首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traumatic brain injury (TBI) is induced by mechanical forces which initiate a cascade of secondary injury processes, including inflammation. Therapies which resolve the inflammatory response may promote neural repair without exacerbating the primary injury. Specific derivatives of omega-3 fatty acids loosely grouped as specialized pro-resolving lipid mediators (SPMs) and termed resolvins promote the active resolution of inflammation. In the current study, we investigate the effect of two resolvin molecules, RvE1 and AT-RvD1, on post-traumatic sleep and functional outcome following diffuse TBI through modulation of the inflammatory response.Adult, male C57BL/6 mice were injured using a midline fluid percussion injury (mFPI) model (6–10 min righting reflex time for brain-injured mice). Experimental groups included mFPI administered RvE1 (100 ng daily), AT-RvD1 (100 ng daily), or vehicle (sterile saline) and counterbalanced with uninjured sham mice. Resolvins or saline were administered daily for seven consecutive days beginning 3 days prior to TBI to evaluate proof-of-principle to improve outcome. Immediately following diffuse TBI, post-traumatic sleep was recorded for 24 h post-injury. For days 1–7 post-injury, motor outcome was assessed by rotarod. Cognitive function was measured at 6 days post-injury using novel object recognition (NOR). At 7 days post-injury, microglial activation was quantified using immunohistochemistry for Iba-1.In the diffuse brain-injured mouse, AT-RvD1 treatment, but not RvE1, mitigated motor and cognitive deficits. RvE1 treatment significantly increased post-traumatic sleep in brain-injured mice compared to all other groups. RvE1 treated mice displayed a higher proportion of ramified microglia and lower proportion of activated rod microglia in the cortex compared to saline or AT-RvD1 treated brain-injured mice. Thus, RvE1 treatment modulated post-traumatic sleep and the inflammatory response to TBI, albeit independently of improvement in motor and cognitive outcome as seen in AT-RvD1-treated mice. This suggests AT-RvD1 may impart functional benefit through mechanisms other than resolution of inflammation alone.  相似文献   

2.
Park CK  Xu ZZ  Liu T  Lü N  Serhan CN  Ji RR 《The Journal of neuroscience》2011,31(50):18433-18438
Inflammatory pain such as arthritic pain is typically treated with opioids and cyclo-oxygenase-2 inhibitors with well known side effects. Transient receptor potential subtype vanilloid 1 (TRPV1) and TRP ankyryn 1 (TRPA1) contribute importantly to the genesis of inflammatory pain via both peripheral mechanisms (peripheral sensitization) and spinal cord mechanisms (central sensitization). Although these TRP channels have been intensively studied, little is known about their endogenous inhibitors. Recent studies have demonstrated that the endogenous lipid mediators resolvins (RvE1 and RvD1), derived from ω-3 unsaturated fatty acids, are potent inhibitors for inflammatory pain, without noticeable side effects. However, the molecular mechanisms underlying resolvins' distinct analgesic actions in mice are unclear. RvD2 is a novel family member of resolvins. Here we report that RvD2 is a remarkably potent inhibitor of TRPV1 (IC(50) = 0.1 nm) and TRPA1 (IC(50) = 2 nm) in primary sensory neurons, whereas RvE1 and RvD1 selectively inhibited TRPV1 (IC(50) = 1 nm) and TRPA1 (IC(50) = 9 nm), respectively. Accordingly, RvD2, RvE1, and RvD1 differentially regulated TRPV1 and TRPA1 agonist-elicited acute pain and spinal cord synaptic plasticity [spontaneous EPSC (sEPSC) frequency increase]. RvD2 also abolished inflammation-induced sEPSC increases (frequency and amplitude), without affecting basal synaptic transmission. Intrathecal administration of RvD2 at very low doses (0.01-1 ng) prevented formalin-induced spontaneous pain. Intrathecal RvD2 also reversed adjuvant-induced inflammatory pain without altering baseline pain and motor function. Finally, intrathecal RvD2 reversed C-fiber stimulation-evoked long-term potentiation in the spinal cord. Our findings suggest distinct roles of resolvins in regulating TRP channels and identify RvD2 as a potent endogenous inhibitor for TRPV1/TRPA1 and inflammatory pain.  相似文献   

3.
Sustained inflammation in the brain together with microglia activation can lead to neuronal damage. Hence limiting brain inflammation and activation of microglia is a real therapeutic strategy for inflammatory disease. Resolvin D1 (RvD1) and resolvin E1 (RvE1) derived from n-3 long chain polyunsaturated fatty acids are promising therapeutic compounds since they actively turn off the systemic inflammatory response. We thus evaluated the anti-inflammatory activities of RvD1 and RvE1 in microglia cells in vitro. BV2 cells were pre-incubated with RvD1 or RvE1 before lipopolysaccharide (LPS) treatment. RvD1 and RvE1 both decreased LPS-induced proinflammatory cytokines (TNF-α, IL-6 and IL-1β) gene expression, suggesting their proresolutive activity in microglia. However, the mechanisms involved are distinct as RvE1 regulates NFκB signaling pathway and RvD1 regulates miRNAs expression. Overall, our findings support that pro-resolving lipids are involved in the resolution of brain inflammation and can be considered as promising therapeutic agents for brain inflammation.  相似文献   

4.
Lipid mediators are important endogenous regulators derived from enzymatic degradation of glycerophospholipids, sphingolipids, and cholesterol by phospholipases, sphingomyelinases, and cytochrome P450 hydroxylases, respectively. In neural cells, lipid mediators are associated with proliferation, differentiation, oxidative stress, inflammation, and apoptosis. A major group of lipid mediators, which originates from the enzymatic oxidation of arachidonic acid, is called eicosanoids (i.e., prostaglandins, leukotrienes, thromboxanes, and lipoxins). The corresponding lipid mediators of docosahexaenoic acid metabolism are named as docosanoids. They include resolvins, protectins (neuroprotectins), and maresins. Docosanoids produce antioxidant, anti-inflammatory, and antiapoptotic effects in brain tissue. Other glycerophospholipid-derived lipid mediators are platelet activating factor, lysophosphatidic acid, and endocannabinoids. Degradation of sphingolipids also results in the generation of sphingolipid-derived lipid mediators, such as ceramide, ceramide 1-phosphate, sphingosine, and sphingosine 1-phosphate. These mediators are involved in differentiation, growth, cell migration, and apoptosis. Similarly, cholesterol-derived lipid mediators, hydroxycholesterol, produce apoptosis. Abnormal metabolism of lipid mediators may be closely associated with pathogenesis of Alzheimer's disease.  相似文献   

5.
We have identified a mechanism, mediated by the epsilon isozyme of protein kinase C (PKCepsilon) in peripheral neurons, which may have a role in chronic inflammatory pain. Acute inflammation, produced by carrageenan injection in the rat hindpaw, produced mechanical hyperalgesia that resolved by 72 hr. However, for up to 3 weeks after carrageenan, injection of the inflammatory mediators prostaglandin E(2) or 5-hydroxytryptamine or of an adenosine A(2) agonist into the same site induced a markedly prolonged hyperalgesia (>24 hr compared with 5 hr or less in control rats not pretreated with carrageenan). A nonselective inhibitor of several PKC isozymes and a selective PKCepsilon inhibitor antagonized this prolonged hyperalgesic response equally. Acute carrageenan hyperalgesia could be inhibited by PKA or PKG antagonists. However, these antagonists did not inhibit development of the hypersensitivity to inflammatory mediators. Our findings indicate that different second messenger pathways underlie acute and prolonged inflammatory pain.  相似文献   

6.
Neural membranes are composed of glycerophospholipids, sphingolipids, cholesterol and proteins. The distribution of these lipids within the neural membrane is not random but organized. Neural membranes contain lipid rafts or microdomains that are enriched in sphingolipids and cholesterol. These rafts act as platforms for the generation of glycerophospholipid-, sphingolipid-, and cholesterol-derived second messengers, lipid mediators that are necessary for normal cellular function. Glycerophospholipid-derived lipid mediators include eicosanoids, docosanoids, lipoxins, and platelet-activating factor. Sphingolipid-derived lipid mediators include ceramides, ceramide 1-phosphates, and sphingosine 1-phosphate. Cholesterol-derived lipid mediators include 24-hydroxycholesterol, 25-hydroxycholesterol, and 7-ketocholesterol. Abnormal signal transduction processes and enhanced production of lipid mediators cause oxidative stress and inflammation. These processes are closely associated with the pathogenesis of acute neural trauma (stroke, spinal cord injury, and head injury) and neurodegenerative diseases such as Alzheimer disease. Statins, the HMG-CoA reductase inhibitors, are effective lipid lowering agents that significantly reduce risk for cardiovascular and cerebrovascular diseases. Beneficial effects of statins in neurological diseases are due to their anti-excitotoxic, antioxidant, and anti-inflammatory properties. Fish oil omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, have similar anti-excitotoxic, antioxidant and anti-inflammatory effects in brain tissue. Thus the lipid mediators, resolvins, protectins, and neuroprotectins, derived from eicosapentaenoic acid and docosahexaenoic acid retard neuroinflammation, oxidative stress, and apoptotic cell death in brain tissue. Like statins, ingredients of fish oil inhibit generation of beta-amyloid and provide protection from oxidative stress and inflammatory processes. Collective evidence suggests that antioxidant, anti-inflammatory, and anti-apoptotic properties of statins and fish oil contribute to the clinical efficacy of treating neurological disorders with statins and fish oil. We speculate that there is an overlap between neurochemical events associated with neural cell injury in stroke and neurodegenerative diseases. This commentary compares the neurochemical effects of statins with those of fish oil.  相似文献   

7.
Immune and inflammatory mechanisms in neuropathic pain   总被引:22,自引:0,他引:22  
Tissue damage, inflammation or injury of the nervous system may result in chronic neuropathic pain characterised by increased sensitivity to painful stimuli (hyperalgesia), the perception of innocuous stimuli as painful (allodynia) and spontaneous pain. Neuropathic pain has been described in about 1% of the US population, is often severely debilitating and largely resistant to treatment. Animal models of peripheral neuropathic pain are now available in which the mechanisms underlying hyperalgesia and allodynia due to nerve injury or nerve inflammation can be analysed. Recently, it has become clear that inflammatory and immune mechanisms both in the periphery and the central nervous system play an important role in neuropathic pain. Infiltration of inflammatory cells, as well as activation of resident immune cells in response to nervous system damage, leads to subsequent production and secretion of various inflammatory mediators. These mediators promote neuroimmune activation and can sensitise primary afferent neurones and contribute to pain hypersensitivity. Inflammatory cells such as mast cells, neutrophils, macrophages and T lymphocytes have all been implicated, as have immune-like glial cells such as microglia and astrocytes. In addition, the immune response plays an important role in demyelinating neuropathies such as multiple sclerosis (MS), in which pain is a common symptom, and an animal model of MS-related pain has recently been demonstrated. Here, we will briefly review some of the milestones in research that have led to an increased awareness of the contribution of immune and inflammatory systems to neuropathic pain and then review in more detail the role of immune cells and inflammatory mediators.  相似文献   

8.
Recent studies indicate that inflammatory events induced by nerve injury play a central role in the pathogenesis of neuropathic pain. These involve inflammatory cells (eg, macrophages), the production of molecules that mediate inflammation (cytokines/interleukins), and the production of nerve growth factor (NGF). However, in many instances, neuropathic pain is associated with nerve inflammation, neuritis, in the absence of nerve injury. Studies on the role of cytokines in neuropathic pain have only recently begun, mostly in model systems that involve nerve injury. Little is known about the role of inflammation in neuropathic pain in the absence of nerve injury. We developed an animal model to study neuropathic pain and underlying inflammatory mechanisms in a system in which neuropathic pain is induced by nerve inflammation in the absence of injury, neuritis. Neuritis is provoked by local application of complete Freund's adjuvant (CFA) on the sciatic nerve. The following events in the course of experimental neuritis are described: 1) the time course of neuropathic pain, 2) the structural changes in axons and myelin, and 3) the spontaneous electrical activity (peripheral sensitization). It is conceivable that biochemical and physiologic changes (inflammatory mediators) that occur along the "pain pathway" (nociceptors, peripheral nerve, dorsal root ganglion ), dorsal root, neurons in the spinal cord) may sensitize one or all these sites along the pain pathway and hence lead to chronic pain).  相似文献   

9.
Tissue injury, pathogen infection, and diseases are often accompanied by inflammation to release mediators that sensitize nociceptors and further recruit immune cells, which can lead to chronic hyperalgesia and inflammation. Tissue acidosis, occurring at the inflammatory site, is a major factor contributing to pain and hyperalgesia. The receptor G2 accumulation (G2A), expressed in neurons and immune cells, responds to protons or oxidized free fatty acids such as 9-hydroxyoctadecadienoic acid produced by injured cells or oxidative stresses. We previously found increased G2A expression in mouse dorsal root ganglia (DRG) at 90 min after complete Freund’s adjuvant (CFA)-induced inflammatory pain, but whether G2A is involved in the inflammation or hyperalgesia remained unclear. In this study, we overexpressed or knocked-down G2A gene expression in DRG to explore the roles of G2A. G2A overexpression reduced the infiltration of acute immune cells (granulocytes) and attenuated hyperalgesia at 90 to 240 min after CFA injection. G2A knockdown increased the number of immune cells before CFA injection and prolonged the inflammatory hyperalgesia after CFA injection. G2A may serve as a threshold regulator in neurons to attenuate the initial nociceptive and inflammatory signals, modulating the chronic state of hyperalgesia.  相似文献   

10.
The vanilloid receptor (TRPV1) is a member of the transient receptor potential family of ion channels that is highly expressed in nociceptive primary afferent sensory neurons. TRPV1 is a voltage-dependent cation channel, which can be activated at physiological membrane potentials by stimuli including noxious heat (>42 degrees), capsaicin, hydrogen ions and anandamide. Activation of TRPV1 results in release of neurotransmitters from peripheral and central nerve terminals, resulting in pain and inflammation. Endogenous inflammatory mediators also promote activation of TRPV1. Studies in TRPV1 null mice reveal that responses to noxious heat stimuli are normal but the development of thermal hyperalgesia is abolished. Several TRPV1 antagonists have recently been developed and reported to alleviate or reverse mechanical and thermal hyperalgesia associated with inflammatory pain. This review will examine the development of patented TRPV1 antagonists as a potential clinical treatment for the alleviation of pain associated with hyperalgesia and inflammation.  相似文献   

11.
Hyperalgesia onset latency suggests a hierarchy of action   总被引:5,自引:0,他引:5  
Hyperalgesia onset latencies of inflammatory mediators were quantified by measuring the threshold of the nociceptive flexion reflex in the rat at 1 min intervals after intradermal injection. Prostaglandin E2 and 8(R), 15(S)-dihydroxyicosa-(5E,9,11,13Z)-tetraenoic acid induced hyperalgesia with short onset latencies, compatible with a direct action on primary afferent nociceptors. Bradykinin, norepinephrine and leukotriene B4 induced hyperalgesia with a significant delay in onset, compatible with their known indirect mechanisms of producing hyperalgesia. We propose that use of this approach, rapid frequent measurement of nociceptive threshold, can be used to determine the hierarchy of action of mediators in hyperalgesic mechanisms.  相似文献   

12.
Chronic pain and depression are conditions that are highly comorbid and present with overlapping clinical presentations and common pathological biological pathways in neuroinflammation, both of which can be reversed by the use of electroacupuncture (EA) and omega-3 polyunsaturated fatty acids (PUFAs). Transient receptor potential V1 (TRPV1), a Ca2+ permeable ion channel that can be activated by inflammation, is reported to be involved in the development of chronic pain and depression. Here, we investigated the role of TRPV1 and its related pathways in the murine models of cold stress-induced nociception and depression. Female C57BL/6 wild type and TRPV1 knockout mice were subjected to intermittent cold-stress (ICS) to initiate depressive-like and chronic pain behaviors, respectively. The Bio-Plex ELISA technique was utilized to analyze inflammatory mediators in mice plasma. The western blot and immunostaining techniques were used to analyze the presence of TRPV1 and related molecules in the medial prefrontal cortex (mPFC), hippocampus, periaqueductal gray (PAG), and amygdala. The ICS model significantly induced chronic pain (mechanical: 2.55 ± 0.31 g; thermal: 8.12 ± 0.87 s) and depressive-like behaviors (10.95 ± 0.95% in the center zone; 53.14 ± 4.01% in immobility). The treatment efficacy of EA, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) were observed in both nociceptive and depression test results. Inflammatory mediators were increased after ICS induction and further reversed by the use of EA, EPA and DHA. A majority of TRPV1 proteins and related molecules were significantly decreased in the mPFC, hippocampus and PAG of mice. This decrease can be reversed by the use of EA, EPA and DHA. In contrast, these molecules were increased in the mice’s amygdala, and were attenuated by the use of EA, EPA and DHA. Our findings indicate that these inflammatory mediators can regulate the TRPV1 signaling pathway and initiate new potential therapeutic targets for chronic pain and depression treatment.  相似文献   

13.
Oil of mustard (OM), administered intracolonically, produces severe colitis in mice that is maximized within 3 days. The purpose of this study was to characterize the cytokine response, and to establish expression patterns of enteric neuronal mediators and neuronal receptors affected during active colitis. We measured the changes in the mRNA levels for neuronal receptors and mediators by real-time PCR, and cytokine and chemokine protein levels in the affected tissue. Significant increases in neuronal receptors, such as transient receptor potential A1 (TRPA1), cannabinoid type 1 receptor, neurokinin 1 receptor (NK1R) and delta-opioid receptor; prokineticin-1 receptor; and soluble mediators, such as prodynorphin, proenkephalin1, NK1, prokineticin-1 and secretory leukocyte protease inhibitor, occurred. Significant increases in cytokines, such as interleukin (IL)-1beta, IL-6 and granulocyte macrophage colony stimulating factor (GM-CSF), and in chemokines, such as macrophage chemotactic protein 1 (MCP-1), macrophage inflammatory protein 1 (MIP-1alpha) and Kupffer cell derived chemokine (KC), were detected, with no changes in T-cell-derived cytokines. Furthermore, immunodeficient C57Bl/6 RAG2(-/-) mice exhibited OM colitis of equal severity as seen in wt C57Bl/6 and CD-1 mice. The results demonstrate rapidly increased levels of mRNA for neuronal receptors and soluble mediators associated with pain and inflammation, and increases in cytokines associated with macrophage and neutrophil activation and recruitment. Collectively, the data support a neurogenic component in OM colitis coupled with a myeloid cell-related, T- and B-cell-independent inflammatory component.  相似文献   

14.
Although the contribution of cyclooxygenase-2 (COX-2) to peripheral inflammation is well documented, little is known about its role in brain inflammation. For this purpose we studied COX-2 expression in the mouse brain following ionizing radiation in vivo, as well as in murine glial cell cultures in vitro. The possible role of COX-2 in modulating brain inflammation was examined utilizing NS-398, a COX-2 selective inhibitor. Our results indicate that COX-2 is significantly induced in astrocyte and microglial cultures by radiation injury as well as in brain. Increased levels of prostaglandin E(2) in irradiated brain were reduced by NS-398. Moreover, NS-398 administration significantly attenuated levels of induction for the majority of inflammatory mediators examined, including TNFalpha, IL-1beta, IL-6, iNOS, ICAM-1, and MMP-9. In contrast, the chemokines MIP-2 and MCP-1 showed enhanced levels of induction following NS-398 administration. These results indicate that COX-2 modulates the inflammatory response in brain following radiation injury, and suggest the use of COX-2 selective inhibitors for the management of CNS inflammation.  相似文献   

15.
Application of glutamate to skin evokes pain-related behaviors [S.M. Carlton, G.L. Hargett, R.E. Coggeshall, Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin, Neurosci. Lett., 197 (1995) 25–28; D.L. Jackson, C.B. Graff, J.D. Richardson, K.M. Hargreaves, Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats, Eur. J. Pharmacol., 284 (1995) 321–325.] and peripherally-administered glutamate antagonists can prevent the nociception produced by inflammation [E.M. Davidson, R.E. Coggeshall, S.M. Carlton, Peripheral NMDA and non-NMDA glutamate receptors contribute to nociceptive behaviors in the rat formalin test, NeuroReport, 8 (1997) 941–946; Jackson et al., 1995.] In this study, the concentrations of glutamate and aspartate in the plantar of the rat hindpaws were measured before and after the subcutaneous administration of formalin. Increases in glutamate and aspartate concentrations were observed on the ipsilateral side, but not on the contralateral side, to the injection. This shows that nociception and inflammation caused by formalin injection induces the release of peripheral glutamate and aspartate, which would contribute to nociception and inflammatory pain.  相似文献   

16.
Park CK  Lü N  Xu ZZ  Liu T  Serhan CN  Ji RR 《The Journal of neuroscience》2011,31(42):15072-15085
Mechanisms of inflammatory pain are not fully understood. We investigated the role of TRPV1 (transient receptor potential subtype V1) and TNF-α, two critical mediators for inflammatory pain, in regulating spinal cord synaptic transmission. We found in mice lacking Trpv1 the frequency but not the amplitude of spontaneous EPSCs (sEPSCs) in lamina II neurons of spinal cord slices is reduced. Further, C-fiber-induced spinal long-term potentiation (LTP) in vivo is abolished in Trpv1 knock-out mice. TNF-α also increases sEPSC frequency but not amplitude in spinal outer lamina II (lamina IIo) neurons, and this increase is abolished in Trpv1 knock-out mice. Single-cell PCR analysis revealed that TNF-α-responding neurons in lamina IIo are exclusively excitatory (vGluT2(+)) neurons. Notably, neuroprotectin-1 (NPD1), an anti-inflammatory lipid mediator derived from ω-3 polyunsaturated fatty acid (docosahexaenoic acid), blocks TNF-α- and capsaicin-evoked sEPSC frequency increases but has no effect on basal synaptic transmission. Strikingly, NPD1 potently inhibits capsaicin-induced TRPV1 current (IC(50) = 0.4 nm) in dissociated dorsal root ganglion neurons, and this IC(50) is ≈ 500 times lower than that of AMG9810, a commonly used TRPV1 antagonist. NPD1 inhibition of TRPV1 is mediated by GPCRs, since the effects were blocked by pertussis toxin. In contrast, NPD1 had no effect on mustard oil-induced TRPA1 currents. Spinal injection of NPD1, at very low doses (0.1-10 ng), blocks spinal LTP and reduces TRPV1-dependent inflammatory pain, without affecting baseline pain. NPD1 also reduces TRPV1-independent but TNF-α-dependent pain hypersensitivity. Our findings demonstrate a novel role of NPD1 in regulating TRPV1/TNF-α-mediated spinal synaptic plasticity and identify NPD1 as a novel analgesic for treating inflammatory pain.  相似文献   

17.
The effects of intrathecal administration of prostaglandins on pain responses in conscious mice were evaluated by using hot plate and acetic acid writhing tests. Prostaglandin D2 (0.5-3 ng/mouse) had a hyperalgesic action on the response to a hot plate during a 3-60 min period after injection. Prostaglandin E2 showed a hyperalgesic effect at doses of 1 pg to 10 ng/mouse, but the effect lasted shorter (3-30 min) than that of prostaglandin D2. Similar results were obtained by acetic acid writhing tests. The hyperalgesic effect of prostaglandin D2 was blocked by simultaneous injection of a substance P antagonist (greater than or equal to 100 ng) but not by AH6809, a prostanoid EP1-receptor antagonist. Conversely, prostaglandin E2-induced hyperalgesia was blocked by AH6809 (greater than or equal to 500 ng) but not by the substance P antagonist. Prostaglandin F2 alpha had little effect on pain responses. These results demonstrate that both prostaglandin D2 and prostaglandin E2 exert hyperalgesia in the spinal cord, but in different ways.  相似文献   

18.
Background Mediators released in the mucosal milieu have been suggested to be involved in visceral hypersensitivity and abdominal pain in patients with irritable bowel syndrome (IBS). However, their impact on myenteric neurons remains unsettled. Methods Mucosal biopsies were obtained from the descending colon of patients with IBS and controls. Mucosal mast cells were identified immunohistochemically. The impact of spontaneously released mucosal mediators on guinea pig electrically stimulated longitudinal muscle myenteric plexus (LMMP) preparations was assessed in vitro by means of selective receptor antagonists and inhibitors. Key Results Patients with IBS showed an increased mast cell count compared with controls. Application of mucosal mediators of IBS to LMMPs potentiated cholinergic twitch contractions, an effect directly correlated with mast cell counts. Enhanced contractions were inhibited by 50.3% with the prostaglandin D2 antagonist BW A868C, by 31.3% and 39% with the TRPV1 antagonists capsazepine and HC‐030031, respectively, and by 60.5% with purinergic P2X antagonist pyridoxalphosphate‐6‐azophenyl‐2′,4′‐disulfonic acid. Conversely, the serotonin1‐4, histamine1‐3, tachykinin1‐3 receptor blockade, and serine protease inhibition had no significant effect. Conclusions & Inferences Colonic mucosal mediators from patients with IBS excite myenteric cholinergic motor neurons. These effects were correlated with mast cell counts and mediated by activation of prostanoid receptors, TRPV1, and P2X receptors. These results support the role of mucosal inflammatory mediators and mast cell activation in altered motor function of IBS.  相似文献   

19.
Spinal cord injury (SCI) induces a glial response in which astrocytes become activated and produce inflammatory mediators. The molecular basis for regulation of glial-innate immune responses remains poorly understood. Here, we examined the activation of retinoic acid-inducible gene (RIG)-like receptors (RLRs) and their involvement in regulating inflammation after SCI. We show that astrocytes express two intracellular RLRs: RIG-I and melanoma differentiation-associated gene 5. SCI and stretch injury of cultured astrocytes stimulated RLR signaling as determined by phosphorylation of interferon regulatory factor 3 (IRF3) leading to production of type I interferons (IFNs). RLR signaling stimulation with synthetic ribonucleic acid resulted in RLR activation, phosphorylation of IRF3, and increased expression of glial fibrillary acidic protein (GFAP) and vimentin, two hallmarks of reactive astrocytes. Moreover, mitochondrial E3 ubiquitin protein ligase 1, an RLR inhibitor, decreased production of GFAP and vimentin after RIG-I signaling stimulation. Our findings identify a role for RLR signaling and type I IFN in regulating astrocyte innate immune responses after SCI.  相似文献   

20.
Sheng WS  Hu S  Min X  Cabral GA  Lokensgard JR  Peterson PK 《Glia》2005,49(2):211-219
Activated glial cells have been implicated in the neuropathogenesis of many infectious and inflammatory diseases of the brain. A number of inflammatory mediators have been proposed to play a role in glial cell-related brain damage; e.g., free radicals such as nitric oxide (NO), cytokines, and chemokines. Our laboratory has been interested in the effect of psychoactive drugs and their derivatives on the production of these mediators. Cannabinoids have been shown to possess immunomodulatory as well as psychoactive properties. We previously have shown that interleukin (IL)-1beta-stimulated human astrocytes, but not microglia, produce NO. In this study, we investigated the effects of the synthetic cannabinoid WIN55,212-2 on the production of several key inflammatory mediators by human fetal astrocytes activated by IL-1beta. Expression of the cannabinoid receptors CB1 and CB2 was detected on human astrocytes. WIN55,212-2 (10(-5) M) potently inhibited inducible NO synthase (iNOS) and corresponding NO production by IL-1beta-stimulated astrocytes. The CB1 and CB2 receptor-specific antagonists SR141716A and SR144528, respectively, partially blocked this suppressive effect. In addition, treatment of astrocytes with WIN55,212-2 downregulated in a concentration-dependent manner IL-1beta-induced tumor necrosis factor (TNF)-alpha release. Treatment with WIN55,212-2 also inhibited production of the chemokines CXCL10, CCL2 and CCL5 by IL-1beta-activated astrocytes. These findings indicate that WIN55,212-2 inhibits the production of inflammatory mediators by IL-1beta-stimulated human astrocytes and suggest that comparable agents may have therapeutic potential for the management of brain inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号