首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对44名西双版纳傣族和9名上海地区汉族DK2阳性个体进行了与其相关的DR/DQ单倍型组合的分析。傣族群体中DRBI-DR2亚型分布以*1602与*1502为最常见,其等位基因频率分别为43.6%与,40.0%和汉族群体中以*1501为主明显不同。傣族群体中共检出10种与DR2相关联的DR/DQ单倍型;最常见的是DRB1*1602、DRB5*0101、DQA1*0102、DQB1*0502(34.5%)与汉族及其他群体明显不同,本研究表明傣族不仅具有高频率的DR2,而且与DR2相关联的DRB1、DRB5、DQA1、DQB1单倍型组合有其独特性。  相似文献   

2.
HLA—DR,DQ基因多态性与系统性红斑狼疮相关性的研究   总被引:12,自引:1,他引:12  
应用聚合酶链反应结合顺序特异的寡核苷酸探针杂交(PCR/SSOPH)方法对江苏籍汉族SLE患者和健康对照组HLA-DRB1、DQA1:DQB1基因作寡核苷酸分型。结果发现患者组中DRB1*1501、DQA1*0102等位基因频率及HLA-DRB1*1501、-DQA1*0102、-DQB1*0602单倍型频率均明显高于正常对照组;相反,DRB1*04(DR4)、DQA1*0601频率则明显低于正常对照组。所有DQB1等位基因频率在两组间无显著差异,而DQA1*0102仅存在于DR2阳性的个体之中,推测汉族SLE的易感基因可能靠近DR位点,且与单倍型HLA-DRB1*1501、-DQA1*0102、-DQB1*0602紧密连锁,该单倍型可作为汉族SLE易感的遗传标记。相反DR4,DQA1*0601则对SLE发病可能有一定的保护性。  相似文献   

3.
Narcolepsy is a sleep disorder that has been shown to be tightly associated with HLA DR15 (DR2). In this study, 58 non-DR15 patients with narco-lepsy-cataplexy were typed at the HLA DRB1, DQA1 and DQB1 loci. Subjects included both sporadic cases and narcoleptic probands from multiplex families. Additional markers studied in the class II region were the promoters of the DQA1 and DQB1 genes, two CA repeat polymorphisms (DQCAR and DQCARII) located between the DQA1 and DQB1 genes, three CA repeat markers (G51152, T16CAR and G411624R) located between DQB1 and DQB3 and polymorphisms at the DQB2 locus. Twenty-one (36%) of these 58 non-DR15 narcoleptic patients were DQA1*0T02 and DQBI*0602, a DQ1 Subtype normally associated with DRB1*15 in DR2-positive narcoleptic subjects. Additional microsatellite and DQA1 promoter diversity was found in some of these non-DR15 but DQB1*0602-positive haplotypes but the known allele specific codons of DQA1*0102 and DQB1*0602 were maintained in all 21 cases. The 37 non-DQA1*0102/DQB1*0602 subjects did not share any particular HLA DR or DQ alleles. We conclude that HLA DQA1*0102 and DQB1*0602 are the most likely primary candidate susceptibility genes for narcolepsy in the HLA class II region.  相似文献   

4.
Two new DRB1 alleles have been identified (DRB1*0303 and DRB1*0805) in African Americans that differ from known DRB1 alleles only by a glycine to valine exchange at position 86. The novel DRB1*0303 allele, found in one individual, has the same DQA1*0401-DQB1*04 haplotype as DRB1*0302, suggesting that it may be a recent diversification of *0302. The novel DRB1*0805 allele, identified in 4 individuals, was found on two haplotypes, sharing a DQA1*0501-DQB1*0301 haplotype with DRB1*0804, and a DQA1*0102-DQB1*0602 haplotype found with DRB1*0801 in some African populations. DRB1*0805 differs from *0804 only at position 57 and differs from *0801 only at position 86. Assuming that DRB1*0801 and DRB1*0802 are ancestral, based on their distribution in various human populations, DRB1*0805 may have been generated twice by two independent mutations or gene conversion events at each of these positions. Alternatively, DRB1*0805 may have arisen from a single gene conversion event (or mutation) and recombined to generate multiple DR-DQ haplotypes. These findings increase the number of DRB1 allelic pairs that differ only at position 86 to 9, suggesting strong balancing selection at this position. A number of DRB1 alleles for DR8 and DR4 also differ only at position 57, a site previously postulated to be strongly influenced by balancing selection in DQB1 alleles by phylogenetic analysis.  相似文献   

5.
The HLA haplotype DQA1*0102/DQB1*0602 reportely confers protection from type 1 diabetes. DQA1*0102/DQB1*0602 is present in more than 7% of ICA positive relatives screened as part of the Diabetes Prevention Trial--type 1. The presence of autoantibodies in these subjects suggests that the mechanism that protects DQB1*0602 subjects from diabetes occurs after the disease process has been initiated. However, as previously suggested, the method used to type the DQB1*0602 alleles may have lacked the sensitivity to identify alleles similar, but not identical, to DQB1*0602. In addition unusual extended haplotypes may be presented that could help account for the presence of diabetes autoantibodies. We therefore sequenced and performed extended haplotyping on samples from ICA+ relatives with DQA1*0102/DQB1*0602. In this group, sequencing confirmed DQB1*0602 in 149/150, and 152/165 have the common DRB1*1501-DQB1*0602 haplotype. Thus, high resolution typing of class II alleles either by PCR-based oligotyping or nucleotide sequencing fail to indicate any unusual genetic characteristics about these antibody-positive relatives, of which few are expected to progress to clinical disease.  相似文献   

6.
HLA-DR2 is the most common DR specificity (60.3%) identified in the Dai minority population of Xishuangbanna, Yunna Province, China. We characterized the DRB1, DRB5, DQA1, and DQB1 alleles of 44 unrelated DR2-positive individuals, 11 of whom (15%) were DR2 homozygous. Four DRB1 and four DRB5 alleles encoding DR2 were identified in this population. The most frequent DR2-associated DRB1 alleles were *1602 (gf = 0.164) and *1502 (gf = 0.151). DRB1*1501 (gf = 0.048) and a new allele designated DRB1*1504 (gf = 0.014) were also detected, but *1601 and *1503 were absent. The most frequent DR2-associated DRB5 alleles were *0101 (gf = 0.233) and *0102 (gf = 0.110). Nine different DR2-associated DR/DQ haplotypes were identified. The two most common DR2 haplotypes were DRB1*1602,DRB5*0101,DQA1*0102,DQB1*0502(hf = 0.142) and DRB1*1502,DRB5*0102,DQA1*0101, DQB1*0501 (hf = 0.075). The new DRB1*1504 allele was found on a single haplotype: DRB1*1504, DRB5*0101,DQA1*0102,DQB1*0502 (hf = 0.017). The Dw2, Dw12, Dw21, and Dw22 haplotypes, present in many other Asian and Mongoloid populations, were not identified in this unique group. However, the Dai minority population is characterized by a relatively large number of diverse DR2 haplotypes and a new DRB1 allele encoding DR2.  相似文献   

7.
HLA-DR51 haplotypes co-express one DRB1 (B1*15 or B1*16) gene and one DRB5 gene. These haplotypes also carry two pseudogenes (DRB6 and DRB9). During routine HLA typing for transplantation, we observed an unexpected DR51 haplotype in two subjects (mother and daughter) in a family. Serological typing showed that these subjects are positive for DR51 and DQ6 but negative for DR15 and DR16. Investigations of genomic DNA by molecular techniques showed that these individuals carry DRB5*0101, DRB6*02 and DQB1*0602 genes, whereas the DRB1 gene associated with either DR15 (B1*1501 to B1*1504) or DR16 (B1*1601 to B1*1606) was not detected in the mother and daughter. It is possible that the new haplotype, DQB1*0602, DRB6*02, DRB5*0101, arose by deletion of DR2-associated DRB1 gene.  相似文献   

8.
Abstract: HLA-DR2 serological subtyping has indicated that the DR16 serotype appears at a higher frequency relative to the DR15 serotype in the Greek population, differing from the distribution observed in most other Caucasian groups. In this study, we have analyzed by the PCR-SSP technique a DR2-positive group of unrelated Greek individuals selected from our normal control panel for the different DRB1, DRB5, DQB1 and DQA1 DR2-associated alleles present. Six of the 50 individuals analyzed were homo-zygous for DR2, contributing a total of 56 haplotypes for DR2. The observed frequencies of the DR2-related DRB1 alleles were as follows: 58.9% for the DRB1*1601, 7.1% for the DRB1*1602, 25.0% for the DRBl*1501 and 7.1% for the DRB1*1502 allele. The rare allele DRB1*1605 was detected in one heterozygous sample and its presence was definitively established by DNA sequencing. The alleles *1503, *1504, *1505, *1603 and *1604 were not detected. Three DRB5 alleles were identified: DRB5*0202 (67.8%), DRB5*0101 (25.0%) and DRB5*0102 (7.1%). Ten different DRB1/DQB1/ DQA1 DR2-associated haplotypes were denned. The most frequently observed haplotype was DRBl*1601-DQBl*0502-DQAl*0102 (relative frequency =57%) followed by DRB1*1501-DQB1*0602-DQA1*0102 (relative fre-quency=14.3%). In conclusion, the refined analysis of the DR2-associated DRB1 alleles in the Greek population revealed the prevalence of the DRB1*1601 allele. The rare allele DRB1*1605 was demonstrated once. A considerable variety of different DR2-related DR/DQ haplotypes was detected and the overall haplotypic frequencies in the Greek population are distributed differently compared to those reported for most other Caucasian populations.  相似文献   

9.
The HLA class II typing of 167 unrelated Gabonese individuals from the Banzabi ethnic group was assessed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The most frequent alleles at each locus were DRB1*1501-3 (0.31), DQA1*0102 (0.50), DQB1*0602 (0.42) and DPB1*0402 (0.29). The estimation of the haplotype frequencies as well as the observation of the segregation of several haplotypes using additional HLA typing of relatives, revealed that the three-locus haplotype DRB1*1501-3-DQA1*0102-DQB1*0602 was found at the highest frequency (0.31) among these individuals. This haplotype is not typically African and has already been described in Caucasians, but its presence at high frequency is exclusive to populations originating from Central Africa, and can thus be designated as a particular genetic marker of these populations.  相似文献   

10.
The association of HLA class II alleles with multiple sclerosis (MS) has been amply documented. In the present study, the role of HLA class II (DRB1, DQA1 and DQB1) alleles and haplotypes was investigated in 43 unrelated Iranian chronic progressive multiple sclerosis (CP-MS) patients compared with 100 healthy individuals. HLA typing for DRB1, DQA1 and DQB1 was performed by restriction fragment length polymorphism (RFLP). Subtypes of DR4, DR15 and DR16 were defined using polymerase chain reaction (PCR) amplification with sequence-specific primers (PCR-SSP). The results show that, among DR2-positive MS patients and the control group, a positive association with the DRB1*1503, DQA1*0102, DQB1*0602 haplotype (21% vs. 2.7%, P=0.057, RR=9.8) and a negative association with the most frequent DR15 haplotype in the control group, DRB1*15021, DQA1*0103, DQB1*0601 (7% vs. 24.3%, P=0.001), were observed. No significant association was found with the analysed HLA-DRB1, DQA1 and DQB1 alleles.  相似文献   

11.
系统性红斑狼疮临床表现与HLA Ⅱ类单倍型关联的研究   总被引:7,自引:1,他引:6  
目的 探讨系统性红斑狼疮(SLE)易感基因致病的模式。方法 利用多聚酶链反应/特异寡核控针杂交(PCR/SSOPH)方法检测113例确诊SLE病人的HLAⅡ基因型并进行单倍型分析。结果 SLF病人的单倍型具有特定的结构特征,即以2个或3个重型SLE相关基因共同组成1个单倍型;反之,2个或3个轻型SLE相关基因组成另1个单倍型;重型基因和轻型基因之间很少有强连锁不平衡。DQA1*0301-DQB1*  相似文献   

12.
Abstract: Two HLA class II haplotypes, HLA-{DQB1*0602; DQAl*0102; DR15} and HLA-{DQB1*0603; DQA1*0103; DRB1*1301} were found to be less common in 52 nonresponders compared with 68 responders, P <0.025 and P <0.05 respectively, after vaccination with hepatitis B surface antigen (HBsAg). Another haplotype, HLA-(DQBl*0604; DQA1*0102; DRB1*1302), had a significantly higher frequency in the nonresponders ( P <0.005). The nonresponders and responders were nonsmoking, healthy individuals with an antibody concentration of <10 IU/1 and >100 IU/1 respectively. The three haplotypes comprise either of three different DQB1*06 subtypes. Two of the seven amino acids that differ between the two responder alleles DQBl*0602 and *0603 and the nonresponder allele *0604 are located in the peptide-binding groove of the DQB1 molecule. In addition to this finding, amino acid 86 in the DRB1 molecule seems to determine the response against HBsAg. DRB1*1301 and DR15 in the responder haplotypes have a Val at this position while the nonresponder haplotype has a Gly. These results suggest a role for both the DQB1* 06 alleles and the DRB1 alleles *1301, *1302 and DR15 to direct either a response or a nonresponse against HBsAg. Sixteen HLA class II genotypes were found to be shared by 25 nonresponders and 32 responders. This finding of HLA-identical nonresponders and responders indicates an influence of other genetic factors in addition to the HLA system in the response to HBsAg.  相似文献   

13.
Multiple sclerosis (MS) is strongly associated with the HLA-Dw2 haplotype DRw15.DQw6 in Caucasoids, although the relative contributions of DR and DQ loci to disease susceptibility are unknown. The situation is further complicated by the apparent lack of an association between DR2 and MS in Orientals. This study examined 42 DR2-positive chromosomes in healthy Chinese and 12 DR2-positive chromosomes in MS patients from Hong Kong, using oligonucleotide hybridizations of DQA1, DQB1, DRB1, and DRB5 polymerase chain reaction (PCR) products. There was marked heterogeneity in DR2-related haplotypes in controls (ten types), where the most frequent haplotype, confirmed in one family, involved the novel arrangement DRB1*1501, DQB1*0601. Another common haplotype had the unusual combination of DRB1*1602, DRB5*0101 as confirmed by DNA sequencing of the DRB5 allele. In contrast, the most common DR2-related haplotype in MS patients was the 'classical' Dw2 haplotype DRB1*1501, DQB1*0602, with a frequency of 50% compared with 12% in controls (P = 0.01). Novel DR,DQ linkage disequilibrium relationship in Hong Kong Chinese have permitted recognition of DQB1*0602 as a susceptibility allele in DR2-positive MS patients, although a role for the DRB1*1501 allele in MS pathogenesis has not been excluded by this study.  相似文献   

14.
Multiple sclerosis (MS) is a common neurological disease caused by genetic and environmental factors. Previous genetic analyses have suggested that theMHC/HLA region on chromosome 6p21 contains an MS- predisposing component. Which of the many genes present in this region is primarily responsible for disease susceptibility is still an open issue. In this study, we evaluated, in a large cohort of MS families from the Mediterranean island of Sardinia, the role of allelic variation at the HLA-DRB1, DQA1 and DQB1 candidate loci in MS predisposition. Using the transmission disequilibrium test (TDT), we found significant evidence of association with MS in both the Sardinian- specific DRB1*0405(DR4)- DQA1*0501-DQB1*0301 haplotype and the DRB1* 0301(DR3)-DQA1*0501-DQB1*0201 haplotype. Detailed comparative analysis of the DRB1-DQA1- DQB1 haplotypes present in this data set did not identify an individual locus that could explain MS susceptibility. The predisposing effect is haplotype specific, in that it is confined to specific combinations of alleles at the DRB1, DQA1 and DQB1 loci. Cross- ethnic comparison between the two HLA haplotypes associated with MS in Sardinians and the DRB1*1501 (DR2)-DQA1*0102-DQB1* 0602 haplotype, associated with MS in other Caucasian populations, failed to identify any shared epitopes in the DR and DQ molecules that segregated with disease susceptibility. These results suggest that another MHC gene(s), in linkage disequilibrium with specific HLA-DRB1, DQA1, DQB1 haploypes, might be primarily responsible for genetic susceptibility to MS. Alternatively, the presence of complex interactions between different HLA haplotypes, other non-HLA predisposing genes and environmental factors may explain different associations in different populations.   相似文献   

15.
Serological and oligonucleotide typing was performed on a number of HLA-DR2-positive cells from different ethnic origin, including DR2 haplotypes with various DQ associations. Exons 2 of DRB1 and DRB5 of DR2-positive individuals were locus-specific amplified and hybridized with a number of different oligonucleotides capable of discriminating between the various Dw2, Dw12, Dw21, and Dw22 associated sequences. The linkage of DRB with DQA1 and DQB1 in these haplotypes was analyzed. Among the DR2- positive cells we could define 10 different DR DQ haplotypes by serology and 13 by oligonucleotide typing. The DR2.ES specificity is a serological DRw15 variant which could not be discriminated by oligonucleotide typing from a DRw15 DQw5 haplotype. The DR2.JA variant represents a unique DRB1*1602 DRB5*0101 haplotype. The DR1+2s haplotype consists of a DRB1 DQ region from a Dw1 and a DRB5 gene from a Dw2 haplotype. Its short DR2 serum pattern can be explained by the absence of a DR2 DRB1 gene product. DRB5*0101 sequences were found in association with DRB1*1501, *1502, *1602, and *0101 alleles. Since the DRB5 gene is capable of such different associations it is comparable to the DRB3 and DRB4 genes. This may have implications for the definition of the broad DR2 specificity which is predominantly encoded by the DRB5 gene product. New DR2 haplotypes included the following DQ combinations: DQw2-positive DQA1/B1*0301/0201 and DQw6-positive DQA1/B1*0102/0601 and *0102/0603 haplotypes.  相似文献   

16.
The association of primary sclerosing cholangitis (PSC) to HLA class II genes was studied by comparing patients from five different European populations. Deduced HLA-DRB1, DQA1, DQB1 haplotypes of 256 PSC patients from England, Italy, Norway, Spain and Sweden were compared to those observed in 764 ethnically-matched controls. Increased frequencies of the DRB1*03, DQA1*0501, DQB1*02 (RR=3.0, P<0.00001) and the DRB1*13, DQA1*0103, DQB1*0603 haplotypes (RR=2.4, P<0.0001) were observed in all five patient groups. A total of 16% of the PSC patients were homozygous for the DRB1*03, DQA1*0501, DQB1*02 haplotype compared to 1% of the controls (RR=20, P<0.0001). The DRB1*04, DQA1*03, DQB1*0302 haplotype was significantly reduced in frequency(RR=0.4, P<0.00001). Among Norwegian, Swedish and British patients that did not carry neither the DRB1*03, DQA1*0501, DQB1*02 nor the DRB1*13, DQA1*0103, DQB1*0603 haplotype, an increased frequency of the DRB1*15, DQA1*0102, DQB1*0602 haplotype was observed (RR=2.0, P<0.0001). Thus, PSC was found to be positively associated to three different HLA class II haplotypes (i.e. the DRB1*03, DQA1*0501, DQB1*02, the DRB1*15, DQA1*0102, DQB1*0602 and the DRB1*13, DQA1*0103, DQB1*0603 haplotypes) and negatively associated to one HLA class II haplotype (i.e. the DRB1*04, DQB1*0302 haplotype).  相似文献   

17.
We have studied the distribution of HLA DRB1, DQA1, DQB1 alleles and haplotypes in a sample of 103 unrelated healthy individuals from the region of Lodz in central Poland by the polymerase chain reaction and hybridization with allele-specific oligonucleotide probes (PCR-SSO). DRB1*0101, DRB1*07, DRB1*1501, DRB1*03 and DRB1*11 were the most frequent alleles at the DRB1 locus. The DRB1*04 group was observed at a high frequency, but only five out of the 19 DR4 subtypes tested were observed. The most frequent was DRB1*0401, followed by DRB1*0403, DRB1*0402, DRB1*0407 and DRB1*0417. Eight DQA1 alleles were found in this Polish population, among which DQA1*0501, DQA1*0101 and DQA1*0102 were the most frequent. At the DQB1 locus 13 alleles were found. Among them, four were present with frequencies above 10%: DQB1*0201, DQB1*0301, DQB1*0501 and DQB1*0602. Our results underline significant differences between the population of central Poland and populations of neighbouring countries such as Germany, Ukraine and the Czech Republic. This study will serve as a reference for further anthropological studies, as well as studies of associations between HLA and disease.  相似文献   

18.
We describe for the first time extended haplotypes in a Croatian population. The present study gives the HLA-A, -B, -DRB1, -DQA1 and -DQB1 allele and haplotype frequencies in 105 families with at least two offspring. All individuals were studied by conventional serology for HLA class I antigens (A and B), while class II alleles (DRB1, DQA1, DQB1) were typed using the PCR-SSOP method. HLA genotyping was performed by segregation in all 105 families. For extended haplotype analysis, 420 independent parental haplotypes were included. Fourteen HLA-A, 18 HLA-B, 28 DRB1, 9 DQA1 and 11 DQB1 alleles were found in the studied population. Most of the DRB1 alleles in our population had an exclusive association with one specific DQA1-DQB1 combination. This strong linkage disequilibrium within the HLA class II region is often extended to the HLA-B locus. A total of 10 HLA-A, -B, -DRB1, -DQA1, -DQB1 haplotypes were observed with a frequency 相似文献   

19.
We describe for the first time extended haplotypes in a Croatian population. The present study gives the HLA‐A, ‐B, ‐DRB1, ‐DQA1 and ‐DQB1 allele and haplotype frequencies in 105 families with at least two offspring. All individuals were studied by conventional serology for HLA class I antigens (A and B), while class II alleles (DRB1, DQA1, DQB1) were typed using the PCR–SSOP method. HLA genotyping was performed by segregation in all 105 families. For extended haplotype analysis, 420 independent parental haplotypes were included. Fourteen HLA‐A, 18 HLA‐B, 28 DRB1, 9 DQA1 and 11 DQB1 alleles were found in the studied population. Most of the DRB1 alleles in our population had an exclusive association with one specific DQA1‐DQB1 combination. This strong linkage disequilibrium within the HLA class II region is often extended to the HLA‐B locus. A total of 10 HLA‐A, ‐B, ‐DRB1, ‐DQA1, ‐DQB1 haplotypes were observed with a frequency ≤ 1.0%. The three most frequent haplotypes were HLA‐A1, B8, DRB1*0301, DQA1*0501, DQB1*0201; HLA‐A3, B7, DRB1*1501, DQA1*0102, DQB1*0602 and HLA‐A24, B44, DRB1*0701, DQA1*0201, DQB1*02. These results should provide a useful reference for further anthropological studies, transplantation studies, and studies of associations between HLA and diseases.  相似文献   

20.
The association of narcolepsy with HLA-DQB1*0602 is established in Japanese, African-Americans, European, and North American Caucasians. We examined DRB1, DRB3, DRB4, DRB5, DQA1, and DQB1 in 163 patients with centrally mediated daytime sleepiness (100 with narcolepsy) and 211 Korean controls. In this population, the DQB1*0602 association was always evident in the context of the DRB1*1501-DQA1*0102-DQB1*0602 haplotype. The DQB1*0602 association was highest in cases with hypocretin deficiency (100% vs 13% in controls), most of which had narcolepsy-cataplexy (81%). A weaker DQB1*0602 (45%) association was present in cases without cataplexy. No human leukocyte antigen (HLA) association was present in idiopathic hypersomnia or in cases with normal cerebrospinal fluid (CSF) hypocretin-1. As in other populations, DQB1*0602 homozygosity increased risk in cases with cataplexy and/or hypocretin deficiency (odds ratio = 2.0 vs heterozygotes). Non-DQB1*0602 allelic effects were also observed but could not be interpreted in the context of DQB1*0602 overabundance and linkage disequilibrium. We therefore next analyzed compound heterozygote effects in 77 subjects with either hypocretin deficiency or cataplexy and one copy of DRB1*1501-DQA1*0102-DQB1*0602, a sample constructed to maximize etiologic homogeneity. In this analysis, we found additional predisposing effects of DQB1*0301 and protective effects for DQA1*0103-DQB1*0601. Unexpectedly, the predisposing effects of DQB1*0301 were present in the context of various DQA1-bearing haplotypes. A predisposing effect of DQA1*0303 was also suggested. These results indicate a remarkable consistency in the complex HLA association present in narcolepsy across multiple ethnic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号