首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Congenital disorder of Glycosylation type Ia is an autosomal recessive disorder, characterized by a central nervous system dysfunction and multiorgan failure associated with defective N-glycosylation and phosphomannomutase (PMM) deficiency related to mutations in the PMM2 gene (mRNA U85773.1, gene ID 5373). More than 75 different mutations have been previously described. In our study, 38 different mutations were found in 52 French families with CDG-Ia. Eleven mutations had not been previously published in CDG-Ia patients: eight missense and three splice mutations. We studied the PMM activity of eight novel recombinant mutant proteins in an E. coli expression system, comparing them with the wild type protein, c.422 G>A (R141H), and c.415 G>A (E139K) mutant proteins. We also studied the previously described c.590 C>A (E197A) found on the same allele as c.394 A>T (I132F). All mutant proteins studied except E197A had decreased activity and/or were thermolabile, and were pathogenic mutations. Haplotype studies revealed a founder effect for E139K mutation, only described in France and found in seven CDG-Ia families (7.6%). In contrast, at least two different haplotypes were observed for the R141H mutation in France, studied in 23 families. The R141H seems to be a combination of the "old" R141H mutation found all over Europe and a second "French" R141H, and could be substantially older than E139K.  相似文献   

2.
We screened 11 unrelated French patients with congenital disorders of glycosylation (CDG) Ia for PMM2 mutations. Twenty one missense mutations on the 22 chromosomes (95%) including four novel mutations were identified: C9Y (G26A) in exon 1, L32R (TA95GC) in exon 2, and T226S (C677G) and C241S (G722C) in exon 8. We studied the PMM activity of these four novel mutant proteins and of the R141H mutant protein in an E coli expression system. The T226S, C9Y, L32R, and C241S mutant proteins have decreased specific activity (23 to 41% of normal), are all more or less thermolabile, and R141H has no detectable activity. Our results indicate that the new mutations identified here are less severe than the inactive R141H mutant protein, conferring residual PMM activity compatible with life.


Keywords: CDG; phosphomannomutase; PMM2 mutations  相似文献   

3.
We have identified the PMM2 genotypes of 22 unrelated Danish patients with carbohydrate-deficient glycoprotein syndrome type 1A: R141H/F119L (18), R141H/C192G (1), F119L/F119L (1), F119L/G117R (1) and D223E/T237R (1). The lack of patients homozygous for R141H is statistically highly significant, but unexplained. In order to investigate the effect of PMM2 mutations on phosphomannomutase (PMM2) activity, PMM2-cDNA was cloned into a pET3a vector. Following introduction of mutations into PMM2-cDNA by site-specific mutagenesis, wild type and mutant PMM2-cDNA were expressed in E. coli Bl21(DE3) cells, and the activity of PMM2 was determined by an enzymatic assay using mannose 1-phosphate as substrate. Recombinant R141H, G117R, and T237R PMM2 had no detectable catalytic activity, and the F119L PMM2 had 25% of the activity of the wild type. The activity of the C192G and D223E PMM2 was in the normal range, but the affinity for their substrate was lower, and the proteins were more sensitive to increased temperatures. Each patient has at least one mutation which retains residual PMM2 activity. Our results support the hypotheses that a genotype conveying residual PMM2 catalytic activity is required for survival, and that homozygosity for R141H impairs PMM2 to a degree incompatible with life.  相似文献   

4.
5.
We describe a novel missense mutation (Aspartic acid to Asparagine, p.D419N (g.1371G>A, c.1255G>A) within exon 9 of SH3BP2 in a patient with cherubism, an autosomal dominant syndrome characterized by excessive osteoclastic bone resorption of the jaw. Two siblings and the father were carriers but lacked phenotypic features. Transient expression of p.D419N (c.1255G>A), as well as three previously described exon 9 mutations from cherubism patients (p.R415Q (c.1244G>A), p.D420E (c.1259G>A), and p.P418R (c.1253C>G)) increased activity of NFAT (nuclear factor of activated T-cells), an osteoclastogenic mediator, indicating that cherubism results from gain of function mutations in SH3BP2.  相似文献   

6.
7.
A mutant of murine cytomegalovirus (MCMV), tsm5, which is temperature-sensitive for replication in murine embryo fibroblasts at 40°C, failed to replicate to detectable levels in mice. A total of 18 non-synonymous mutations have been identified in tsm5. In a previous study, a mutation (C890Y) identified in the M70 primase gene, when introduced into the wt M70 primase, resulted in a mutant with reduced viral replication at 40°C in vitro and which was severely attenuated in vivo. Five other previously identified mutations may also contribute to the tsm5 phenotype: (1) an A658S mutation in a protein expressed by the M27 ORF; (2) a V54I mutation in M36; (3) a Y565* mutation in m139; (4) a V195M mutation in m141; and (5) an M232I mutation in m143. In the present study, the above-mentioned mutations were introduced individually (M27, M36, m139, m141, m143) or together (M27/M36) into the MCMV K181 (Perth) variant bacterial artificial chromosome (BAC) using RecE/T homologous recombination. Growth in culture revealed that, apart from the double mutant (M27 and M36) and the m139 mutant, the introduced mutations in the above-mentioned genes did not show a temperature-sensitive phenotype in MEF or Raw 264.7 macrophage cells compared to their revertants or the wt virus. In contrast, replication of the M27/M36 double mutant was drastically reduced in MEFs at 40°C and in macrophages at 37°C. Replication of the m139 mutant was reduced in MEF cells at 40°C but not in macrophages. Thus, at least three further mutations contribute to the tsm5 phenotype.  相似文献   

8.
Gaucher disease, the most prevalent sphingolipidosis, is caused by the deficient activity of acid beta-glucosidase, mainly due to mutations in the GBA gene. Over 200 mutations have been identified worldwide, more than 25 of which were in Spanish patients. In order to demonstrate causality for Gaucher disease, some of them: c.662C>T (p.P182L), c.680A>G (p.N188S), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1093G>A (p.E326K), c.1289C>T (p.P391L), c.1292A>T (p.N392I), c.1322T>C (p.I402T), and the double mutants [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), were expressed in Sf9 cells using a baculovirus expression system. Other well-established Gaucher disease mutations, namely c.1226A>G (p.N370S), c.1342G>C (p.D409H), and c.1448T>C (p.L444P), were also expressed for comparison. The levels of residual acid beta-glucosidase activity of the mutant enzymes produced by the cDNAs carrying alleles c.662C>T (p.P182L), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1289C>T (p.P391L), and c.1292A>T (p.N392I) were negligible. The c.1226A>G (p.N370S), c.1322T>C (p.I402T), c.1342G>C (p.D409H), c.1448T>C (p.L444P), and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]) alleles produced enzymes with levels ranging from 6 to 14% of the wild-type. The three remaining alleles, c.680A>G (p.N188S), c.1093G>A (p.E326K), and [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]), showed higher activity (66.6, 42.7, and 23.2%, respectively). Expression studies revealed that the c.1093G>A (p.E326K) change, which was never found alone in a Gaucher disease-causing allele, when found in a double mutant such as [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), decreases activity compared to the activity found for the other mutation alone. These results suggest that c.1093G>A (p.E326K) should be considered a "modifier variant" rather than a neutral polymorphism, as previously considered. Mutation c.680A>G (p.N188S), which produces a mutant enzyme with the highest level of activity, is probably a very mild mutation or another "modifier variant."  相似文献   

9.
Papillon Lefèvre syndrome (PLS) is an autosomal recessive disorder characterized by palmoplantar hyperkeratosis and severe periodontitis. The disease is caused by mutations in the cathepsin C gene (CTSC) that maps to chromosome 11q14. CTSC gene mutations associated with PLS have been correlated with significantly decreased enzyme activity. Mutational analysis of the CTSC gene in three North American families segregating PLS identified four mutations, including a novel mutation p.G139R. All mutations were associated with dramatically reduced CTSC protease enzyme activity. A homozygous c.96T>G transversion resulting in a p.Y32X change was present in a Mexican PLS proband, while one Caucasian PLS proband was a compound heterozygote for the p.Y32X and p.R272P (c.815G>C) mutations. The other Caucasian PLS proband was a compound heterozygote for c.415G>A transition and c.1141delC mutations that resulted in a p.G139R and a frameshift and premature termination (p.L381fsX393), respectively. The c.415G>A was not present in more than 300 controls, suggesting it is not a CTSC polymorphism. Biochemical analysis demonstrated almost no detectable CTSC activity in leukocytes of all three probands. These mutations altered restriction enzyme sites in the highly conserved CTSC gene. Sequence analysis of CTSC exon 3 confirmed the previously reported p.T153I polymorphism in 4 of the 5 ethnically diverse populations studied.  相似文献   

10.
Carbohydrate-deficient glycoprotein syndrome type IA (CDG IA) is an autosomal recessive disease characterized clinically by severe involvement of the central and peripheral nervous system, and biochemically by complex defects in carbohydrate residues in a number of serum glycoproteins. CDG IA is caused by mutations in the PMM2 gene located in chromosome region 16p13. In this study, 61 CDG type IA patients (122 chromosomes) were screened for mutations in the PMM2 gene using a combination of SSCP and sequence analysis. More than 95% of the mutations could be detected. All of them were missense mutations. Mutations 422G>A and 357C>A were strikingly more common in the material and comprised 58% of mutations detected. Of the 20 mutations found, 10 were not reported previously. Seven mutations, e.g. 26G>A (five alleles) and 548T>C (seven alleles), were found only in Scandinavian families. The most common genotype was 357C>A/422G>A (36%). Three patients were homozygous, 357C>A/357C>A (two cases), and 548T>C/548T>C (one case). No patients homozygous for the most common mutation 422G>A were detected. The different mutations were clustered e.g., in that most were located in exon 5 (five) and exon 8 (six), while no mutation was detected in exon 2. When the frequencies of each mutation were included, exon 5 comprised 61% (65 chromosomes) of the mutations; in Scandinavian patients the frequency of these mutations was 72%. Thus, analysis of exon five in these patients enables both reliable and time-saving first screening in prenatal diagnostic cases. This could be followed by a second step of additional strategies for the detection of other mutations.  相似文献   

11.
12.
Mitochondrial acetoacetyl-CoA thiolase (T2) deficiency is an inborn error of ketone body and isoleucine metabolism. We identified and characterized 6 mutations, DelE85, K124R, A127V, Q145E, G152A, and E345V in 5 Spanish T2-deficient patients. Transient expression of mutant cDNAs was done at 37 and at 30 degrees C. Expression of the Q145E mutant cDNA resulted in about 12.5% normal amount at 37 degrees C and it retained 15% residual T2, indicating that specific activity of Q145E mutant protein was almost normal. This mutation reduced the heat stability of T2 activity. Although no significant residual activity was detected in either the G152A and A127V substitution, mutant proteins were detected, at 12.5% the normal amount at 37 degrees C and one-half normal at 30 degrees C for A127V, and 25 % only at 30 degrees C for G152A. Mutant proteins with Q145E, G152A, or A127V accumulated at 30 degrees C expression were stable for 48 h at 37 degrees C after cycloheximide treatment. Expression of DelE85, K124R, and E345V cDNAs gave neither residual T2 protein nor T2 activity. We constructed an improved tertiary structural model of T2 based on the X-ray crystal structure of acetoacetyl-CoA thiolase of Zoogloea ramigera. On the basis of this model, K124, A127, and G152 are located near the active site, mutations of which might affect catalytic function whereas Q145E, De185E, and E345V are distant from the active site with mutants being expected to destabilize the tertiary structure, especially during protein folding and dimerization.  相似文献   

13.
Gaucher disease (GD) is the most frequent lysosomal glycolipid storage disorder due to an autosomal recessive deficiency of acid beta-glucosidase characterized by the accumulation of glucocerebroside. In this work we carried out the molecular analysis of the glucocerebrosidase gene (GBA) in 58 unrelated patients with GD type 1. We identified five novel genetic alterations: three missense changes c.187G>A (p.D63N), c.473T>G (p.I158S), c.689T>A (p.V230E), a gene-pseudogene recombinant allele and a non-pseudogene-derived complex allele [c.1379G>A;c.1469A>G] encoding [p.G460D;p.H490R]. All mutant alleles were present as compound heterozygotes in association with c.1226A>G (p.N409S), the most common mutation in GD1. The missense mutant proteins were expressed in vitro in COS-1 cells and analyzed by enzyme activity, protein processing and intracellular localization. Functional studies also included the c.662C>T (p.P221L) mutation recently reported in the Spanish GD population (Montfort et al., 2004). The missense mutant alleles retained an extremely low residual enzyme activity with respect to wild type; the complex allele expressed no activity. Processing of the mutant proteins was unaltered except for c.473T>G which was differently glycosylated due to the exposition of an additional glycosylation site. Immunofluorescence studies showed that protein trafficking into the lysosomes was unaffected in all cases. Finally, the characterization of the novel recombinant allele identified a crossover involving the GBA gene and pseudogene between intron 5 and exon 7.  相似文献   

14.
In this study, 14 CBS alleles from homocystinuric patients were expressed heterologously in E. coli and their enzyme activities were assayed in vitro. Additionally, mutant CBS proteins were visualized by Western blot from denaturing and non-denaturing polyacrylamide gels. The 14 mutations characterized were: p.R125W (c.373C>T), p.G148R (c.442G>A), p.M173V (c.517A>G), p.T191M (c.572C>T), p.A226T (c.676G>A), p.C275Y (c.824G>A), p.R336C (c.1006C>T), p.R336H (c.1007G>A), p.L338P (c.1013T>C), p.S349N (c.1046G>A), p.R379Q (c.1136G>A), p.L456P (c.1367T>C), p.G522fsX540 (c.1566delG), and p.R548Q (c.1643G>A). Eleven of the mutant alleles exhibited an activity lower than 4% of the wild-type protein. In contrast, mutations p.A226T and p.M173V presented 20% and 40% of the wild-type activity, respectively, whereas the activity of p.R548Q was up to 60% of the wild-type. This suggests that it is a new rare variant rather than a pathogenic mutation. Most of the mutated proteins exhibited a decreased signal in Western blot analyses. The non-denaturing PAGE revealed that the wild-type protein retained the capacity to form a multimeric quaternary structure, whereas in the mutations p.M173V, p.A226T, and p.G548Q, this structure grade was dramatically reduced and was completely absent in the rest of the mutations.  相似文献   

15.
Dihydropyrimidinase (DHP) is the second enzyme of the pyrimidine degradation pathway and it catalyses the ring opening of 5,6-dihydrouracil and 5,6-dihydrothymine to N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyric acid, respectively. To date, only nine individuals have been reported suffering from a complete DHP deficiency. We report two siblings presenting with strongly elevated levels of 5,6-dihydrouracil and 5,6-dihydrothymine in plasma, cerebrospinal fluid and urine. One of the siblings had a severe delay in speech development and white matter abnormalities, whereas the other one was free of symptoms. Analysis of the DHP gene (DPYS) showed that both patients were compound heterozygous for the missense mutation 1078T>C (W360R) in exon 6 and a novel missense mutation 1235G>T (R412M) in exon 7. Heterologous expression of the mutant enzymes in Escherichia coli showed that both missense mutations resulted in a mutant DHP enzyme without residual activity. Analysis of the crystal structure of eukaryotic DHP from the yeast Saccharomyces kluyveri and the slime mold Dictyostelium discoideum suggests that the W360R and R412M mutations lead to structural instability of the enzyme which could potentially impair the assembly of the tetramer.  相似文献   

16.
Galactokinase (GALK1) deficiency is an autosomal recessive disorder, which causes cataract formation in children not maintained on a lactose-free diet. Galactokinase deficiency results from mutation in the GALK1 gene mapped on 17q24. Since GK1 cDNA was cloned about 20 mutations (prevalently deletions and missense) have been reported to date. Most of these reported mutations are confined to single families, and only one of them, P28T, has been referred as the founder Romani mutation. In this paper we report two novel missense mutations in GALK1 gene, identified in two unrelated patients with galactokinase deficiency. One mutation, g.575G>A, substitutes a valine for a methionine at amino acid 32 (p.V32M), while the other mutation, g.2839G>A, results in the arginine to glutamine substitution p.R239Q (GenBank sequence L76927). Biochemical studies demonstrate that these mutations led to a drastic modification in GALK activity when individual mutant cDNAs were expressed in an E. coli system. These findings indicate the pathogeneticity of these mutations causing GALK deficiency.  相似文献   

17.
CNGA3 encodes the A-subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel, which is a crucial component of the phototransduction cascade in cone outer segments. Mutations in the CNGA3 gene have been associated with complete and incomplete forms of achromatopsia (ACHR), a congenital, autosomal recessively inherited retinal disorder characterized by lack of color discrimination, reduced visual acuity, nystagmus, and photophobia. Here we report the identification of three novel CNGA3 missense mutations in ACHR patients: c.682G>A (p.E228 K), c.1315C>T (p.R439W), and c.1405G>A (p.A469 T), and the detailed functional analyses of these new as well as five previously reported mutations (R283Q, T291R, F547L, G557R, and E590 K), in conjunction with clinical data of patients carrying these mutations, to establish genotype-phenotype correlations. The functional characterization of mutant CNGA3 channels was performed with calcium imaging and patch clamp recordings in a heterologous HEK293 cell expression system. Results were corroborated by immunostaining and colocalization experiments of the channel protein with the plasma membrane. Several mutations evoked pronounced alterations of the apparent cGMP sensitivity of mutant channels. These functional defects were fully or partially compensated by coexpressing the mutant CNGA3 subunit with the wild-type CNGB3 subunit for channels with the mutations R439W, A469 T, F547L, and E590 K. We could show that several mutant channels with agonist dose-response relationships similar to the wild-type exhibited severely impaired membrane targeting. In addition, this study presents the positive effect of reduced cell culture temperature on surface expression and functional performance of mutant CNG channels with protein folding or trafficking defects.  相似文献   

18.
Human plasma chitotriosidase (Chito) is a useful diagnostic and therapeutic biomarker for Type 1 Gaucher disease (GD). However, approximately 40% of Caucasians are heterozygous or homozygous for a common null mutation, c.1049_1072dup24 (dup24) in the chitotriosidase gene (chitinase 1, CHIT1), that complicates interpretation for heterozygotes and precludes use for null homozygotes. 320 Type 1 GD patients were screened for CHIT1 genotype and plasma Chito enzyme levels; 37% were heterozygous and 4% were homozygous for the CHIT1 dup24 allele. Four patients who had no or very low plasma Chito activities had wild-type (wt)/dup24 or wt/wt CHIT1 genotypes, suggesting the presence of other mutations. Sequencing their CHIT1 genes revealed three novel mutations: p.E74K (E74K), p.G102S (G102S), and a complex exon 10 lesion (c.[1060G>A; 1155G>A; 1156+5_1156+8delGTAA], p.[G354R; L385L; missplicing], designated "complex E/I-10"). The G102S mutation was common in Type 1 GD patients and controls ( approximately 30% of alleles). In contrast, the E74K mutation was rare, present only in three Type 1 GD patients ( approximately 1% of alleles), all of Ashkenazi Jewish (AJ) descent, but it was not found in normal controls. The complex E/I-10 mutation occurred in two Caribbean Hispanic/African Type 1 GD patients and was present in 0 to 6% of alleles among normal controls from different populations. In vitro expression demonstrated that the E74K and G102S alleles had approximately 51% and approximately 23% of wild-type Chito catalytic efficiency, respectively. Expression of the G354R allele alone or with the L385L silent substitution did not produce detectable Chito activity or protein. RNA studies indicated that the complex E/I-10 allele also caused missplicing. Recognition of these mutations, particularly G102S, will facilitate the use and interpretation of plasma Chito activities for disease diagnosis, estimating disease severity, and monitoring therapeutic efficacy in GD.  相似文献   

19.
一个先天性白内障家系缝隙连接蛋白基因新突变   总被引:1,自引:0,他引:1  
目的 鉴定一个中国常染色体显性遗传先天性白内障(autosomal dominant congenital cataract,ADCC)家系其致病与缝隙连接蛋白a3/a8(gap junction protein alpha3/alpha8,GJA3/GJA8)基因突变的关系.方法 对一个ADCC家系5名家系成员和100名正常健康人进行全面眼科检查.抽取外周血5 mL并提取基因组DNA.采用聚合酶链反应扩增GJA3/CJA8编码外显子及其侧翼内含子序列,纯化的PCR产物通过直接测序以筛查致病突变.结果 通过双向序列分析,发现GJA8基因第2外显子的第138位发生碱基G→A转换(c.138G》A,GGG→GGA),产生同义突变(G46G);第139个碱基因G→T颠换发生错义突变(c.139 G》T,GAT→TAT)导致第47位编码天门冬氨酸密码子突变为酪氨酸(D47Y),家系中非患者和100名对照者基因组序列均无此改变,而且生物信息检索显示GJAB基因第47位编码的天门冬氨酸具有高度的物种保守性.家系3例患者CJA3基因突变筛查未见任何碱基改变.结论 在一个中国人ADCC家系中发现GJAB基因新致病突变(D47Y).  相似文献   

20.
Mucopolysaccharidosis type VI (MPS VI), or Maroteaux-Lamy syndrome, is a lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-4-sulfatase (ARSB). Seven MPS VI patients were chosen for the initial clinical trial of enzyme replacement therapy. Direct sequencing of genomic DNA from these patients was used to identify ARSB mutations. Each individual exon of the ARSB gene was amplified by PCR and subsequently sequenced. Nine substitutions (c.289C>T [p.Q97X], c.629A>G [p.Y210C], c.707T>C [p.L236P], c.936G>T [p.W312C], c.944G>A [p.R315Q], c.962T>C [p.L321P], c.979C>T [p.R327X], c.1151G>A [p.S384N], and c.1450A>G [p.R484G]), two deletions (c.356_358delTAC [p.Y86del] and c.427delG), and one intronic mutation (c.1336+2T>G) were identified. A total of 7 out of the 12 mutations identified were novel (p.Y86del, p.Q97X, p.W312C, p.R327X, c.427delG, p.R484G, and c.1336+2T>G). Two of these novel mutations (p.Y86del and p.W312C) were expressed in Chinese hamster ovary cells and analyzed for residual ARSB activity and mutant ARSB protein. The two common polymorphisms c.1072G>A [p.V358M] and c.1126G>A [p.V376M] were identified among the patients, along with the silent mutation c.1191A>G. Cultured fibroblast ARSB mutant protein and residual activity were determined for each patient, and, together with genotype information, were used to predict the expected clinical severity of each MPS VI patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号