首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Our understanding of altered emotional processing in social anxiety disorder (SAD) is hampered by a heterogeneity of findings, which is probably due to the vastly different methods and materials used so far. This is why the present functional magnetic resonance imaging (fMRI) study investigated immediate disorder‐related threat processing in 30 SAD patients and 30 healthy controls (HC) with a novel, standardized set of highly ecologically valid, disorder‐related complex visual scenes. SAD patients rated disorder‐related as compared with neutral scenes as more unpleasant, arousing and anxiety‐inducing than HC. On the neural level, disorder‐related as compared with neutral scenes evoked differential responses in SAD patients in a widespread emotion processing network including (para‐)limbic structures (e.g. amygdala, insula, thalamus, globus pallidus) and cortical regions (e.g. dorsomedial prefrontal cortex (dmPFC), posterior cingulate cortex (PCC), and precuneus). Functional connectivity analysis yielded an altered interplay between PCC/precuneus and paralimbic (insula) as well as cortical regions (dmPFC, precuneus) in SAD patients, which emphasizes a central role for PCC/precuneus in disorder‐related scene processing. Hyperconnectivity of globus pallidus with amygdala, anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) additionally underlines the relevance of this region in socially anxious threat processing. Our findings stress the importance of specific disorder‐related stimuli for the investigation of altered emotion processing in SAD. Disorder‐related threat processing in SAD reveals anomalies at multiple stages of emotion processing which may be linked to increased anxiety and to dysfunctionally elevated levels of self‐referential processing reported in previous studies. Hum Brain Mapp 37:1559‐1572, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
Sex differences in emotional responding have been repeatedly postulated but less consistently shown in empirical studies. Because emotional reactions are modulated by cognitive appraisal, sex differences in emotional responding might depend on differences in emotion regulation. In this study, we investigated sex differences in emotional reactivity and emotion regulation using a delayed cognitive reappraisal paradigm and measured whole‐brain BOLD signal in 17 men and 16 women. During fMRI, participants were instructed to increase, decrease, or maintain their emotional reactions evoked by negative pictures in terms of cognitive reappraisal. We analyzed BOLD responses to aversive compared to neutral pictures in the initial viewing phase and the effect of cognitive reappraisal in the subsequent regulation phase. Women showed enhanced amygdala responding to aversive stimuli in the initial viewing phase, together with increased activity in small clusters within the prefrontal cortex and the temporal cortex. During cognitively decreasing emotional reactions, women recruited parts of the orbitofrontal cortex, the anterior cingulate, and the dorsolateral prefrontal cortex to a lesser extent than men, while there was no sex effect on amygdala activity. In contrast, compared to women, men showed an increased recruitment of regulatory cortical areas during cognitively increasing initial emotional reactions, which was associated with an increase in amygdala activity. Clinical implications of these findings are discussed. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
《Social neuroscience》2013,8(5):473-493
Adult attachment style (AAS) refers to individual differences in the way people experience and regulate their social relationships and corresponding emotions. Based on developmental and psychological research, it has been hypothesized that avoidant attachment style (AV) entails deactivating strategies in social contexts, whereas anxious attachment style (AX) involves hyper vigilance and up-regulation mechanisms. However, the neural substrates of differences in social emotion regulation associated with AAS have not been systematically investigated. Here we used fMRI in 19 healthy adults to investigate the effect of AAS on the processing of pleasant or unpleasant social and nonsocial scenes. Participants were asked either to naturally attend (NAT), cognitively reappraise (REAP), or behaviorally suppress (ESUP) their emotional responses. Avoidantly attached participants showed increased prefrontal and anterior cingulate activation to social negative scenes when making spontaneous emotion judgments. They also exhibited persistent increases in dorsolateral prefrontal cortex and left amygdala activity for the same stimuli during reappraisal, as well as additional activation in supplementary motor area and ventral caudate during the suppression of social positive emotions. These results suggest that AV may imply less efficient reappraisal strategies to regulate social negative emotions, and lead to higher conflict or effortful control when suppression cannot be employed. In contrast, anxiously attached participants showed differential increases in the right amygdala and left parahippocampal cortex for social negative and positive stimuli, respectively, but only when making spontaneous emotion judgments. No effect of AX was found during down-regulation conditions. This suggests heightened arousal to negative information without difficulty in down-regulating emotions through cognitive re-evaluation or suppression. Taken together, these findings reveal for the first time the neural underpinnings of attachment-related differences in social emotion regulation.  相似文献   

4.
Understanding how and why affective responses change with age is central to characterizing typical and atypical emotional development. Prior work has emphasized the role of the amygdala and prefrontal cortex (PFC), which show age-related changes in function and connectivity. However, developmental neuroimaging research has only recently begun to unpack whether age effects in the amygdala and PFC are specific to affective stimuli or may be found for neutral stimuli as well, a possibility that would support a general, rather than affect-specific, account of amygdala-PFC development. To examine this, 112 individuals ranging from 6 to 23 years of age viewed aversive and neutral images while undergoing fMRI scanning. Across age, participants reported more negative affect and showed greater amygdala responses for aversive than neutral stimuli. However, children were generally more sensitive to both neutral and aversive stimuli, as indexed by affective reports and amygdala responses. At the same time, the transition from childhood to adolescence was marked by a ventral-to-dorsal shift in medial prefrontal responses to aversive, but not neutral, stimuli. Given the role that dmPFC plays in executive control and higher-level representations of emotion, these results suggest that adolescence is characterized by a shift towards representing emotional events in increasingly cognitive terms.  相似文献   

5.
Cognitive reappraisal and expressive suppression, two major emotion regulation strategies, are differentially related to emotional well-being. The aim of this study was to test the association of individual differences in these two emotion regulation strategies with gray matter volume of brain regions that have been shown to be involved in the regulation of emotions. Based on high-resolution magnetic resonance images of 96 young adults voxel-based morphometry was used to analyze the gray matter volumes of the a priori regions of interest, including amygdala, insula, dorsal anterior cingulate and paracingulate cortex, medial and lateral prefrontal cortex (PFC) and their association with cognitive reappraisal and expressive suppression usage as well as neuroticism. A positive association of cognitive reappraisal with right and tendentially left amygdala volume and of neuroticism with left amygdala volume (marginally significant) was found. Expressive suppression was related to dorsal anterior cingulate/paracingulate cortex and medial PFC gray matter volume. The results of this study emphasize the important role of the amygdala in individual differences in cognitive reappraisal usage as well as neuroticism. Additionally, the association of expressive suppression usage with larger volumes of the medial PFC and dorsal anterior/paracingulate cortex underpins the role of these regions in regulating emotion-expressive behavior.  相似文献   

6.
Reinterpretation and distancing are two cognitive reappraisal tactics, used to regulate one’s emotions in response to emotion-eliciting stimuli or situations. Relatively less is known about their (differential) lasting effects on emotional responding and related neural correlates. This functional magnetic resonance imaging study investigated 85 healthy females, participating in a 2-day cognitive emotion regulation experiment. On the first day, participants were instructed to passively look at, reinterpret or distance from repeatedly presented aversive pictures. One week later, they were re-exposed to the same stimuli without regulation instruction, in order to assess lasting effects. The main outcome measures comprised ratings of negative feelings and blood-oxygen-level-dependent responses. Lasting effects for reinterpretation compared with looking at aversive pictures during passive re-exposure 1 week later were reflected in stronger activation of the left amygdala, the ventromedial prefrontal cortex (vmPFC) and reduced negative feelings. Neither distancing compared with looking at aversive pictures nor reinterpretation compared with distancing did result in significant effects during re-exposure. These findings indicate that reinterpretation leads to reduced negative feelings 1 week later, which might be mediated by inhibitory vmPFC activation or stronger positive emotions during re-exposure. However, the missing difference compared with distancing questions the specificity of the results and the mechanisms underlying these two cognitive reappraisal tactics.  相似文献   

7.
The capacity to voluntarily regulate emotions is critical for mental health, especially when coping with aversive events. Several neuroimaging studies of emotion regulation found the amygdala to be a target for downregulation and prefrontal regions to be associated with downregulation. To characterize the role of prefrontal regions in bidirectional emotion regulation and to investigate regulatory influences on amygdala activity and peripheral physiological measures, a functional magnetic resonance imaging (fMRI) study with simultaneous recording of self-report, startle eyeblink, and skin conductance responses was carried out. Subjects viewed threat-related pictures and were asked to up- and downregulate their emotional responses using reappraisal strategies. While startle eyeblink responses (in successful regulators) and skin conductance responses were amplified during upregulation, but showed no consistent effect during downregulation, amygdala activity was increased and decreased according to the regulation instructions. Trial-by-trial ratings of regulation success correlated positively with activity in amygdala during upregulation and orbitofrontal cortex during downregulation. Downregulation was characterized by left-hemispheric activation peaks in anterior cingulate cortex, dorsolateral prefrontal cortex, and orbitofrontal cortex and upregulation was characterized by a pattern of prefrontal activation not restricted to the left hemisphere. Further analyses showed significant overlap of prefrontal activation across both regulation conditions, possibly reflecting cognitive processes underlying both up- and downregulation, but also showed distinct activations in each condition. The present study demonstrates that amygdala responses to threat-related stimuli can be controlled through the use of cognitive strategies depending on recruitment of prefrontal areas, thereby changing the subject's affective state.  相似文献   

8.
Adult attachment style (AAS) refers to individual differences in the way people experience and regulate their social relationships and corresponding emotions. Based on developmental and psychological research, it has been hypothesized that avoidant attachment style (AV) entails deactivating strategies in social contexts, whereas anxious attachment style (AX) involves hyper vigilance and up-regulation mechanisms. However, the neural substrates of differences in social emotion regulation associated with AAS have not been systematically investigated. Here we used fMRI in 19 healthy adults to investigate the effect of AAS on the processing of pleasant or unpleasant social and nonsocial scenes. Participants were asked either to naturally attend (NAT), cognitively reappraise (REAP), or behaviorally suppress (ESUP) their emotional responses. Avoidantly attached participants showed increased prefrontal and anterior cingulate activation to social negative scenes when making spontaneous emotion judgments. They also exhibited persistent increases in dorsolateral prefrontal cortex and left amygdala activity for the same stimuli during reappraisal, as well as additional activation in supplementary motor area and ventral caudate during the suppression of social positive emotions. These results suggest that AV may imply less efficient reappraisal strategies to regulate social negative emotions, and lead to higher conflict or effortful control when suppression cannot be employed. In contrast, anxiously attached participants showed differential increases in the right amygdala and left parahippocampal cortex for social negative and positive stimuli, respectively, but only when making spontaneous emotion judgments. No effect of AX was found during down-regulation conditions. This suggests heightened arousal to negative information without difficulty in down-regulating emotions through cognitive re-evaluation or suppression. Taken together, these findings reveal for the first time the neural underpinnings of attachment-related differences in social emotion regulation.  相似文献   

9.
Cognitive emotion regulation strategies are important components of cognitive-behavioral therapy (CBT). Additionally, up-regulation and difficulties in the down-regulation of negative feelings are associated with mental disorders. However, little is known about the lasting effects of cognitive emotion regulation strategies on emotional experience and associated neural activation. Therefore, this study investigated immediate and prolonged effects of emotion regulation using cognitive reappraisal and distraction on subjective report and its neural correlates. Twenty-seven healthy females took part in a 2-day functional magnetic resonance imaging study. They were instructed to either up-regulate or down-regulate their negative feelings using a situation-focused cognitive reappraisal strategy, to distract themselves by imagining a specific neutral situation, or to passively look at repeatedly presented aversive and neutral pictures. Re-exposure to the same stimuli without a regulation instruction was conducted one day later. Self-reported negative feelings and blood-oxygen-level-dependent responses served as main outcome variables. As expected, the results show successful immediate up- or down-regulation of negative feelings by cognitive reappraisal and down-regulation of negative feelings by distraction. Furthermore, these changes in negative feelings were correlated with amygdala activation. A lasting effect on emotional experience associated with stronger ventromedial prefrontal cortex activation was found for down-regulation of negative feelings via cognitive reappraisal. Compared to distraction, down-regulation via cognitive reappraisal led to reduced negative feelings and stronger dorso- and ventrolateral prefrontal cortex responses one day later. While cognitive reappraisal and distraction are both effective strategies during active regulation, only cognitive reappraisal had a lasting effect. These findings might have implications for CBT.  相似文献   

10.
Adolescence is a sensitive period of social-affective development, characterized by biological, neurological, and social changes. The field currently conceptualizes these changes in terms of an imbalance between systems supporting reactivity and regulation, specifically nonlinear changes in reactivity networks and linear changes in regulatory networks. Previous research suggests that the labeling or reappraisal of emotion increases activity in lateral prefrontal cortex (LPFC), and decreases activity in amygdala relative to passive viewing of affective stimuli. However, past work in this area has relied heavily on paradigms using static, adult faces, as well as explicit regulation. In the current study, we assessed cross-sectional trends in neural responses to viewing and labeling dynamic peer emotional expressions in adolescent girls 10–23 years old. Our dynamic adolescent stimuli set reliably and robustly recruited key brain regions involved in emotion reactivity (medial orbital frontal cortex/ventral medial prefrontal cortex; MOFC/vMPFC, bilateral amygdala) and regulation (bilateral dorsal and ventral LPFC). However, contrary to the age-trends predicted by the dominant models in studies of risk/reward, the LPFC showed a nonlinear age trend across adolescence to labeling dynamic peer faces, whereas the MOFC/vMPFC showed a linear decrease with age to viewing dynamic peer faces. There were no significant age trends observed in the amygdala.  相似文献   

11.
Neural bases of cognitive reappraisal may depend on the direction of regulation (up- or downregulation) and stimulus valence (positive or negative). This study aimed to examine this using a cognitive reappraisal task and conjunction analysis on a relatively large sample of 83 individuals. We identified regions in which activations were common for all these types of emotion regulation. We also investigated differences in brain activation between the ‘decrease’ and ‘increase’ emotional response conditions, and between the regulation of negative and positive emotions. The common activation across conditions involved mainly the prefrontal and temporal regions. Decreasing emotions was associated with stronger involvement of the dorsolateral prefrontal cortex, while increasing with activation of the amygdala and hippocampus. Regulation of negative emotions involved stronger activation of the lateral occipital cortex, while regulation of positive emotions involved stronger activation of the anterior cingulate cortex extending to the medial prefrontal cortex. This study adds to previous findings, not only by doing a conjunction analysis on both emotional valences and regulation goals, but also doing this in a bigger sample size. Results suggest that reappraisal is not a uniform process and may have different neural bases depending on regulation goals and stimulus valence.  相似文献   

12.
Patients with depersonalization disorder (DP) experience a detachment from their own senses and surrounding events, as if they were outside observers. A particularly common symptom is emotional detachment from the surroundings. Using functional magnetic resonance imaging (fMRI), we compared neural responses to emotionally salient stimuli in DP patients, and in psychiatric and healthy control subjects. Six patients with DP, 10 with obsessive–compulsive disorder (OCD), and six volunteers were scanned whilst viewing standardized pictures of aversive and neutral scenes, matched for visual complexity. Pictures were then rated for emotional content. Both control groups rated aversive pictures as much more emotive, and demonstrated in response to these scenes significantly greater activation in regions important for disgust perception, the insula and occipito-temporal cortex, than DP patients (covarying for age, years of education and total extent of brain activation). In DP patients, aversive scenes activated the right ventral prefrontal cortex. The insula was activated only by neutral scenes in this group. Our findings indicate that a core phenomenon of depersonalization — absent subjective experience of emotion — is associated with reduced neural responses in emotion-sensitive regions, and increased responses in regions associated with emotion regulation.  相似文献   

13.
Episodic memory retrieval can be influenced by individuals' current goals, including those that are emotional in nature. Participants underwent an fMRI scan while reappraising, or changing the way they thought about aversive images they had previously encoded, to down-regulate (i.e., decrease), up-regulate (i.e., increase), or maintain the emotional intensity associated with their recall. A conjunction analysis between down- and up-regulation during the entire 12-s recall period revealed that both commonly activated reappraisal-related regions, particularly in the lateral and medial prefrontal cortex (PFC). However, when we analyzed a reappraisal instruction phase prior to recall and then divided the recall phase into the time when individuals were first searching for their memories and later elaborating on their details, we found that down- and up-regulation engaged greater neural activity at different time points. Up-regulation engaged greater PFC activity than down-regulation or maintenance during the reappraisal instruction phase. In contrast, down-regulation engaged greater lateral PFC activity as images were being searched for and retrieved. Maintaining the emotional intensity associated with the aversive images engaged similar regions to a greater extent than either reappraisal condition as participants elaborated on the details of the images they were holding in mind. Our findings suggest that down- and up-regulation engage similar neural regions during memory retrieval, but differ in the timing of this engagement.  相似文献   

14.
Alexithymia is a personality trait characterized by difficulties in the experience and cognitive processing of emotions. It is considered a risk factor for a range of psychiatric and neurological disorders. Functional neuroimaging studies investigating the neural correlates of alexithymia have reported inconsistent results. To integrate previous findings, we conducted a parametric coordinate-based meta-analysis including fifteen neuroimaging studies on emotion processing in alexithymia. During the processing of negative emotional stimuli, alexithymia was associated with a diminished response of the amygdala, suggesting decreased attention to such stimuli. Negative stimuli additionally elicited decreased activation in supplementary motor and premotor brain areas and in the dorsomedial prefrontal cortex, possibly underlying poor empathic abilities and difficulties in emotion regulation associated with alexithymia. Positive stimuli elicited decreased activation in the right insula and precuneus, suggesting reduced emotional awareness in alexithymia regarding positive affect. Independent of valence, higher (presumably compensatory) activation was found in the dorsal anterior cingulate possibly indicating increased cognitive demand. These results suggest valence-specific as well as valence-independent effects of alexithymia on the neural processing of emotions.  相似文献   

15.
Expectations about an upcoming emotional event have the power to shape one’s subsequent affective response for better or worse. Here, we used mediation analyses to examine the relationship between brain activity when anticipating the need to cognitively reappraise aversive images, amygdala responses to those images and subsequent success in diminishing negative affect. We found that anticipatory activity in right rostrolateral prefrontal cortex was associated with greater subsequent left amygdala responses to aversive images and decreased regulation success. In contrast, anticipatory ventral anterior insula activity was associated with reduced amygdala responses and greater reappraisal success. In both cases, left amygdala responses mediated the relationship between anticipatory activity and reappraisal success. These results suggest that anticipation facilitates successful reappraisal via reduced anticipatory prefrontal ‘cognitive’ elaboration and better integration of affective information in paralimbic and subcortical systems.  相似文献   

16.
BACKGROUND: Successful control of affect partly depends on the capacity to modulate negative emotional responses through the use of cognitive strategies. Although the capacity to regulate emotions is critical to mental well-being, its neural substrates remain unclear. METHODS: We used functional magnetic resonance imaging to ascertain brain regions involved in the voluntary regulation of emotion and whether dynamic changes in negative emotional experience can modulate their activation. Fourteen healthy subjects were scanned while they either maintained the negative affect evoked by highly arousing and aversive pictures (e.g., experience naturally) or suppressed their affect using cognitive reappraisal. In addition to a condition-based analysis, online subjective ratings of intensity of negative affect were used as covariates of brain activity. RESULTS: Inhibition of negative affect was associated with activation of dorsal anterior cingulate, dorsal medial prefrontal, and lateral prefrontal cortices, and attenuation of brain activity within limbic regions (e.g., nucleus accumbens/extended amygdala). Furthermore, activity within dorsal anterior cingulate was inversely related to intensity of negative affect, whereas activation of the amygdala was positively covaried with increasing negative affect. CONCLUSIONS: These findings highlight a functional dissociation of corticolimbic brain responses, involving enhanced activation of prefrontal cortex and attenuation of limbic areas, during volitional suppression of negative emotion.  相似文献   

17.
Neural correlates of positive and negative emotion regulation   总被引:1,自引:0,他引:1  
The ability to cope adaptively with emotional events by volitionally altering one's emotional reactions is important for psychological and physical health as well as social interaction. Cognitive regulation of emotional responses to aversive events engages prefrontal regions that modulate activity in emotion-processing regions such as the amygdala. However, the neural correlates of the regulation of positive emotions remain largely unexplored. We used event-related functional magnetic resonance imaging to examine the neural correlates of cognitively increasing and decreasing emotional reactions to positive and negative stimuli. Participants viewed negative, positive, and neutral pictures while attempting to increase, decrease, or not alter their emotional reactions. Subjective reactions were assessed via on-line ratings. Consistent with previous studies, increasing negative and positive emotion engaged primarily left-lateralized prefrontal regions, whereas decreasing emotion activated bilateral prefrontal regions. Different activations unique to increasing versus decreasing emotion were observed for positive and negative stimuli: Unique increase-related activations were observed only for positive stimuli, whereas unique decrease-related activations were observed only for negative stimuli. Regulation also modulated activity in the amygdala, a key emotion-processing region. Regulation effects on amygdala activity were larger for positive than for negative stimuli, potentially reflecting a greater malleability of positive emotional reactions. Increasing and decreasing positive and negative emotion can thus increase and decrease subjective reactions and associated amygdala activity in line with regulatory goals, and is associated with different patterns of prefrontal activation as a function of emotional valence and regulatory goal.  相似文献   

18.
Lesion and functional imaging studies in humans have shown that the ventral and medial prefrontal cortex is critically involved in the processing of emotional stimuli, but both of these methods have limited spatiotemporal resolution. Conversely, neurophysiological studies of emotion in nonhuman primates typically rely on stimuli that do not require elaborate cognitive processing. To begin bridging this gap, we recorded from a total of 267 neurons in the left and right orbital and anterior cingulate cortices of four patients who had chronically implanted depth electrodes for monitoring epilepsy. Peristimulus activity was recorded to standardized, complex visual scenes depicting neutral, pleasant, or aversive content. Recording locations were verified with postoperative magnetic resonance imaging. Using a conservative, multistep statistical evaluation, we found significant responses in 56 neurons; 16 of these were selective for only one emotion class, most often aversive. The findings suggest sparse and widely distributed processing of emotional value in the prefrontal cortex, with a predominance of responses to aversive stimuli.  相似文献   

19.
OBJECTIVE: To assist in the development of a model for the psychopathology of emotions, the present study sought to identify the neural circuits associated with the evaluation of visual stimuli for emotional valence. METHOD: Seventeen healthy individuals were shown three sets of emotionally laden pictures carrying pleasant, unpleasant, and neutral content. While subjects evaluated the picture set for emotional valence, regional cerebral blood flow was measured with the use of [15O] water positron emission tomography. Subjective ratings of the emotional valence of the picture sets were recorded. Data were analyzed by comparing the images acquired during the neutral condition with the unpleasant and pleasant image sets and the unpleasant and pleasant conditions with each other. RESULTS: Processing of pleasant stimuli was associated with increased blood flow in the dorsal-lateral, orbital, and medial frontal cortex relative to the unpleasant condition and in the cingulate, precuneus, and visual cortex relative to the neutral condition. Evaluation of unpleasant stimuli activated the amygdala, visual cortex, and cerebellum relative to the pleasant condition and the nucleus accumbens, precuneus, and visual cortex relative to the neutral condition. CONCLUSIONS: Observing and assigning emotional value to unpleasant stimuli produced activations in subcortical limbic regions, whereas evaluation of pleasant stimuli produced activations in cortical limbic areas. These findings are consistent with the notion of a subcortical and archaic danger recognition system and a system detecting pleasantness in events and situations that is phylogenetically younger, involving primarily the prefrontal cortex.  相似文献   

20.
Suicidal behavior and difficulty regulating emotions are hallmarks of Borderline Personality Disorder (BPD). This study examined neural links between emotion regulation and suicide risk in BPD. 60 individuals with BPD (all female, mean age = 28.9 years), 46 of whom had attempted suicide, completed a fMRI task involving recalling aversive personal memories. Distance trials assessed the ability to regulate emotion by recalling memories from a third-person, objective viewpoint. Immerse trials assessed emotional reactivity and involved recalling memories from a first-person perspective. Behaviorally, both groups reported less negative affect on Distance as compared to Immerse trials. Neurally, two sets of findings were obtained. The first reflected differences between attempters and non-attempters. When immersing and distancing, attempters showed elevated recruitment of lateral orbitofrontal cortex, a brain region implicated in using negative cues to guide behavior. When distancing, attempters showed diminished recruitment of the precuneus, a region implicated in memory recall and perspective taking. The second set of findings related to individual differences in regulation success – the degree to which individuals used distancing to reduce negative affect. Here, we observed that attempters who successfully regulated exhibited precuneus recruitment that was more similar to non-attempters. These data provide insight into mechanisms underlying suicide attempts in BPD. Future work may examine if these findings generalize to other diagnoses and also whether prior findings in BPD differ across attempters and non-attempters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号