首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Young SHR and WKY rats were compared, first, concerning sodium (Na) appetite during 'rest', mild social stress and ACTH injections, second, concerning the diurnal patterns of water intake, urine output, mean arterial pressure (MAP) and heart rate (HR) while on various Na diets: 0.5 mmol Na(LNa), 5 or 12-13 mmol Na (CNa), 50 (HNa) or 120 mmol Na (vHNa) per 100 g food. Sodium appetite and water intake were about 50% higher in SHR than in WKY (4-4.5 vs 2.5-3 mmol Na per 100 g body wt day-1). It was modestly increased by both social stress and ACTH, and more so in WKY, thereby approaching that in SHR. Concerning the various Na diets and their influences, daytime resting MAP was modestly lowered in LNaSHR and slightly increased in vHNaSHR compared with CNaSHR but largely equal in all WKY groups. Food-water consumption was concentrated to the active night period, but even high Na-water intakes caused no signs of sustained hypervolaemia, because each intake bout was in both SHR and WKY eliminated by urine within 30-40 min. However, particularly the vHNa diet in SHR also increased the frequency of drinking, and each bout caused transient, evidently neurogenic MAP and HR increases which occurred too rapidly to be consequences of blood volume expansion. As a result, the diurnal MAP-HR patterns in SHR varied markedly with the Na diets, in vHNa group resulting in considerably raised average diurnal MAP levels even though resting daytime MAP was here nearly the same as in CNaSHR. These findings illustrate how largely continuous diurnal recordings are needed to judge correctly the relationships between, for example, Na intake, volume equilibrium and MAP. Finally, the relevance of these results in rats for also judging the control of Na balance in man is discussed.  相似文献   

2.
Spontaneously hypertensive rats (SHR) were given either 'low' (LNa; 0.5 mmol Na 100 g-1 food), 'control' (CNa; 12 mmol) or 'very high' (vHNa; 120 mmol) sodium diets from 5 to 13-14 weeks of age, to explore how these 240-fold variations in Na intake affected body weight, cardiac, renal and adrenal weights, overall water-electrolyte equilibrium and haemodynamic balance during rest, mental stress and blood loss. Body growth was retarded both in vHNa and LNa SHR presumably reflecting disturbed appetite due to the greatly altered dietary Na contents. Compared with CNa SHR, both cardiac and renal weights 100 g-1 body wt were slightly increased in vHNa and decreased in LNa SHR, with opposite changes of adrenal weights. Total body water, haematocrit and plasma Na-K levels were largely equal in the three groups. Furthermore, cardiac output (CO), stroke volume (SV) and central blood volume (CBV) did not differ significantly between groups; if anything, CO and SV were higher and CBV lower in vHNa and LNa SHR than in CNa SHR. However, while mean arterial pressure (MAP) was only marginally elevated in vHNa compared with CNa SHR, both MAP and total peripheral resistance (TPR) were lowered about 15% in LNa SHR with signs of increased sympathetic activity to the heart also during rest. Despite an apparently normal volume and cardiac output balance in LNa SHR, the latter changes suggest a disturbed neuro-hormonal cardiovascular control.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
As part of our studies in normotensive (WKY) and hypertensive (SHR) rats concerning the cardiovascular effects of 240-fold variations in sodium (Na) intake, the present experiments explore how vascular design, smooth-muscle sensitivity to noradrenaline and adrenergic vasoconstrictor fibre function are affected. In vitro comparisons were performed on pair-perfused hindquarter vascular beds and on paired small mesenteric arteries (diameter 150-200 micron), using a two-vessel Mulvany-Halpern myograph. Preparations were taken from WKY and SHR which between 5 and 12-13 weeks of age were on 'low' (LNa, 0.5), 'control' (CNa, 5), 'high' (HNa, 50) or 'very high' (vHNa, 120 mmol Na 100 g-1 food) sodium diets. Structural vascular adaptation occurred only when arterial pressure was altered (only in LNa SHR). In both preparations smooth-muscle sensitivity and dose-response curves to noradrenaline remained unaffected by the Na diets. However, in both LNa groups the frequency-response curves to vasoconstrictor fibre stimulation in the small arteries were displaced to the right of the CNa one, with generally attenuated responses, while the curves of particularly the vHNa arteries were displaced to the left, with enhanced responses. Inhibition of NaKATPase by ouabain particularly enhanced the neurogenic responses, but to similar extents in all Na groups. Thus, low sodium intake apparently reduces the transmitter release/impulse in adrenergic neurons, while it increases the transmitter stores. High sodium intake has the opposite effects. These adaptations of adrenergic neuronal function may be one of the most important long-term consequences of altered sodium intake.  相似文献   

4.
Normotensive (WKY) and hypertensive rats (SHR) were, from 5 to 12 weeks of age, given 'low' (LNa), 'control' and 'high' (HNa) Na diets (0.5, 5 and 50 mmol X 100 g-1 food, respectively, during weekly recordings of body weight, conscious indirect systolic blood pressure (SBP) and heart rate (HR). During the last week, mean arterial pressure (MAP) and HR responses to standardized stress stimuli (air jet) were recorded before and after sequential cardiac nerve blockade. While resting, SBP was about equal in all WKY groups, but it was significantly reduced in SHR-LNa (152 mmHg versus 174 and 178 mmHg in SHR controls and HNa; P less than 0.05). In both LNa groups HR was elevated nearly 25% compared with controls, being in SHR 513 versus 419 bpm (P less than 0.01) and in WKY 489 versus 393 bpm (P less than 0.01). Cardiac nerve blockade indicated that this HR elevation was about equally due to elevations of sympathetic activity and 'intrinsic' pacemaker activity. SHR-LNa also showed attenuated MAP elevations to acute mental stress. There were, however, no significant differences between groups concerning haematocrit or plasma Na-K levels. The results suggest that SHR have a greater salt requirement than WKY, as Na restriction to one-tenth of normal led to a considerable MAP reduction in SHR despite compensatory sympathetic activation, and also to attenuated pressor responses to mental stress. Further, the cardiovascular effects in SHR were much more extensive when on a low-Na diet than when Na intake was increased tenfold above normal.  相似文献   

5.
Normotensive (WKY) and hypertensive rats (SHR) were, from 5 to 12 weeks of age, given ‘low’ (LNa), ‘control’ and ‘high’ (HNa) Na diets (0.5, 5 and 50 mmol-100 g-1 food, respectively, during weekly recordings of body weight, conscious indirect systolic blood pressure (SBP) and heart rate (HR). During the last week, mean arterial pressure (MAP) and HR responses to standardized stress stimuli (air jet) were recorded before and after sequential cardiac nerve blockade. While resting, SBP was about equal in all WKY groups, but it was significantly reduced in SHR-LNa (152 mmHg versus 174 and 178 mmHg in SHR controls and HNa; P < 0.05). In both LNa groups HR was elevated nearly 25% compared with controls, being in SHR 513 versus 419 bpm (P < 0.01) and in WKY 489 versus 393 bpm (P < 0.01). Cardiac nerve blockade indicated that this HR elevation was about equally due to elevations of sympathetic activity and ‘intrinsic’ pacemaker activity. SHR-LNa also showed attenuated MAP elevations to acute mental stress. There were, however, no significant differences between groups concerning haematocrit or plasma Na-K levels. The results suggest that SHR have a greater salt requirement than WKY, as Na restriction to one-tenth of normal led to a considerable MAP reduction in SHR despite compensatory sympathetic activation, and also to attenuated pressor responses to mental stress. Further, the cardiovascular effects in SHR were much more extensive when on a low-Na diet than when Na intake was increased tenfold above normal.  相似文献   

6.
Electrophysiological, mechanical, dimensional and coronary flow characteristics were studied on papillary strips and on isolated hearts, from spontaneously hypertensive (SHR) and normotensive (WKY) rats respectively, which from 5 to 15 weeks of age had been on either 'low' (LNa, 0.5 mmol 100 g-1 food), control (CNa, 5) 'high' (HNa, 50) or 'very high' (vHNa, 120) sodium diets. With respect to cardiac electrophysiological characteristics, contractility, and maximal stroke volume capacity only minor, if any, differences were observed between the various Na diet groups, both in WKY and SHR. This is in accordance with our earlier findings concerning vascular smooth muscle, where a largely unchanged sensitivity and responsiveness to, for example, noradrenaline was noted. Further, only to the extent that the various Na diets had also caused changes in average blood pressure levels, adaptations of cardiac and coronary resistance vessel design were observed, in general agreement with our earlier findings in other preparations and experimental designs. The largely unaffected functional characteristics of cardiac as well as vascular effector cells, despite 240-fold long-term variations in sodium intake, are in sharp contrast to the marked changes that have been shown to affect the adrenergic nerves, as here chronic low-Na intakes cause reductions of transmitter release/impulse, and vice versa at high Na intakes. This latter type of change seems to be by far the most important functional deviation affecting cardiovascular control during long-term alterations of sodium intake, as it can markedly affect both cardiac and vascular influences on haemodynamics, even though the respective effector functions seem to be surprisingly little influenced directly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Female Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were used to explore the structural changes of cardiac dimensions in connection with a sustained hyperkinetic circulation, as induced by pregnancy or thyroxine administration. Cardiac design was assessed by recordings of the diastolic left ventricular pressure-volume relationships in isolated arrested hearts. Left ventricular weight: body weight and end-diastolic volume (EDV) for given end-diastolic pressures (EDP), were both increased about 50% in control SHR, with a marginal reduction of the wall:lumen ratio (w:ri) compared with control WKY. During the hyperkinetic circulatory states of pregnancy and hyperthyroidism, EDV was in WKY increased about 30% and 50%, respectively, with concomitant w:ri reductions. In SHR pregnancy did not significantly alter left ventricular dimensions, whereas EDV was increased by about 20% in hyperthyroid SHR. Thus, the rat left ventricle can, within 3 weeks, markedly alter not only the wall mass but also, and independently, the luminal design in response to different haemodynamic interventions. Early established SHR hypertension is characterized mainly by eccentric left ventricular hypertrophy, despite the elevated arterial pressure. Volume overloads in WKY due to pregnancy or hyperthyroidism can induce marked structural widening of the left ventricle. In SHR these structural luminal changes were only minor, perhaps because considerable eccentric hypertrophy is already present. Such a structural cardiac enlargement may allow delivery of an increased stroke volume for a given myocardial fibre shortening.  相似文献   

8.
The influence of myocardial hypertrophy on left ventricular volume compliance was studied in vitro in isolated hearts of 4 and 19 month old spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). In both SHR groups diastolic volume compliance was similar to that in the controls, despite the presence of left ventricular hypertrophy. This seems to be mainly due to an altered geometric situation, since with increased wall thickness to internal radius ratio (w/ri), which was at hand, the less are outer myocardial layers stretched at a given increase in ventricular volume. This may imply that these layers will only little interfere with luminal distension (and thereby with diastolic volume compliance) in SHR. It was also observed that the progressive increase of ventricular hypertrophy from 4 to 19 months of age did not further increase w/ri in SHR, indicating an increase in overall ventricular size with age. Left ventricular end diastolic pressure (LVEDP) was also measured in conscious 5 week and 4 month old SHR compared with matched controls. LVEDP increased with the development of hypertension and was significantly elevated in 4 month old SHR. This will increase also the average diastolic pre-stretch of the SHR left ventricle and mobilize the "Starling mechanism" to maintain a normal stroke volume against the increased afterload for the heart in established hypertension. This seems particularly important since the hypertrophic w/ri increase (about 20%) is smaller than the great elevation of mean arterial pressure (40-50%) in SHR.  相似文献   

9.
Spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) were compared concerning the interactions between cortico-hypothalamic alerting responses and baroreflex influences on neurogenic cardiovascular control. For this purpose mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were continuously recorded during night time in conscious, otherwise undisturbed rats. Baroreceptor sensitivity was assessed as percentage HR and RSNA reductions per mmHg MAP elevation when a standardized phenylephrine infusion was performed. A state of acute "mental stress" could be induced by a likewise standardized sudden blowing of air. These two opposing influences on neurogenic cardiovascular control were also experimentally superimposed in various ways and the effects on MAP, HR and RSNA followed. During "rest" RSNA was higher in SHR than in WKY and it also increased more during "mental stress". The baroreflex sensitivity was clearly reduced in SHR and WKY concerning HR reduction (0.44 +/- 0.06 vs. 0.78 +/- 0.08%/mmHg; p less than 0.01) but not so concerning RSNA, which was similar in SHR and WKY (2.6 +/- 0.2 vs. 2.9 +/- 0.4%/mmHg). If expressed (HR + 1 +/- 3%; p less than 0.025 vs. SHR and RSNA + 11% +/- 10, p less than 0.01 vs. SHR). These results) (0.10 +/- 0.02 vs. 0.06 +/- 0.01 microV/mmHg; p less than 0.12). Also single fibre recordings in anaesthetized rats showed the same principle difference between SHR and WKY.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Central haemodynamic parameters and cardiac performance were measured in conscious spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) control rats after a 10-min infusion of rat ANP (103-125), 1 micrograms kg-1 min-1. Mean Arterial blood pressure (MAP) decreased by approximately 10% in both groups of rats. Heart rate (HR) increased slightly in both strains during the infusion. In the normotensive group the fall in MAP was due to a reduction in cardiac output (CO) while in the SHR there was a decrease in CO as well as in total peripheral resistance (TPR). The ANP infusion also reduced central blood volume (CBV) and stroke volume (SV) in both groups of rats. The reduction in CBV and CO was significantly more pronounced in the WKY strain. Left ventricular end diastolic pressure (LVEDP) and cardiac contractility (dP/dt) did not change while central venous pressure (CVP) was slightly decreased in the WKY group as a result of the ANP infusion. We conclude that ANP reduces MAP in normotensive animals by a reduction in CO. In the SHR a reduction in TPR also contributes to the fall in MAP. Atrial natriuretic peptide did not exert any negative inotropic effects, but the reduction of CO was due to an increased venous compliance.  相似文献   

11.
This study determined whether clinical salt-sensitive hypertension (cSSHT) results from the interaction between partial arterial baroreceptor impairment and a high-sodium (HNa) diet. In three series (S-I, S-II, S-III), mean arterial pressure (MAP) of conscious male Wistar ChR003 rats was measured once before (pdMAP) and twice after either sham (SHM) or bilateral aortic denervation (AD), following 7 days on a low-sodium (LNa) diet (LNaMAP) and then 21 days on a HNa diet (HNaMAP). The roles of plasma nitric oxide bioavailability (pNOB), renal medullary superoxide anion production (RMSAP), and mRNA expression of NAD(P)H oxidase and superoxide dismutase were also assessed. In SHM (n=11) and AD (n=15) groups of S-I, LNaMAP-pdMAP was 10.5±2.1 vs 23±2.1 mmHg (P<0.001), and the salt-sensitivity index (SSi; HNaMAP−LNaMAP) was 6.0±1.9 vs 12.7±1.9 mmHg (P=0.03), respectively. In the SHM group, all rats were normotensive, and 36% were salt sensitive (SSi≥10 mmHg), whereas in the AD group ∼50% showed cSSHT. A 45% reduction in pNOB (P≤0.004) was observed in both groups in dietary transit. RMSAP increased in the AD group on both diets but more so on the HNa diet (S-II, P<0.03) than on the LNa diet (S-III, P<0.04). MAP modeling in rats without a renal hypertensive genotype indicated that the AD*HNa diet interaction (P=0.008) increases the likelihood of developing cSSHT. Translationally, these findings help to explain why subjects with clinical salt-sensitive normotension may transition to cSSHT.  相似文献   

12.
Spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) were compared concerning the interactions between cortico-hypothalamic alerting responses and baroreflex influences on neurogenic cardiovascular control. For this purpose mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were continuously recorded during night time in conscious, otherwise undisturbed rats. Baroreceptor sensitivity was assessed as percentage HR and RSNA reductions per mmHg MAP elevation when a standardized phenylephrine infusion was performed. A state of acute “mental stress” could be induced by a likewise standardized sudden blowing of air. These two opposing influences on neurogenic cardiovascular control were also experimentally superimposed in various ways and the effects on MAP, HR and RSNA followed. During “rest” RSNA was higher in SHR than in WKY and it also increased more during “mental stress”. The baroreflex sensitivity was clearly reduced in SHR and WKY concerning HR reduction (0.44±0.06 vs. 0.78±0.08%/mmHg; p<0.01) but not so concerning RSNA, which was similar in SHR and WKY (2.6±0.2 vs. 2.9±0.4%/mmHg). If expressed (HR + 1±3%; p<0.025 vs. SHR and RSNA + 11%±10, p<0.01 vs. SHR). These results) (0.10±0.02 vs. 0.06±0.01 μV/mmHg; p<0.12). Also single fibre recordings in anaesthetized rats showed the same principle difference between SHR and WKY. Addition of “mental stress” during phenylephrine baroreflex activation clearly increased both HR (24±7%) and RSNA (114±21 %) in SHR, while almost no change then occurred in WKY (HR + 1±3%; p<0.025 vs. SHR and RSNA + 11%±10, p<0.01 vs. SHR). These results suggest that a modestly accentuated cortico-hypothalamic activity ordinarily prevails in SHR, explaining the suppressed baroreflex control of heart rate and the augmented sympathetic activity to e.g. renal and splanchnic areas. Further, environmental alerting stimuli induce in SHR more powerful defence reactions which, unlike the situation in WKY, readily overcome baroreflex inhibitory influences on sympathetic activity.  相似文献   

13.
BackgroundCardiac dysfunction is reported in patients with the metabolic syndrome. We assessed the effects of high-phosphorus and zinc-free diet on cardiovascular system in spontaneously hypertensive rats (SHR)/NDmcr-cp (SHR/cp), a rat model of the metabolic syndrome. We also investigated the effects of N-acetyl-L-cysteine (NAC), an antioxidant, on the development of cardiac dysfunction under such conditions.MethodsMale SHR/cp and control [Wistar Kyoto (WKY)] rats were divided into three groups and fed control diet (P 0.3% w/w, Zn 0.2% w/w) or high-phosphorus and zinc-free (P 1.2% w/w, Zn 0.0% w/w) diet. The latter group was treated with either NAC (1.5 mg/g per day) or vehicle from 6 to 18 weeks of age (n=6 or 8 for each group).ResultsHigh-phosphate and zinc-free diet increased systolic blood pressure in both WKY and SHR/cp. Echocardiography showed that high-phosphate and zinc-free diet markedly reduced left ventricular systolic and diastolic function in SHR/cp. Histopathologically, the same diet induced severe myocardial fibrosis in SHR/cp, and this effect was prevented by NAC. Whereas treatment with NAC prevented diastolic dysfunction induced by the same diet in WKY, it only improved systolic function but not diastolic function in SHR/cp.ConclusionsHigh-phosphate and zinc-free diet induced hypertension and cardiac dysfunction. These changes hamper the protective effects of NAC in the metabolic syndrome.SummaryThe present study showed that consumption of high-phosphorus and zinc-free diet increased the myocardial expression of connective tissue growth factor and reduced the expression of metallothionein, which enhanced the development of severe cardiac dysfunction in rats with the metabolic syndrome. The results suggest that the metabolic syndrome seems to aggravate cardiac dysfunction and hamper the protective effects of antioxidant, NAC.  相似文献   

14.
Atrial natriuretic peptide (ANP) was measured in plasma during acute volume load in conscious, spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. During basal conditions immunoreactive ANP were similar in the SHR (630 +/- 56 pmoles l-1) and the WKY (657 +/- 114 pmoles l-1) groups. An acute 10% and 20% whole blood volume expansion resulted in a linear increase in immunoreactive plasma ANP in the WKY. In the SHR the increase in plasma ANP was attenuated during the 20% volume load. During the 10% and 20% volume load central venous pressure (CVP), central blood volume (CBV) and cardiac output increased relatively more in the SHR compared with the WKY group. In contrast, the increase in peripheral blood volume (PBV) and decrease in heart rate (HR) was attenuated in the SH rats. In the SHR group there was a shift of the ANP vs. CVP and ANP vs. CBV curves to the right compared with the WKY. We conclude that acute volume loading is a potent stimulus for ANP release in WKY as well as SHR. However, in the SHR, ANP release was blunted in spite of the increased centralization of the volume load in this rat strain. Thus, the decreased responsiveness of the ANP hormonal system may contribute to the development and maintenance of hypertension in this genetic form of hypertension.  相似文献   

15.
Cardiac function was studied in spontaneously breathing, adult spontaneously hypertensive rats (SHR) and Wistar-Kyoto normotensive rats (WKY). By rapid intravenous blood infusion, the relation between left ventricular end-diastolic pressure (LVEDP) and stroke volume (SV) was determined while the cardiac nervous control was pharmacologically blocked. Since SV is greatly influenced by the level of afterload (mean arterial pressure, MAP), SV was also determined at increased MAP (constriction of abdominal aorta) and at decreased MAP (vasodilation by hydralazine). At low LVEDP levels, a righward shift of the Frank-Starling relationship was observed in SHR. This rightward shift seems mainly to depend on the increased MAP present in SHR since it was less prominent if MAP was lowered to normotensive levels in SHR. Maximal SV during volume infusion was similar in SHR and WKY, despite a much higher MAP in SHR. When peak SV was instead compared at similar MAP levels for both (either at ‘normotensive’ or ‘hypertensive’ levels) it was always significantly greater in SHR, and was increased largely in proportion to their increased left ventricular weight. This indicates that the left ventricular hypertrophy present in SHR is, at least at this stage, a physiological adaptation of the heart to increase its performance, in order to maintain a normal SV and hence cardiac output, despite an increased arterial pressure.  相似文献   

16.
We investigate whether arterial baroreceptors mediate the training-induced blood pressure fall and resting bradycardia in hypertensive (SHR) and normotensive rats (WKY). Male SHR and WKY rats, submitted to sino-aortic denervation (SAD) or sham surgery (SHAM group), were allocated to training (T; 55% of maximal exercise capacity) or sedentary (S) protocols for 3 months. Rats were instrumented with arterial and venous catheters for haemodynamic measurements at rest (power spectral analysis) and baroreceptor testing. Kidney and skeletal muscles were processed for morphometric analysis of arterioles. Elevated mean arterial pressure (MAP) and heart rate (HR) in SHAM SHRS were accompanied by increased sympathetic variability and arteriolar wall/lumen ratio [+3.4-fold on low-frequency (LF) power and +70%, respectively, versus WKYS, P < 0.05]. Training caused significant HR (∼9% in WKY and SHR) and MAP reductions (−8% in the SHR), simultaneously with improvement of baroreceptor reflex control of HR (SHR and WKY), LF reduction (with a positive correlation between LF power and MAP levels in the SHR) and normalization of wall/lumen ratio of the skeletal muscle arterioles (SHR only). In contrast, SAD increased pressure variability in both strains of rats, causing reductions in MAP (−13%) and arteriolar wall/lumen ratio (−35%) only in the SHRS. Training effects were completely blocked by SAD in both strains; in addition, after SAD the resting MAP and HR and the wall/lumen ratio of skeletal muscle arterioles were higher in SHRT versus SHRS and similar to those of SHAM SHRS. The lack of training-induced effects in the chronic absence of baroreceptor inputs strongly suggests that baroreceptor signalling plays a decisive role in driving beneficial training-induced cardiovascular adjustments.  相似文献   

17.
The reactions of resistance vessels in SHR and WKY hindquarters were compared during saline or blood perfusion. During saline constant-flow perfusion at all initial pressures (80-200 mmHg) sympathetic vasoconstrictor effects were greater in SHR than those in WKY. During perfusion at constant and equal pressure vasoconstrictor responses were greater in SHR vs. WKY only at high pressure--200 mmHg. On the other hand, under constant pressure conditions at lower pressures (80 and 120 mmHg) sympathetic stimulation induced weaker responses in SHR than in WKY, which at, for example, 80 mmHg was the case at every frequency of sympathetic stimulation used (2-20 Hz). Also, the responses to exogenous noradrenaline and vasopressin occurred during perfusion at low (80 mmHg) and for both equal constant-pressure conditions lower in SHR than in WKY. Comparison of sympathetic effects in SHR and WKY during blood hindquarter perfusion revealed similar results. Also, when SHR and WKY responses were compared at their ordinary levels of constant-pressure, sympathetic vasoconstrictor effects in SHR were lower than those in WKY.  相似文献   

18.
In previous studies we have shown that spontaneously hypertensive rats (SHR) develop a running behaviour and, secondary to the running behaviour, develop an endorphin-mediated analgesic effect. In the present study the role of the central endorphin system in the cardiovascular responses to spontaneous exercise in normotensive Wistar Kyoto rats (WKY) and SHR was investigated. The experimental design allowed us to record mean arterial pressure (MAP) and heart rate (HR) continuously for more than 1 week without interfering with the daily activities of the animals. They were active in running wheels during the dark period (19.00-07.00 h) and the activity was accompanied by a marked rise in HR. In SHR, a clear depression of blood pressure lasting for about for about 50 min was noted following each running period. The MAP during the post-running depression was 131.4 +/- 1.6 mmHg which was significantly lower than the pre-running control value (145.2 +/- 2.3 mmHg, P less than 0.01). In contrast, MAP in the post-running period in WKY was not significantly different from the pre-running values. In addition, the depression period of SHR had a mean post-running length of 49.7 +/- 3.4 min, which is significantly longer than in the WKYs (37.8 +/- 3.5 min, P less than 0.05). In control rats, naloxone infusion had no effect on blood pressure but a marked bradycardia was observed. In nine running SHR receiving a naloxone infusion, their MAP during the depression period was not different from the control pressure. Our study indicates that endorphin systems are involved in the regulating of blood pressure and HR during muscle exercise in SHR. These systems trigger the transient depression of blood pressure observed immediately after a running period in the SHR.  相似文献   

19.
Regional distribution of cardiac output in unanesthetized spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) and Wistar NR male rats (10 each group; average age 21 wk) was determined using two 15-mum microspheres (141Ce and 85Sr) injected 10 min apart through a left ventricular (LV) cannula. Fractional flow distribution was expressed as percentage activity of injected dose (average of the two measurements). Despite differences in body and organ weights, organ flow distribution did not vary between SHR and WKY, except for heart and testes (P less than 0.025). However, differences did not exist between SHR and NR with respect to heart, brain, lungs, spleen, and adrenal flows (P less than 0.05).  相似文献   

20.
The effect of manipulating sodium intake upon sweat sodium secretion was investigated during heat acclimation. Twenty-five male subjects were confined to an environmental chamber at a temperature of 25°C for 3 days, and then acclimated to heat by a further 5 days at 40°C. The subjects' daily sodium intake was controlled throughout as follows: high (HNa),?348.4 (0.8)?mmol?·?day?1, n?=?7; moderate (MNa), 174.1 (0.6)?mmol?·?day?1, n?=?9; or low (LNa), 66.3?mmol?· day?1, n?=?9. Sodium losses were estimated from urinary, faecal and sweat collections using a whole-body washdown method. Plasma aldosterone concentration was also measured from venous blood sampled each morning. Measurements of body temperature and heart rate during the heat exposure phase indicated a degree of heat acclimation. During this heat phase there was a reduction (P?P?P?P?P?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号