes and 20 nondiabetic, demonstrably β-cell–sufficient individuals; the latter were infused with glucose to prevent hypoglycemia after glimepiride.

RESULTS

After the mixed meal, plasma glucagon concentrations increased from 22 ± 1 pmol/l (78 ± 4 pg/ml) to 30 ± 2 pmol/l (103 ± 7 pg/ml) in the patients with type 1 diabetes but were unchanged from 27 ± 1 pmol/l (93 ± 3 pg/ml) to 26 ± 1 pmol/l (89 ± 3 pg/ml) in the nondiabetic individuals (P < 0.0001). After glimepiride, plasma glucagon concentrations increased from 24 ± 1 pmol/l (83 ± 4 pg/ml) to 26 ± 1 pmol/l (91 ± 4 pg/ml) in the patients with type 1 diabetes and decreased from 28 ± 1 pmol/l (97 ± 5 pg/ml) to 24 ± 1 pmol/l (82 ± 4 pg/ml) in the nondiabetic individuals (P < 0.0001). Thus, in the presence of both β-cell and α-cell secretory stimuli (increased amino acid and glucose levels, a sulfonylurea) glucagon secretion was prevented when β-cell secretion was sufficient but not when β-cell secretion was deficient.

CONCLUSIONS

These data indicate that, among the array of signals, indirect reciprocal β-cell–mediated signaling predominates over direct α-cell signaling in the regulation of glucagon secretion in humans.The regulation of pancreatic islet α-cell glucagon secretion is complex (110). It involves direct signaling of α-cells (1) and indirect signaling of α-cells by β-cell (26) and δ-cell (7) secretory products, the autonomic nervous system (8,9), and gut incretins (10).Appropriate glucagon secretory responses occur from the perfused pancreas (3,5) and perifused islets (2). Low plasma glucose concentrations stimulate glucagon secretion from the transplanted (i.e., denervated) human pancreas (11) and the denervated dog pancreas (12). Therefore, we have focused on the intraislet regulation of glucagon secretion. Furthermore, because selective destruction of β-cells results in loss of the glucagon response to hypoglycemia in type 1 diabetes (13), and partial reduction of the β-cell mass in minipigs results in impaired postprandial suppression of glucagon secretion (14), we have focused on the role of β-cell–mediated signaling in the regulation of glucagon secretion.Findings from studies of the perfused rat (3,4) and human (5) pancreas, rats in vivo (6), rat islets (2), isolated rat α-cells (2), and humans (1518) have been interpreted to indicate that a β-cell secretory product or products tonically restrains basal α-cell glucagon secretion during euglycemia and that a decrease in β-cell secretion, coupled with low glucose concentrations at the α-cells, signals an increase in glucagon secretion in response to hypoglycemia. Parenthetically, the relative roles of the candidate β-cell secretory products (insulin, zinc, γ-aminobutyric acid, and amylin, among others) (2) that normally restrain α-cell glucagon secretion remain to be determined. However, that interpretation rests, in part, on results of studies in isolated rat α-cells (2), which are debated (1), and on the evidence that the islet microcirculation flows from β-cells to α-cells to δ-cells (4), which is also debated (19). Furthermore, it does not address the plausible possibility that a decrease in intraislet δ-cell somatostatin secretion might also signal an increase in α-cell glucagon secretion during hypoglycemia (7).Given that interpretation, it follows that an increase in β-cell secretion would signal a decrease in glucagon secretion in the postprandial state (14). The concept is an interplay of indirect reciprocal β-cell–mediated signaling of α-cells and of direct α-cell signaling in the regulation of glucagon secretion.There is, in our view, compelling evidence that, among other mechanisms, both indirect reciprocal β-cell–mediated signaling of α-cells (26) and direct α-cell signaling (1) are involved in the regulation of glucagon secretion by nutrients, hormones, neurotransmitters, and drugs. Given that premise, we posed the question: Which of these predominates in humans? Accordingly, we tested the hypothesis that increased β-cell–mediated signaling of α-cells negates direct α-cell signaling in the regulation of glucagon secretion in humans. To do so, we measured plasma glucagon responses to ingestion of a mixed meal and, on a separate occasion, to ingestion of the sulfonylurea glimepiride in patients with type 1 diabetes and in nondiabetic individuals. We conceptualized patients with type 1 diabetes as a model of α-cells isolated from β-cells because their β-cells had been destroyed but they have functioning α-cells. (Their α-cells are not, of course, isolated from other islet cells, including δ-cells.) Increased plasma amino acid and glucose levels after a mixed meal and sulfonylureas normally stimulate β-cell secretion; increased plasma amino acid and perhaps glucose (2) levels after a mixed meal and sulfonylureas (1) stimulate α-cell secretion. Our hypothesis predicts that such factors that normally stimulate both β-cells and α-cells would stimulate glucagon secretion in patients with type 1 diabetes but not in nondiabetic individuals, i.e., in the virtual absence and the presence of β-cell function, respectively. Indeed, a mixed meal (20,21) and the secretagogues tolbutamide (22), glyburide (23), and repaglinide (23) have been reported to raise plasma glucagon concentrations in patients with type 1 diabetes, but all of those studies lacked nondiabetic control subjects.  相似文献   

10.

OBJECTIVE

Low levels of fetuin-A, a systemic calcification inhibitor, are linked to mortality in patients on dialysis. In contrast, elevated fetuin-A is associated with cardiovascular events in non-renal patients. We investigated fetuin-A in patients with type 2 diabetes and peripheral arterial disease (PAD).

RESEARCH DESIGN AND METHODS

We studied fetuin-A in 76 patients with PAD and normal glucose metabolism (NGM-PAD) and in 129 patients with PAD and type 2 diabetes (type 2 diabetes–PAD). Additionally, 40 patients with diabetes without any complications (type 2 diabetes–non-PAD) were examined.

RESULTS

Type 2 diabetes–PAD subjects (399 ± 155 μg/ml) had significantly higher fetuin-A levels than type 2 diabetes–non-PAD subjects (247 ± 42; P < 0.001). In NGM-PAD subjects (376 ± 144), fetuin-A was significantly higher than in type 2 diabetes–non-PAD subjects (P < 0.001). Type 2 diabetes–PAD patients with mediasclerosis had lower fetuin-A than subjects without (P < 0.03). Regression analysis in type 2 diabetes–PAD subjects revealed that glycated A1C (P < 0.001) and mediasclerosis (P = 0.004) were the strongest predictors of fetuin-A. Multivariate regression revealed that a 1-SD increase in fetuin-A was associated with an odds ratio (OR) of 2.1 (95% CI 1.1–3.3; P < 0.001) for the prevalence of PAD and an OR of 1.4 (1.0–1.7, P = 0.039) for the prevalence of myocardial infarction.

CONCLUSIONS

In contrast to previous findings, fetuin-A was higher in type 2 diabetes–PAD patients than in type 2 diabetes–non-PAD patients. In NGM-PAD patients, fetuin-A was also higher than in type 2 diabetes–non-PAD patients. In type 2 diabetes–PAD patients, fetuin-A was inversely associated with mediasclerosis—the calcification process pathognomonic for diabetic PAD. This association persisted in multivariate regression, which is in line with the calcification inhibition in coronary heart or renal disease.Patients suffering from type 2 diabetes and peripheral artery disease (PAD) (type 2 diabetes–PAD) have a five times higher risk for cardiovascular mortality than patients with one disease alone (13). Furthermore, the risk of lower-extremity amputation is higher than in patients without diabetes (3).Fetuin-A, also known as α2-Schmid Heremans glycoprotein (ASHG), is a potent systemic calcification inhibitor (4). Fetuin-A knockout mice develop severe calcification of various organs (4). In a cross-sectional study, low levels of fetuin-A were associated with cardiovascular mortality in patients on dialysis (5). In addition, low fetuin-A has been linked to vascular calcification (6) and flow-limiting aortic stenosis (7).Fetuin-A interacts with the insulin receptor tyrosine kinase and induces insulin resistance in rodents (8,9). Stefan et al. (10) demonstrated in a prospective case-cohort study that elevated fetuin-A is an independent risk factor for developing diabetes. Contrariwise to renal (dialysis) patients, several studies showed that high levels of fetuin-A were associated with atherosclerosis and its manifestations in non-renal patients (1113). Likewise, high levels of fetuin-A were linked to myocardial infarction and ischemic stroke (12). This possible involvement of fetuin-A in the pathogenesis of cardiovascular disease has been confirmed by a recent trans-European cohort study with 2,520 patients (13). Thus, it seems that high levels of fetuin-A are associated with atherosclerosis and its manifestations in non-renal patients.In contrast to the latter findings, a recent article (14) suggested that fetuin-A levels in a non-dialysis condition are lower in type 2 diabetes–PAD patients (n = 38) than in patients with diabetes alone.However, the role of fetuin-A and its involvement in atherosclerosis seems to be very complex and yet not understood. The situation is even more complex in patients with type 2 diabetes–PAD, who generally suffer from advanced/systemic atherosclerosis (13,15). In those high-risk patients, up to 30% show mediasclerosis (2,15). The aim of this study was to investigate fetuin-A levels in patients with type 2 diabetes with or without PAD in comparison with PAD patients with diabetes.  相似文献   

11.

OBJECTIVE

Older patients with type 2 diabetes are at a particularly high risk for severe hypoglycemic episodes, and experimental studies in healthy subjects hint at a reduced awareness of hypoglycemia in aged humans. However, subjective responses to hypoglycemia have rarely been assessed in older type 2 diabetic patients.

RESEARCH DESIGN AND METHODS

We tested hormonal, subjective, and cognitive responses (reaction time) to 30-min steady-state hypoglycemia at a level of 2.8 mmol/l in 13 older (≥65 years) and 13 middle-aged (39–64 years) type 2 diabetic patients.

RESULTS

Hormonal counterregulatory responses to hypoglycemia did not differ between older and middle-aged patients. In contrast, middle-aged patients showed a pronounced increase in autonomic and neuroglycopenic symptom scores at the end of the hypoglycemic plateau that was not observed in older patients (both P < 0.01). Also, seven middle-aged patients, but only one older participant, correctly estimated their blood glucose concentration to be <3.3 mmol/l during hypoglycemia (P = 0.011). A profound prolongation of reaction times induced by hypoglycemia in both groups persisted even after 30 min of subsequent euglycemia.

CONCLUSIONS

Our data indicate marked subjective unawareness of hypoglycemia in older type 2 diabetic patients that does not depend on altered neuroendocrine counterregulation and may contribute to the increased probability of severe hypoglycemia frequently reported in these patients. The joint occurrence of hypoglycemia unawareness and deteriorated cognitive function is a critical factor to be carefully considered in the treatment of older patients.Hypoglycemia is the limiting factor in the glycemic management of diabetes (1). For a long time hypoglycemia was assumed a major problem only in patients suffering from type 1 diabetes (2); however, there is increasing evidence that hypoglycemic episodes are a critical factor also in type 2 diabetes (3,4). Older subjects aged >65 years, who represent the majority of type 2 diabetic patients, appear at a particularly high risk of experiencing severe hypoglycemia (3,4). Previous studies (57) have shown weakened perception of hypoglycemia-related symptoms in healthy older (i.e., nondiabetic older subjects, aged 65–80 years) as compared with younger subjects (aged 24–49 years). Of note, in aged humans, the perception of hypoglycemic symptoms was found to simultaneously occur with the impairment of cognitive functions during a stepwise reduction of blood glucose levels (7), contrasting the well-known hierarchical succession of central nervous responses to hypoglycemia in younger healthy adults who normally perceive hypoglycemic symptoms at higher glucose levels than cognitive dysfunction (4). The concurrence of glycemic thresholds for the onset of symptoms and of cognitive dysfunction may be expected to increase the risk for severe hypoglycemic episodes since it likely prevents behavioral counteractions (e.g., the intake of carbohydrates) (3).To date only one study (8) has assessed subjective responses to standardized hypoglycemia in older type 2 diabetic patients (aged 72 ± 1 years), revealing an impairment in the perception of hypoglycemic symptoms that was comparable to that of age-matched healthy control subjects. Although this finding points to a decrease in hypoglycemia awareness that develops in the course of aging also in type 2 diabetic patients, this assumption has not yet been experimentally elucidated. Moreover, in the previous studies in healthy subjects (57), the age gap between experimental groups was rather large, raising the question as to the perception of hypoglycemia in middle-aged subjects. On this background, we examined whether older (aged ≥65 years) as compared with middle-aged (aged 39–64 years) type 2 diabetic patients differ in their subjective response to hypoglycemia and how hypoglycemia awareness in these age-groups relates to hormonal and cognitive effects of hypoglycemia.  相似文献   

12.

OBJECTIVE

The high diabetes incidence among Japanese Americans and Native Hawaiians cannot be explained by BMI. Therefore, we examined the influence of three dietary patterns of “fat and meat,” “vegetables,” and “fruit and milk” on diabetes risk in the Hawaii component of the Multiethnic Cohort with 29,759 Caucasians, 35,244 Japanese Americans, and 10,509 Native Hawaiians.

RESEARCH DESIGN AND METHODS

Subjects aged 45–75 years completed a baseline food frequency questionnaire. After 14 years of follow-up, 8,587 subjects with incident diabetes were identified through self-reports or health plan linkages. Risk was assessed using Cox regression stratified by age and adjusted for ethnicity, BMI, physical activity, education, total energy, smoking, alcohol intake, marital status, and hypertension.

RESULTS

Fat and meat was significantly associated with diabetes risk in men (hazard ratio 1.40 [95% CI 1.23–1.60], Ptrend < 0.0001) and women (1.22 [1.06–1.40], Ptrend = 0.004) when extreme quintiles were compared. Except in Hawaiian women, the magnitude of the risk was similar across ethnic groups although not always significant. After stratification by BMI, fat and meat remained a predictor of disease primarily among overweight men and among overweight Japanese women. Vegetables lowered diabetes risk in men (0.86 [0.77–0.95], Ptrend = 0.004) but not in women, whereas fruit and milk seemed to be more beneficial in women (0.85 [0.76–0.96], Ptrend = 0.005) than in men (0.92 [0.83–1.02], Ptrend = 0.04).

CONCLUSIONS

Foods high in meat and fat appear to confer a higher diabetes risk in all ethnic groups, whereas the effects of other dietary patterns vary by sex and ethnicity.Native Hawaiians have extremely high rates of obesity and diabetes, but despite their relatively low body weight, individuals with Japanese ancestry are also disproportionately affected by diabetes (1). Among the >44,000 Japanese Americans, 14,000 Native Hawaiians, and 35,000 Caucasians in the Hawaii component of the Multiethnic Cohort (MEC), a previous analysis had found diabetes incidence rates of 15.5, 12.5, and 5.8 per 1,000 person-years, respectively, that could not be explained by BMI (2). Dietary patterns have been identified as additional predictors of disease but have only rarely been investigated prospectively among non-Caucasian populations (35). The most commonly identified patterns are the so-called “western,” “unhealthy,” or “conservative” pattern (311), which is high in meat, high-fat foods, and sweets, and the “prudent” or “healthy” pattern, rich in fruit and vegetables (38,10,12,13). With the goal to contribute to the prevention of diabetes, we examined the effect of three dietary patterns, “fat and meat,” “vegetables,” and “fruit and milk,” which had been previously identified in the MEC, on diabetes risk (14).  相似文献   

13.

OBJECTIVE

Data on latent autoimmune diabetes in adults (LADA) from population-based studies are sparse. We sought to investigate the prevalence and correlates of LADA.

RESEARCH DESIGN AND METHODS

A total of 8,109 participants, who were aged ≥15 years and living in Tianjin, China, were assessed to identify individuals with type 2 diabetes (American Diabetes Association Criteria, 1997) and further to detect patients with LADA. LADA was ascertained by 1) the presence of type 2 diabetes and age ≥35 years, 2) the lack of a requirement for insulin at least 6 months after the diagnosis of type 2 diabetes, and 3) serum GAD antibody positivity. Data were analyzed using multinomial logistic regression with adjustment for potential confounders.

RESULTS

Of all participants, 498 (6.1%) were patients with type 2 diabetes. Of them, 46 (9.2%) were found to have LADA. The prevalence of LADA was 0.6% (46 of 8,109), and tended to increase with age up to 50–59 years in all participants. The odds ratios (95% CI) of LADA related to hypertension, family history of diabetes, waist-to-hip ratio ≥0.85, and major stressful events were 1.93 (1.02–3.65), 17.59 (9.08–34.06), 5.37 (2.31–12.49), and 4.09 (1.75–9.52), respectively.

CONCLUSIONS

The prevalence of LADA is ∼9% in patients with type 2 diabetes. Hypertension, family history of diabetes, central obesity, and major stressful events may be associated with the occurrence of LADA.Latent autoimmune diabetes in the adult (LADA) is a slowly progressive form of autoimmune diabetes and is characterized by diabetes-associated autoantibody positivity (1). Patients with LADA have an insidious onset of hyperglycemia and clinical presentation similar to that of type 2 diabetes at onset (2,3). Epidemiological studies suggest that LADA may account for 2–12% of all cases of diabetes (4).The prevalence of LADA in western countries varies from 2.8 to 10% in patients with type 2 diabetes (58). The Diabetes Outcomes Progression Trial recently reported that GAD antibody (GADA) positivity is 4.2% in North America and 3.7% in Europe among individuals with type 2 diabetes (9). In China, two clinical studies have shown that the estimated prevalence of LADA in patients with type 2 diabetes is ∼7% (10,11). The etiology of LADA is unclear, and it is not known whether LADA is due to the same underlying disease process as childhood type 1 diabetes. A recent study has suggested that the patients with LADA share genetic features with both type 1 and type 2 diabetic patients (12). In addition, several studies have reported that metabolic disorders, such as hypertension and obesity, and a family history of diabetes are associated with the risk of LADA (10,13,14).Accumulating clinical evidence has shown significant overlap between type 1 and type 2 diabetes. The disease process in patients with classic type 1 diabetes is believed to be autoimmune in nature, whereas the disease process in classic type 2 diabetes is not. The treatment for patients with LADA may need to be different from that used for patients with type 2 diabetes (15). Because LADA is frequently misdiagnosed as type 2 diabetes, identification of LADA is of clinical importance. In this population-based cross-sectional study, we sought to investigate the prevalence of LADA and further to explore whether familial, vascular, and psychosocial factors are associated with the occurrence of LADA.  相似文献   

14.

OBJECTIVE

Previous observational studies have found an increased risk of acute pancreatitis among type 2 diabetic patients. However, limited information is available on this association and specifically on the role of antidiabetic treatment. Our aim, therefore, was to further assess the risk of acute pancreatitis in adult patients with type 2 diabetes.

RESEARCH DESIGN AND METHODS

We performed a population-based case-control analysis nested in a cohort of 85,525 type 2 diabetic patients and 200,000 diabetes-free individuals from the general population using data from The Health Improvement Network database. Subjects were followed up to ascertain incident cases of acute pancreatitis.

RESULTS

We identified 419 cases of acute pancreatitis, 243 in the general population and 176 in the diabetes cohort. Incidence rates were 30.1 and 54.0 per 100,000 person-years in the general population and the diabetes cohort, respectively. In the cohort analysis, the adjusted incidence rate ratio of acute pancreatitis in diabetic patients versus that in the general population was 1.77 (95% CI 1.46–2.15). The magnitude of this association decreased with adjustment for multiple factors in the nested case-control analysis (adjusted odds ratio 1.37 [95% CI 0.99–1.89]). Furthermore, we found that the risk of acute pancreatitis was decreased among insulin-treated diabetic patients (0.35 [0.20–0.61]).

CONCLUSIONS

Type 2 diabetes may be associated with a slight increase in the risk of acute pancreatitis. We also found that insulin use in type 2 diabetes might decrease this risk. Further research is warranted to confirm these associations.Acute pancreatitis is defined as an acute inflammatory process of the pancreas. The incidence of acute pancreatitis in the general population shows geographical variation. Incidence rates reported in the literature range between 4 and up to >100 cases per 100,000 person-years in the western world (13). Data from western countries suggest that the incidence of acute pancreatitis has been increasing over the last 40 years (3).The reason for this increase is unknown. However, a concurrent trend has been the rapid, worldwide increase in type 2 diabetes and obesity. Several clinical factors associated with type 2 diabetes and obesity are known or putative risk factors for acute pancreatitis (e.g., gallstone disease). Therefore, it can be hypothesized that in type 2 diabetic patients the risk of acute pancreatitis might be higher than that for the general population (2). Studies exploring whether diabetes or antidiabetic treatment may act as risk factors for the development of acute pancreatitis have been limited so far (2,46). Three observational studies reported an approximately two- to threefold increased risk of acute pancreatitis among diabetic patients (2,4,5). The purpose of this study was to further assess the risk of acute pancreatitis in association with type 2 diabetic patients and antidiabetic treatment.  相似文献   

15.

OBJECTIVE

We examined whether metabolic syndrome predicts incident type 2 diabetes more effectively than impaired fasting glucose (IFG) in a general Japanese population.

RESEARCH DESIGN AND METHODS

A total of 1,935 nondiabetic subjects aged 40–79 years were followed-up prospectively for a mean of 11.8 years.

RESULTS

During the follow-up, 286 subjects developed type 2 diabetes. Compared with those without metabolic syndrome, the multivariate-adjusted hazard ratio (HR) for incident type 2 diabetes was significantly higher in subjects of both sexes with metabolic syndrome, even after adjustment for confounding factors, age, family history of diabetes, total cholesterol, alcohol intake, smoking habits, and regular exercise (men: HR 2.58 [95% CI 1.85–3.59]; women: 3.69 [2.58–5.27]). The multivariate-adjusted HR of metabolic syndrome for type 2 diabetes was slightly lower in men and similar in women compared with that of IFG. The multivariate-adjusted HR for type 2 diabetes rose progressively as the number of metabolic syndrome components increased in both subjects with and without IFG. In stratified analysis, the multivariate-adjusted risk of type 2 diabetes was significantly higher in subjects with metabolic syndrome alone (2.37 [1.45–3.88]) or IFG alone (3.49 [2.57–4.74]) and markedly increased in subjects with both metabolic syndrome and IFG (6.76 [4.75–9.61]) than in subjects with neither metabolic syndrome nor IFG. Furthermore, the multivariate-adjusted risk for type 2 diabetes was also significantly higher in subjects with both metabolic syndrome and IFG than in those with either one alone (both P < 0.001).

CONCLUSIONS

Our findings suggest that metabolic syndrome significantly increases the risk of incident type 2 diabetes, independent of IFG, and is therefore a valuable tool to identify individuals at high risk of type 2 diabetes.Metabolic syndrome consists of a clustering of cardiovascular risk factors, such as central obesity, elevated blood pressure, glucose intolerance, and dyslipidemia, and individuals with this condition have an elevated risk of developing cardiovascular diseases (15) and type 2 diabetes in different ethnic populations (14,611). Thus, the concept of metabolic syndrome could be used to reduce the incidence of these diseases worldwide. However, a number of experts in the field of diabetes have questioned whether the idea of metabolic syndrome is useful and valuable (1214). Because all of the criteria sets for metabolic syndrome have included the component of impaired fasting glucose (IFG), which is a powerful predictor of type 2 diabetes, detractors have questioned whether the more complex definition of metabolic syndrome is better than a simple measurement of fasting plasma glucose (FPG). However, reported findings concerning this issue are controversial: a cohort study has shown that the ability of metabolic syndrome to predict type 2 diabetes was superior to that of IFG alone (3), whereas in other studies, the value of metabolic syndrome was comparable or inferior to that of IFG alone (2,6,7). Furthermore, most of these epidemiological studies were performed in Western populations, and this subject has not been assessed sufficiently in Asian populations.The purpose of the present study was to investigate the association between metabolic syndrome and the development of type 2 diabetes in a prospective study of a defined Japanese population, taking into account comprehensive risk factors. In addition, we compared which of the two measures, metabolic syndrome or IFG, better predicted incident type 2 diabetes.  相似文献   

16.
17.

OBJECTIVE

The risk factors for middle-age onset of type 2 diabetes are well known. However, information is scant regarding the age onset of type 2 diabetes and its correlates in community-based black and white relatively young adults.

RESEARCH DESIGN AND METHODS

This prospective cohort study consisted of normoglycemic (n = 2,459) and type 2 diabetic (n = 144) adults aged 18–50 years who were followed for an average of 16 years.

RESULTS

The incidence rate of the onset of type 2 diabetes was 1.6, 4.3, 3.9, and 3.4 per 1,000 person-years for age-groups 18–29, 30–39, and 40–50 and total sample, respectively. Incidences of diabetes increased with age by race and sex groups (P for trend ≤0.01); higher in black females versus white females and blacks versus whites in total sample (P < 0.05). In a multivariable Cox model, baseline parental diabetes (hazard ratio [HR] 5.24) and plasma insulin were significantly associated with diabetes incidence at the youngest age (18–29 years); black race, BMI, and glucose at age 30–39 years; female sex, parental diabetes (HR 2.44), BMI, ratio of triglycerides and HDL cholesterol (TG/HDL-C ratio), and glucose at age 40–50 years; and black race, parental diabetes (HR 2.44), BMI, TG/HDL-C ratio, and glucose in whole cohort. Further, patients with diabetes, regardless of age onset, displayed a significantly higher prevalence of maternal history of diabetes at baseline (P < 0.01).

CONCLUSIONS

In relatively young adults, predictability of baseline cardiometabolic risk factors along with race, sex, and parental history of diabetes for the onset of type 2 diabetes varied by age-group. These findings have implications for early prevention and intervention in relatively young adults.Earlier national survey data portend that the prevalence and incidence of diabetes are rising in the United States (1,2). Impaired glucose homeostasis has become one of the most common causes of death in the U.S. (2). The progressive global epidemic of obesity has resulted in obesity being a major causal factor detected in prediabetes and type 2 diabetes (1).A number of studies have indicated that hyperinsulinemia/insulin resistance is associated with cardiometabolic risk factors including obesity, dyslipidemia, and hypertension, a constellation of disorder characteristics of the metabolic syndrome commonly found in diabetes (38). Further, the impaired glucose homeostasis among offspring of young-age onset, maternal type 2 patients with diabetes has been attributed to perinatal exposures and related increase in diabetes risk (9). The optimal strategy for preventing the onset of type 2 diabetes postulates the knowledge of its modifiable cardiometabolic risk factors (8). However, most studies have been performed on the prevalence of type 2 diabetes (3,4,6,9) with single, baseline measurements at middle and older age (1,5,7,911). Information is lacking on the correlates among relatively young adults in a community on the age-onset of type 2 diabetes. The present analysis examines the occurrence of diabetes at increasing ages as part of the Bogalusa Heart Study, a biracial (black and white), community-based investigation of the evolution of cardiovascular disease risk beginning in childhood (12).  相似文献   

18.

OBJECTIVE

There are conflicting data regarding relationships of systemic biomarkers of inflammation, hemostasis, and homocysteine with diabetic retinopathy. We examined these relationships in the Multi-Ethnic Study of Atherosclerosis.

RESEARCH DESIGN AND METHODS

A total of 921 participants with diabetes were included. Diabetic retinopathy was graded from retinal photographs. We defined two outcomes: any diabetic retinopathy and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse). Systemic markers analyzed were C-reactive protein, homocysteine, fibrinogen, plasmin-α2-antiplasmin complex (PAP), interleukin-6, d-dimer, factor VIII, serum creatinine, and urinary albumin-to-creatinine (UAC) ratio.

RESULTS

Prevalence of diabetic retinopathy was 33.2% and vision-threatening diabetic retinopathy 7.1%. After adjusting for established risk factors (diabetes duration, A1C, systolic blood pressure, waist-to-hip ratio, and use of diabetes medications), fibrinogen (odds ratio 1.14 [95% CI 1.01–1.32], P = 0.05) and PAP (1.25 [1.05–1.50], P = 0.01) were associated with any diabetic retinopathy, while PAP (1.54 [1.13–2.11], P = 0.007) and homocysteine (1.57 [1.16–2.11], P = 0.003) were associated with vision-threatening diabetic retinopathy. Only PAP remained significant after additional adjustment for serum creatinine and UAC ratio. Area under receiver-operator characteristic curve (AUROC) for diabetic retinopathy was constructed for established and novel risk factors. Established risk factors accounted for a 39.2% increase of the AUROC, whereas novel markers (fibrinogen, PAP, homocysteine, serum creatinine, and UAC ratio) only accounted for an additional 2.2%.

CONCLUSIONS

There were few associations of novel markers of inflammation, hemostasis, and homocysteine with diabetic retinopathy after controlling for established risk factors. These data suggest that there is limited clinical use of these biomarkers for prediction of diabetic retinopathy.Diabetic retinopathy is the leading cause of blindness in working-age individuals (1). There is increasing evidence that established risk factors for diabetic retinopathy (2,3), including duration of diabetes, hyperglycemia, and hypertension, only explain a limited amount of the variance in the risk of diabetic retinopathy (1). Furthermore, the underlying pathogenesis of diabetic retinopathy remains inadequately understood (4). This has resulted in examination of the relation of novel risk markers such as inflammation (e.g., C-reactive protein [CRP]), markers of hemostatic disturbances (e.g., fibrinogen levels), and hyperhomocysteinemia to diabetic retinopathy. However, to date, the relations of these factors to diabetic retinopathy have not been consistent (517). The reasons for these inconsistencies may be due, in part, to differences in study sample and definitions of diabetic retinopathy (e.g., clinical versus photograph grading) and failure in some studies to make adequate adjustments for traditional risk factors such as glycemic control and hypertension. Thus, it remains unclear if there is a role for the use of these systemic markers as additional clinical tests to identify individuals at high risk of diabetic retinopathy. In this study, we evaluated the relationship of a range of inflammatory, hemostatic, and novel vascular markers with diabetic retinopathy, while controlling for traditional risk factors, in a large multiethnic population.  相似文献   

19.

OBJECTIVE

Diabetes has long been recognized as a risk factor for atrial fibrillation, but its independent contribution to atrial fibrillation has not been fully evaluated. We sought to compare the prevalence and incidence of atrial fibrillation in age- and sex-matched patients with and without type 2 diabetes.

RESEARCH DESIGN AND METHODS

Using an observational cohort design, we selected 10,213 members of an HMO diabetes registry as of 1 January 1999 plus 7,159 patients who entered the registry by 31 December 2004 and matched them to patients without diabetes on year of birth and sex. All patients were followed until they died, left the health plan, or until 31 December 2008. We compared the baseline prevalence of atrial fibrillation and then followed patients without atrial fibrillation to compare atrial fibrillation incidence while controlling for known risk factors.

RESULTS

Atrial fibrillation prevalence was significantly greater among patients with diabetes (3.6 vs. 2.5%, P < 0.0001). Over a mean follow-up of 7.2 ± 2.8 years, diabetic patients without atrial fibrillation at baseline developed atrial fibrillation at an age- and sex-adjusted rate of 9.1 per 1,000 person-years (95% CI 8.6–9.7) compared with a rate of 6.6 (6.2–7.1) among nondiabetic patients. After full adjustment for other risk factors, diabetes was associated with a 26% increased risk of atrial fibrillation among women (hazard ratio 1.26 [95% CI 1.08–1.46]), but diabetes was not a statistically significant factor among men (1.09 [0.96–1.24]).

CONCLUSIONS

In this population, diabetes was an independent determinant of atrial fibrillation prevalence but predicted incidence only among women. These findings have potential public health implications and emphasize the need for further investigation of the mechanistic links between diabetes and atrial fibrillation.More than 23 million U.S. adults have diabetes (1), a figure that is growing by ∼1 million each year (2). An additional 57 million U.S. residents are estimated to have pre-diabetes (1). Atrial fibrillation, the most common arrhythmia diagnosis in the world, afflicts approximately 2.2 million U.S. adults (3), and that number could more than double by 2050 (4). Other analyses have shown that the rising prevalence and incidence of atrial fibrillation cannot be explained by aging alone (5,6). Recent findings indicate that atrial fibrillation may be relatively common in diabetic patients and should be regarded as a marker of particularly adverse outcomes, prompting aggressive management of all risk factors (7). The overlap of diabetes and atrial fibrillation also contributes to a well-established increased risk of thromboembolic stroke (8).Although diabetes and atrial fibrillation undoubtedly share common antecedents such as hypertension, atherosclerosis, and obesity (911), the confluence of these two conditions clearly warrants additional study. Diabetes has long been recognized as a risk factor for atrial fibrillation (12), which was subsequently reaffirmed in several studies (10,13,14). However, the potential independent contribution of diabetes to the prevalence and incidence of atrial fibrillation has not been evaluated. We therefore performed comparative analyses of the prevalence and incidence of atrial fibrillation in patients with and without diabetes.  相似文献   

20.

OBJECTIVE

In clinical trials, diet, exercise, and weight counseling led to short-term improvements in blood glucose, blood pressure, and cholesterol levels in patients with diabetes. However, little is known about the long-term effects of lifestyle counseling on patients with diabetes in routine clinical settings.

RESEARCH DESIGN AND METHODS

This retrospective cohort study of 30,897 patients with diabetes aimed to determine whether lifestyle counseling is associated with time to A1C, blood pressure, and LDL cholesterol control in patients with diabetes. Patients were included if they had at least 2 years of follow-up with primary care practices affiliated with two teaching hospitals in eastern Massachusetts between 1 January 2000 and 1 January 2010.

RESULTS

Comparing patients with face-to-face counseling rates of once or more per month versus less than once per 6 months, median time to A1C <7.0% was 3.5 versus 22.7 months, time to blood pressure <130/85 mmHg was 3.7 weeks versus 5.6 months, and time to LDL cholesterol <100 mg/dL was 3.5 versus 24.7 months, respectively (P < 0.0001 for all). In multivariable analysis, one additional monthly face-to-face lifestyle counseling episode was associated with hazard ratios of 1.7 for A1C control (P < 0.0001), 1.3 for blood pressure control (P < 0.0001), and 1.4 for LDL cholesterol control (P = 0.0013).

CONCLUSIONS

Lifestyle counseling in the primary care setting is strongly associated with faster achievement of A1C, blood pressure, and LDL cholesterol control. These results confirm that the findings of controlled clinical trials are applicable to the routine care setting and provide evidence to support current treatment guidelines.Diabetes is increasingly common in the U.S. and worldwide (1,2). Elevated blood glucose, blood pressure, and LDL cholesterol are associated with increased risk for micro- and macrovascular complications, and their reduction decreases the risk (38). Nevertheless, most patients with diabetes do not have A1C, blood pressure, and LDL cholesterol under control (9,10).American and European guidelines widely recommend diet, exercise, and weight counseling with follow-up for patients with diabetes (11,12). Many short-term randomized clinical trials have shown that intensive lifestyle counseling interventions of up to 1 year in duration can lead to lower blood glucose (1316) and blood pressure (1721), but long-term data on the efficacy of lifestyle counseling are lacking (2224). Furthermore, clinical trials typically involve resource-intensive interventions that may not be feasible in routine care, and the efficacy of lifestyle counseling in everyday clinical practice remains questionable (2527). Consequently, further evidence is needed to establish that lifestyle counseling as practiced in routine care improves the outcomes of patients with diabetes.We therefore conducted a retrospective study of over 30,000 patients with diabetes and hyperglycemia, hypertension, and/or hyperlipidemia who received care in a primary care setting to test the hypothesis that higher rates of lifestyle counseling in routine care are associated with better diabetes control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号