首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Defects in oxidative phosphorylation (OXPHOS) are genetically unique because the different components involved in this process, respiratory chain enzyme complexes (I, III, and IV) and complex V, are encoded by nuclear and mitochondrial genome. The objective of the study was to assess whether there are clinical differences in patients suffering from OXPHOS defects caused by nuclear or mitochondrial DNA (mtDNA) mutations. We studied 16 families with > or = two siblings with a genetically established OXPHOS deficiency, four due to a nuclear gene mutation and 12 due to a mtDNA mutation. Siblings with a nuclear gene mutation showed very similar clinical pictures that became manifest in the first years (ranging from first months to early childhood). There was a severe progressive course. Seven of the eight children died in their first decade. Conversely, siblings with a mtDNA mutation had clinical pictures that varied from almost alike to very distinct. They became symptomatic at an older age (ranging from childhood to adulthood), with the exception of defects associated with Leigh or Leigh-like phenotype. The clinical course was more gradual and relatively less severe; four of the 26 patients died, one in his second year, another in her second decade and two in their sixth decade. There are differences in age at onset, severity of clinical course, outcome, and intrafamilial variability in patients affected of an OXPHOS defect due to nuclear or mtDNA mutations. Patients with nuclear mutations become symptomatic at a young age, and have a severe clinical course. Patients with mtDNA mutations show a wider clinical spectrum of age at onset and severity. These differences may be of importance regarding the choice of which genome to study in affected patients as well as with respect to genetic counseling.  相似文献   

2.
Leigh disease is a genetically heterogeneous, neurodegenerative disorder of childhood that is caused by defects of either the nuclear or mitochondrial genome. Here, we report the molecular genetic findings in a patient with neuropathological hallmarks of Leigh disease and complex I deficiency. Direct sequencing of the seven mitochondrial DNA (mtDNA)-encoded complex I (ND) genes revealed a novel missense mutation (T12706C) in the mitochondrial ND5 gene. The mutation is predicted to change an invariant amino acid in a highly conserved transmembrane helix of the mature polypeptide and was heteroplasmic in both skeletal muscle and cultured skin fibroblasts. The association of the T12706C ND5 mutation with a specific biochemical defect involving complex I is highly suggestive of a pathogenic role for this mutation.  相似文献   

3.
Mitochondrial disease can be attributed to both mitochondrial and nuclear gene mutations. It has a heterogeneous clinical and biochemical profile, which is compounded by the diversity of the genetic background. Disease-based epidemiological information has expanded significantly in recent decades, but little information is known that clarifies the aetiology in African patients. The aim of this study was to investigate mitochondrial DNA variation and pathogenic mutations in the muscle of diagnosed paediatric patients from South Africa. A cohort of 71 South African paediatric patients was included and a high-throughput nucleotide sequencing approach was used to sequence full-length muscle mtDNA. The average coverage of the mtDNA genome was 81±26 per position. After assigning haplogroups, it was determined that although the nature of non-haplogroup-defining variants was similar in African and non-African haplogroup patients, the number of substitutions were significantly higher in African patients. We describe previously reported disease-associated and novel variants in this cohort. We observed a general lack of commonly reported syndrome-associated mutations, which supports clinical observations and confirms general observations in African patients when using single mutation screening strategies based on (predominantly non-African) mtDNA disease-based information. It is finally concluded that this first extensive report on muscle mtDNA sequences in African paediatric patients highlights the need for a full-length mtDNA sequencing strategy, which applies to all populations where specific mutations is not present. This, in addition to nuclear DNA gene mutation and pathogenicity evaluations, will be required to better unravel the aetiology of these disorders in African patients.  相似文献   

4.
Mitochondrial diseases have been shown to result from mutations in mitochondrial genes located in either the nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Mitochondrial OXPHOS complex I has 45 subunits encoded by 38 nuclear and 7 mitochondrial genes. Two male patients in a putative X-linked pedigree exhibiting a progressive neurodegenerative disorder and a severe muscle complex I enzyme defect were analyzed for mutations in the 38 nDNA and seven mtDNA encoded complex I subunits. The nDNA X-linked NDUFA1 gene (MWFE polypeptide) was discovered to harbor a novel missense mutation which changed a highly conserved glycine at position 32 to an arginine, shown to segregate with the disease. When this mutation was introduced into a NDUFA1 null hamster cell line, a substantial decrease in the complex I assembly and activity was observed. When the mtDNA of the patient was analyzed, potentially relevant missense mutations were observed in the complex I genes. Transmitochondrial cybrids containing the patient’s mtDNA resulted in a mild complex I deficiency. Interestingly enough, the nDNA encoded MWFE polypeptide has been shown to interact with various mtDNA encoded complex I subunits. Therefore, we hypothesize that the novel G32R mutation in NDUFA1 is causing complex I deficiency either by itself or in synergy with additional mtDNA variants.  相似文献   

5.
To investigate the clinical, enzymological and mitochondrial gene profiles of complex I deficiency in Chinese, clinical and laboratory data of the patients (79 boys, 54 girls) were retrospectively assessed. Activities of mitochondrial respiratory chain complexes in peripheral leucocytes were spectrophotometrically measured. The entire mitochondrial DNA (mtDNA) sequence was analyzed in 62 patients. Restriction fragment length polymorphism and gene sequencing analyses were performed in 15 families. Ninety‐one patients had isolated complex I deficiency; 42 had combined deficiencies of complex I and other complexes. The main clinical presentations were neuromuscular disorders (107 patients) and non‐neurological dysfunction (hepatopathy, renal damage and cardiomyopathy; 26 patients). In 32 of 62 patients who underwent mtDNA sequencing, 24 mutations were identified in 15 mitochondrial genes. The 12338T>C, 4833A>G and 14502T>C mutations were found in 12.9%, 11.3% and 4.8% patients, respectively. Seven patients had multiple mutations. Three novel mutations were identified. Chinese patients with complex I deficiency presented heterogeneous phenotypes and genotypes. Twenty‐four mutations were identified in 15 mitochondrial genes in 51.6% patients. mtDNA mutations were more common in isolated complex I deficiency than in combined complex deficiencies. The 12338T>C, 4833A>G and 14502T>C mutations were common.  相似文献   

6.
Mitochondrial respiratory chain disease represents one of the most common inborn errors of metabolism and is genetically heterogeneous, with biochemical defects arising from mutations in the mitochondrial genome (mtDNA) or the nuclear genome. As such, inheritance of mitochondrial respiratory chain disease can either follow dominant or recessive autosomal (Mendelian) inheritance patterns, the strictly matrilineal inheritance observed with mtDNA point mutations or X-linked inheritance. Parental consanguinity in respiratory chain disease is often assumed to infer an autosomal recessive inheritance pattern, and the analysis of mtDNA may be overlooked in the pursuit of a presumed nuclear genetic defect. We report the histochemical, biochemical and molecular genetic investigations of two patients with suspected mitochondrial disease who, despite being born to consanguineous first-cousin parents, were found to harbour well-characterised pathogenic mtDNA mutations, both of which were maternally transmitted. Our findings highlight that any diagnostic algorithm for the investigation of mitochondrial respiratory chain disease must include a full and complete analysis of the entire coding sequence of the mitochondrial genome in a clinically relevant tissue. An autosomal basis for respiratory chain disease should not be assumed in consanguineous families and that 'maternally inherited consanguineous' mitochondrial disease may thus be going undiagnosed.  相似文献   

7.
Leigh syndrome is a subacute necrotising encephalomyopathy frequently ascribed to mitochondrial respiratory chain deficiency. This condition is genetically heterogeneous, as mutations in both mitochondrial (mt) and nuclear genes have been reported. Here, we report the G13513A transition in the ND5 mtDNA gene in three unrelated children with complex I deficiency and a peculiar MRI aspect distinct from typical Leigh syndrome. Brain MRI consistently showed a specific involvement of the substantia nigra and medulla oblongata sparing the basal ganglia. Variable degrees of heteroplasmy were found in all tissues tested and a high percentage of mutant mtDNA was observed in muscle. The asymptomatic mothers presented low levels of mutant mtDNA in blood leucocytes. This mutation, which affects an evolutionary conserved amino acid (D393N), has been previously reported in adult patients with MELAS or LHON/MELAS syndromes, emphasising the clinical heterogeneity of mitochondrial DNA mutations. Since the G13513A mutation was found in 21% of our patients with Leigh syndrome and complex I deficiency (3/14), it appears that this mutation represents a frequent cause of Leigh-like syndrome, which should be systematically tested for molecular diagnosis in affected children and for genetic counselling in their maternal relatives.  相似文献   

8.
Oxidative phosphorylation deficiencies can be caused by mutations in either the nuclear genome or the mitochondrial genome (mtDNA); however, most pathogenic mutations reported in adults occur in mtDNA. Such mutations often impair mitochondrial translation, and are associated with a characteristic muscle pathology consisting of a mosaic pattern of normal fibres interspersed with fibres that show mitochondrial proliferation (ragged-red fibres) and little or no complex IV (COX) activity. We investigated two adult patients with a severe mitochondrial myopathy in whom all muscle fibres showed mitochondrial proliferation with barely detectable COX activity - a pattern never before reported. Biochemical studies of the respiratory chain in muscle showed decreased activities of complexes I and IV (5% of control) and complex II+III (41% of control). Immunoblot analysis of nuclear and mitochondrial subunits of complexes I, III and IV showed a greater than 90% decrease in the steady-state level of these subunits in mature muscle, but no change in nuclear-encoded subunits of complexes II and V. A generalized mitochondrial translation defect was identified in pulse-label experiments in myotubes, but not in myoblasts cultured from both patients. This defect moved with the nucleus in patient cybrid cells. Myoblasts from one patient transplanted into the muscle bed of SCID mice differentiated into mature human muscle fibres that displayed a defect similar to that seen in the patient muscle. These results suggest a defect in a developmentally regulated nuclear factor important for mitochondrial translation in skeletal muscle.  相似文献   

9.
Mutations in mitochondrial DNA (mtDNA) are frequent in cancers but it is not yet clearly established whether they are modifier events involved in cancer progression or whether they are a consequence of tumorigenesis. Here we show a benign tumor type in which mtDNA mutations that lead to complex I (CI) enzyme deficiency are found in all tumors and are the only genetic alteration detected. Actually renal oncocytomas are homogeneous tumors characterized by dense accumulation of mitochondria and we had found that they are deficient in electron transport chain complex I (CI, NADH-ubiquinone oxidoreductase). In this work total sequencing of mtDNA showed that 9/9 tumors harbored point mutations in mtDNA, seven in CI genes, one in complex III, and one in the control region. 7/8 mutations were somatic. All tumors were somatically deficient for CI. The clonal amplification of mutated mtDNA in 8/9 tumors demonstrates that these alterations are selected and therefore favor or trigger growth. No nuclear DNA rearrangement was detected beside mtDNA defects. We hypothesize that functional deficiency of the oxidative phosphorylation CI could create a loop of amplification of mitochondria during cell division, impair substrates oxidation and increase intermediary metabolites availability.  相似文献   

10.
Diseases caused by nuclear genes affecting mtDNA stability   总被引:10,自引:0,他引:10  
Diseases caused by nuclear genes that affect mitochondrial DNA (mtDNA) stability are an interesting group of mitochondrial disorders, involving both cellular genomes. In these disorders, a primary nuclear gene defect causes secondary mtDNA loss or deletion formation, which leads to tissue dysfunction. Therefore, the diseases clinically resemble those caused by mtDNA mutations, but follow a Mendelian inheritance pattern. Several clinical entities associated with multiple mtDNA deletions have been characterized, the most frequently described being autosomal dominant progressive external ophthalmoplegia (adPEO). MtDNA depletion syndrome (MDS) is a severe disease of childhood, in which tissue-specific loss of mtDNA is seen. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) patients may have multiple mtDNA deletions and/or mtDNA depletion. Recent reports of thymidine phosphorylase mutations in MNGIE and adenine nucleotide translocator mutations in adPEO have given new insights into the mechanisms of mtDNA maintenance in mammals. The common mechanism underlying both of these gene defects could be disturbed mitochondrial nucleoside pools, the building blocks of mtDNA. Future studies on MNGIE and adPEO pathogenesis, and identification of additional gene defects in adPEO and MDS will provide further understanding about the mammalian mtDNA maintenance and the crosstalk between the nuclear and mitochondrial genomes.  相似文献   

11.
Stem cells accumulate mitochondrial DNA (mtDNA) mutations resulting in an observable respiratory chain defect in their progeny, allowing the mapping of stem cell fate. There is considerable uncertainty in prostate epithelial biology where both basal and luminal stem cells have been described, and in this study the clonal relationships within the human prostate epithelial cell layers were explored by tracing stem cell fate. Fresh-frozen and formalin-fixed histologically-benign prostate samples from 35 patients were studied using sequential cytochrome c oxidase (COX)/succinate dehydrogenase (SDH) enzyme histochemistry and COX subunit I immunofluorescence to identify areas of respiratory chain deficiency; mtDNA mutations were identified by whole mitochondrial genome sequencing of laser-captured areas. We demonstrated that cells with respiratory chain defects due to somatic mtDNA point mutations were present in prostate epithelia and clonally expand in acini. Lineage tracing revealed distinct patterning of stem cell fate with mtDNA mutations spreading throughout the whole acinus or, more commonly, present as mosaic acinar defects. This suggests that individual acini are typically generated from multiple stem cells, and the presence of whole COX-deficient acini suggests that a single stem cell can also generate an entire branching acinar subunit of the gland. Significantly, a common clonal origin for basal, luminal and neuroendocrine cells is demonstrated, helping to resolve a key area of debate in human prostate stem cell biology.  相似文献   

12.
目的 研究唐氏综合征中线粒体DNA突变情况.方法 采用高通量测序和焦磷酸测序检测7个唐氏综合征(Down's syndrome,DS)家系中的患儿和母亲的线粒体基因组序列,分析线粒体基因组序列的变化情况.结果 ①DS患儿中检测到36个与其母亲中不同的线粒体DNA突变,其中14个位点是首次在唐氏综合征样本中发现;②36个线粒体DNA突变主要发生于D-Loop区和线粒体复合物Ⅰ中;③ 线粒体基因组13个编码基因中,有11个基因检测到线粒体DNA的突变;④ 焦磷酸测序对线粒体基因组杂合突变频率的检测结果和高通量测序结果吻合.结论 DS患儿中广泛存在线粒体DNA的突变,这些突变可能与唐氏综合征的线粒体功能异常相关.  相似文献   

13.
目的对两个中国Leber遗传性视神经病变(Leber’shereditary optic neuropathy,LHON)家系的临床和分子遗传学特征进行分析。方法眼科临床检查发现在这两个家系中只有先证者1人出现视力障碍,发病年龄分别为10岁和17岁。对这两个家系先证者使用24对有部分重叠的引物进行线粒体DNA(mitochondrial DNA,mtDNA)全序列扩增分析。结果没有发现mtDNAG11778A、G3460A和T14484C3个常见的突变位点,而发现了与LHON相关的ND4G11196A同质性突变位点的存在,在167名正常对照只发现1例G11696A突变。结论线粒体DNA全序列分析发现两个家系呈现独特的mtDNA多态性,都属于东亚单体型D4。不完全外显率和正常对照频率(1/167)表明G11696A突变本身不足以导致LHON的发生,说明其它因素在这两个LHON家系的表型表达中也起一定的作用。在这些家系mtDNA中缺乏影响重要功能突变位点的存在,排除了线粒体背景对LHON临床表型的影响。因此,核修饰基因、环境因素可能对两个中国G11696A突变家系的外显率和发病严重程度起促进作用。  相似文献   

14.
NADH-ubiquinone oxidoreductase (complex I) deficiency is amongst the most encountered defects of the mitochondrial oxidative phosphorylation (OXPHOS) system and is associated with a wide variety of clinical signs and symptoms. Mutations in complex I nuclear structural genes are the most common cause of isolated complex I enzyme deficiencies. The cell biological consequences of such mutations are poorly understood. In this paper we have used blue native electrophoresis in order to study how different nuclear mutations affect the integrity of mitochondrial OXPHOS complexes in fibroblasts from 15 complex I-deficient patients. Our results show an important decrease in the levels of intact complex I in patients harboring mutations in nuclear-encoded complex I subunits, indicating that complex I assembly and/or stability is compromised. Different patterns of low molecular weight subcomplexes are present in these patients, suggesting that the formation of the peripheral arm is affected at an early assembly stage. Mutations in complex I genes can also affect the stability of other mitochondrial complexes, with a specific decrease of fully-assembled complex III in patients with mutations in NDUFS2 and NDUFS4. We have extended this analysis to patients with an isolated complex I deficiency in which no mutations in structural subunits have been found. In this group, we can discriminate between complex I assembly and catalytic defects attending to the fact whether there is a correlation between assembly/activity levels or not. This will help us to point more selectively to candidate genes for pathogenic mutations that could lead to an isolated complex I defect.  相似文献   

15.
Complex I deficiency is the most frequent mitochondrial disorder presenting in childhood, accounting for up to 30% of cases. As with many mitochondrial disorders, complex I deficiency is characterised by marked clinical and genetic heterogeneity, leading to considerable diagnostic challenges for the clinician, not least because of the involvement of two genomes. The most prevalent clinical presentations include Leigh syndrome, leukoencephalopathy and other early-onset neurodegenerative disorders; fatal infantile lactic acidosis; hypertrophic cardiomyopathy; and exercise intolerance. Causative genetic defects may involve the seven mitochondrial-encoded or 38 nuclear-encoded subunits of the enzyme, or any of an increasing number of assembly factors implicated in the correct biosynthesis of complex I within the inner mitochondrial membrane. In this review, we discuss recent advances in knowledge of the structure, function and assembly of complex I and how these advances, together with new high-throughput genetic screening techniques, have translated into improved genetic diagnosis for affected patients and their families. Approximately 25% of cases have mitochondrial DNA mutations, while a further ~25% have mutations in a nuclear subunit or in one of nine known assembly factors. We also present a systematic review of all published cases of nuclear-encoded complex I deficiency, including 117 cases with nuclear subunit mutations and 55 with assembly factor mutations, and highlight clinical, radiological and biochemical clues that may expedite genetic diagnosis.  相似文献   

16.
Patients with mitochondrial disease usually manifest multisystemic dysfunction with a broad clinical spectrum. When the tests for common mitochondrial DNA (mtDNA) point mutations are negative and the mtDNA defects are still hypothesized, it is necessary to screen the entire mitochondrial genome for unknown mutations in order to confirm the diagnosis. We report an 8-year-old girl who had a long history of ragged-red fiber myopathy, short stature, and deafness, who ultimately developed renal failure and fatal cardiac dysfunction. Respiratory chain enzyme analysis on muscle biopsy revealed deficiency in complexes I, II/III, and IV. Whole mitochondrial genome sequencing analysis was performed. Three novel changes: homoplasmic 15458T > C and 15519T > C in cytochrome b, and a near homoplasmic 5783G > A in tRNA(cys), were found in the proband in various tissues. Her mother and asymptomatic sibling also carry the two homoplasmic mutations and the heteroplasmic 5783G > A mutation in blood, hair follicles, and buccal cells, at lower percentage. The 5783G > A mutation occurs at the T arm of tRNA(cys), resulting in the disruption of the stem structure, which may reduce the stability of the tRNA. 15458T > C changes an amino acid serine to proline at a conserved alpha-helix, which may force the helix to bend. These two mutations may have pathogenic significance. This case emphasizes the importance of pursuing more extensive mutational analysis of mtDNA in the absence of common mtDNA point mutations or large deletions, when there is a high suspicion of a mitochondrial disorder.  相似文献   

17.
Leber's hereditary optic neuropathy (LHON), the most frequent mitochondrial disorder, is mostly due to three mitochondrial DNA (mtDNA) mutations in respiratory chain complex I subunit genes: 3460/ND1, 11778/ND4 and 14484/ND6. Despite considerable clinical evidences, a genetic modifying role of the mtDNA haplogroup background in the clinical expression of LHON remains experimentally unproven. We investigated the effect of mtDNA haplogroups on the assembly of oxidative phosphorylation (OXPHOS) complexes in transmitochondrial hybrids (cybrids) harboring the three common LHON mutations. The steady-state levels of respiratory chain complexes appeared normal in mutant cybrids. However, an accumulation of low molecular weight subcomplexes suggested a complex I assembly/stability defect, which was further demonstrated by reversibly inhibiting mitochondrial protein translation with doxycycline. Our results showed differentially delayed assembly rates of respiratory chain complexes I, III and IV amongst mutants belonging to different mtDNA haplogroups, revealing that specific mtDNA polymorphisms may modify the pathogenic potential of LHON mutations by affecting the overall assembly kinetics of OXPHOS complexes.  相似文献   

18.
We present the current knowledge on the genetic and phenotypic aspects of mitochondrial DNA depletion syndromes. The human mitochondrial DNA encodes 13 of the 82 structural proteins of the mitochondrial electron transport chain. The replication and maintenance of the mtDNA require a large number of nuclear encoded enzymes and balanced nucleotide pools. Mitochondrial nucleotide synthesis is of major importance because of the constant need for nucleotides for mtDNA maintenance even in quiescent cells. As de novo enzymes are not present in the mitochondria, synthesis is accomplished via the salvage pathway. Defective mtDNA synthesis and maintenance manifest by multiple deletions or by depletion of the mitochondrial genome. Patients with multiple deletions typically present with progressive external ophthalmoplegia, ptosis and, exercise intolerance after the first decade of life. mtDNA depletion is usually an infantile disease characterized by severe muscle weakness, hepatic failure, or renal tubulopathy with fatal outcome. Linkage analysis in families with multiple mtDNA deletions reveal mutations in proteins that participate in mtDNA replication, the mitochondrial DNA polymerase gene, and the Twinkle gene, a putative mitochondrial helicase and in factors which play a role in mitochondrial nucleotide metabolism, the adenine nucleotide translocator, and the thymidine phosphorylase gene. We have recently identified mutations in an additional two essential proteins in the nucleotide salvage pathway, the mitochondrial deoxyribonucleoside kinases. The phenotype was distinctive for each gene, with hepatic failure and encephalopathy associated with mutations in the deoxyguanosine kinase gene and isolated devastating myopathy as the sole manifestation of thymidine kinase 2 deficiency. The tissue selectivity of these disorders and especially the exclusive muscle involvement in thymidine kinase 2 mutations is puzzling. The normal sequence of the remaining mtDNA copies in spite of a serious mitochondrial nucleotide imbalance is also unexpected. We propose several tissue-specific protective mechanisms and a time window, likely encompassing fetal life and even early infancy, during which nuclear nucleotide synthesis provides mitochondrial needs in all organs. We also speculate on future genes to be discovered in other phenotypes of mtDNA depletion.  相似文献   

19.
Analysis of disease-causing mutations in mitochondria genome requires rapid and reliable genetic approaches. However, the preparation of mitochondrial DNA (mtDNA) probe used for the determination of quantitative and qualitative mtDNA defects is time-consuming, cumbersome, and requires complicated instrumentation. To overcome the difficulties encountered during isolation and purification of mtDNA, the authors developed an alternative method based on polymerase chain reaction (PCR) amplification of whole mtDNA genome. In this study, they show that PCR-amplified and fluorescein-labeled mtDNA probe makes it possible, through Southern blot analysis, to identify quantitative defect of mtDNA. The results indicate that mtDNA probe can be prepared rapidly by PCR amplification and used to determine the level of mtDNA in the patients with mitochondrial diseases.  相似文献   

20.
Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome   总被引:13,自引:0,他引:13  
Respiratory chain complex I deficiency represents a genetically heterogeneous group of diseases resulting from mutations in mitochondrial or nuclear genes. Mutations have been reported in 13 of the 14 subunits encoding the core of complex I (seven mitochondrial and six nuclear genes) and these result in Leigh or Leigh-like syndromes or cardiomyopathy. In this study, a combination of denaturing high performance liquid chromatography and sequence analysis was used to study the NDUFS3 gene in a series of complex I deficient patients. Mutations found in this gene (NADH dehydrogenase iron-sulphur protein 3), coding for the seventh and last subunit of complex I core, were shown to cause late onset Leigh syndrome, optic atrophy, and complex I deficiency. A biochemical diagnosis of complex I deficiency on cultured amniocytes from a later pregnancy was confirmed through the identification of disease causing NDUFS3 mutations in these cells. While mutations in the NDUFS3 gene thus result in Leigh syndrome, a dissimilar clinical phenotype is observed in mutations in the NDUFV2 and NDUFS2 genes, resulting in encephalomyopathy and cardiomyopathy. The reasons for these differences are uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号