首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombus formation is the important pathologic finding observed in glomerulonephritis induced by antiglomerular basement membrane (GBM) antibodies. Although strong deposition of C3 and membrane attack complex (MAC) is observed in this disease, the role of complement has not been fully elucidated. The aim of this work was to investigate the role of complement, especially an anaphylatoxin C5a, in a rat model of thrombotic glomerulonephritis. Rats were first pretreated with subclinical dose of lipopolysaccharide (LPS). Thrombotic glomerulonephritis was then induced by intravenous injection with rabbit antirat GBM (RbAGBM) (Group I). For the evaluation of the role of complement, the soluble complement receptor type 1 (sCR1) (Group II) or the C5a receptor antagonist peptide (C5aR-AP) (Group III) was intravenously administered 30 min before RbAGBM injection. For exploring the role of neutrophils, rats were pretreated with cyclophosphamide before induction of disease (Group IV). All rats were sacrificed at 6 h, and histological examination was performed. Rats in Group I developed severe glomerular thrombosis. Leucocyte accumulation and strong binding of C3 and MAC were observed in the glomeruli. In rats treated with sCR1 (Group II) and C5aR-AP (Group III), both leucocyte accumulation and thrombus formation in the glomeruli were significantly inhibited. C3 and MAC were negative in the glomeruli in Group II rats, while they were strongly observed in Group III. In neutrophil depleted rats (Group IV), there was also deposition of C3 and MAC in the glomeruli but thrombus formation was not observed. These findings indicated that glomerular thrombosis is dependent on the leucocytes, and mediated in part by the anaphylatoxin C5a but not MAC in the present model.  相似文献   

2.
Complement activation has been implicated in the pathogenesis of human rheumatoid arthritis. We sought to determine whether inhibition of complement (C) using sCR1 could influence the development and progression of antigen arthritis in the rat, a recognized model of human chronic synovitis. The effect of C inhibition, systemically and locally, on three different stages of disease was examined: (i) prophylaxis, (ii) treatment of established inflammation, and (iii) prevention of antigen-induced flares of disease. Arthritis was assessed by knee swelling and by histological examination. Our results show that intra-articular injection of sCR1 prior to disease onset reduced joint swelling and development of arthritis, whereas systemic administration was ineffective. Treatment of established arthritis with intra-articular sCR1 3 days after disease onset caused a transient reduction in swelling, but treatment 7 days after disease onset had no effect on disease. An intra-articular dose of sCR1 given at the time of disease flares had a small, yet significant effect on knee swelling. We conclude that complement activation is important in the initiation and maintenance of inflammation in antigen arthritis. The potent effect of local C inhibition suggests that C biosynthesis and activation within the joint contributes to inflammation in this model of arthritis.  相似文献   

3.
Complement activation is a crucial early event in Wallerian degeneration. In this study we show that treatment of rats with soluble complement receptor 1 (sCR1), an inhibitor of all complement pathways, blocked both systemic and local complement activation after crush injury of the sciatic nerve. Deposition of membrane attack complex (MAC) in the nerve was inhibited, the nerve was protected from axonal and myelin breakdown at 3 days after injury, and macrophage infiltration and activation was strongly reduced. We show that both classical and alternative complement pathways are activated after acute nerve trauma. Inhibition of the classical pathway by C1 inhibitor (Cetor) diminished, but did not completely block, MAC deposition in the injured nerve, blocked myelin breakdown, inhibited macrophage infiltration, and prevented macrophage activation at 3 days after injury. However, in contrast to sCR1 treatment, early signs of axonal degradation were visible in the nerve, linking MAC deposition to axonal damage. We conclude that sCR1 protects the nerve from early axon loss after injury and propose complement inhibition as a potential therapy for the treatment of diseases in which axon loss is the main cause of disabilities.  相似文献   

4.
Complement is both an effector of the humoral immune response and a stimulator of leukocyte activation. To examine the influence of complement on the allograft response, we inhibited complement using recombinant human soluble complement receptor-1 (sCR1; TP10), in an unsensitized model of rat renal allograft rejection. Lewis to DA renal transplant recipients were treated daily with 25 mg/kg sCR1 or saline and sacrificed on days 1 to 5 after transplant. Transplanted organs were examined histologically and immunohistochemically for leukocyte subset markers and for the third component of complement, C3, and membrane attack complex deposition. A second set of recipients was followed from day 5 to day 9 to assess graft survival. sCR1-treated recipients displayed > 90% inhibition of plasma complement activity and a marked reduction in tissue C3 and membrane attack complex deposition. Inactivation of complement reduced the vascular injury such that there was almost complete sparing of vascular damage in day 5 sCR1-treated rats. There was a significant reduction in infiltrating leukocytes by day 5 after transplant, and complement inhibition delayed the time to reach a histologically defined end point of graft survival from 5 days in controls to 9 days in the sCR1-treated group. These results imply that the vascular and cell-mediated injury arises, in part, from complement activation. The partial inhibition of these injuries by sCR1 may have functional implications for strategies to inhibit allograft rejection.  相似文献   

5.
《Autoimmunity》2013,46(7):460-470
Abstract

Blockade of the complement cascade at the C5a/C5a receptor (C5aR)-axis is believed to be an attractive treatment avenue in rheumatoid arthritis (RA). However, the effects of such interventions during the early phases of arthritis remain to be clarified. In this study we use the murine delayed-type hypersensitivity arthritis (DTHA) model to study the very early effects of a blocking, non-depleting anti-C5aR mAb on joint inflammation with treatment synchronised with disease onset, an approach not previously described. The DTHA model is a single-paw inflammatory arthritis model characterised by synchronised and rapid disease onset driven by T-cells, immune complexes and neutrophils. We show that a reduction in paw swelling, bone erosion, cartilage destruction, synovitis and new bone formation is apparent as little as 60?h after administration of a single dose of a blocking, non-depleting anti-mouse C5aR mAb. Importantly, infiltration of neutrophils into the joint and synovium is also reduced following a single dose, demonstrating that C5aR signalling during the early stage of arthritis regulates neutrophil infiltration and activation. Furthermore, the number of T-cells in circulation and in the draining popliteal lymph node is also reduced following a single dose of anti-C5aR, suggesting that modulation of the C5a/C5aR axis results in effects on the T cell compartment in inflammatory arthritis. In summary, these data demonstrate that blockade of C5aR leads to rapid and significant effects on arthritic disease development in a DTHA model strengthening the rationale of C5aR-blockade as a treatment strategy for RA, especially during the early stages of arthritis flare.  相似文献   

6.
Complement activation has a deep pathogenic influence in immunoglobulin (Ig)A nephropathy (IgAN). C3a and C5a, small cleavage fragments generated by complement activation, are key mediators of inflammation. The fragments exert broad proinflammatory effects by binding to specific receptors (C3aR and C5aR, respectively). However, no studies thus far have investigated the effects of C3a, C5a and their receptors on IgAN. We observed that C3aR and C5aR antagonists repressed IgA‐induced cell proliferation and interleukin (IL)‐6 and monocyte chemotactic protein 1 (MCP‐1) production in cultured human mesangial cells (HMCs). Furthermore, an IgAN mouse model induced by Sendai virus infection was employed to investigate the effects of C3aR and C5aR on IgAN in vivo for the first time. Wild‐type (WT) and several knock‐out mouse strains (C3aR–/– or C5aR–/–) were immunized intranasally with increasing doses of inactivated virus for 14 weeks and were subjected to two intravenous viral challenges during the time‐period indicated. In the Sendai virus‐induced IgAN model, C3aR/C5aR‐deficient mice had significantly reduced proteinuria, lower renal IgA and C3 deposition, less histological damage and reduced mesangial proliferation compared with WT mice. Both C3aR deficiency and C5aR deficiency, especially C3aR deficiency, inhibited renal tumour necrosis factor (TNF)‐α, transforming growth factor (TGF)‐β, IL‐1β, IL‐6 and MCP‐1 expression significantly. However, C3aR/C5aR‐deficient and WT mice with IgAN did not differ with respect to their blood urea nitrogen (BUN) and serum creatinine levels. Our findings provide further support for the idea that C3aR and C5aR are crucially important in IgAN, and suggest that pharmaceutically targeting C3aR/C5aR may hold promise for the treatment of IgAN.  相似文献   

7.
Human retinal pigment epithelial (RPE) cells form part of the blood-retina barrier where they potentially can regulate leucocyte function. RPE cells are known to secrete several cytokines in response to stimulation by other cytokines. Anaphylatoxin C5a, a potent inflammatory mediator produced during complement activation, binds to G-protein coupled C5a receptors (C5aR) on monocytes/macrophages and releases various cytokines from the cells. We previously reported that the human RPE cell line ARPE-19 possesses C5aR and expresses IL-8 mRNA in response to C5a stimulation. In this study, we used a primary human RPE cell line (RPE43) and found that C5a induces increased expression of IL-1beta, IL-6, MCP-1 and GM-CSF mRNAs as well as IL-8 mRNA. ARPE-19 cells showed similar increases in the same cytokines. Interestingly, the kinetics of expression of the various cytokines differed. These results provide further evidence that C5a stimulation of RPE cells may play a role in regulating leucocyte function during ocular inflammation in which there is complement activation.  相似文献   

8.
BACKGROUND: In rats primed with a trace amount of lipopolysaccharide (LPS), acute lethal shock is induced following the injection of monoclonal antibody against a membrane inhibitor of complement (anti-Crry). Administration of cobra venom factor to exhaust complement before the LPS priming can prevent the lethal reaction. Therefore, we evaluated whether soluble complement receptor type 1 (sCR1), which inhibits complement reaction, can interfere with lethal shock when administered after LPS priming or even after anti-Crry injection. METHODS: sCR1 was administered intravenously before or after the administration of anti-Crry, and the effects on blood pressure and acute lethality were determined. RESULTS: Administration of sCR1 could rescue rats from lethal shock even when it was administered after anti-Crry injection, which immediately causes a blood pressure decrease leading to lethal shock. CONCLUSION: sCR1 may be an effective treatment for acute shock involving complement activation.  相似文献   

9.
sCR1-SCR15-18蛋白减轻补体介导的大鼠脑缺血/再灌注损伤   总被引:1,自引:0,他引:1  
目的: 探讨补体在大鼠大脑缺血/再灌注(ischemia-reperfusion,I/R)损伤中的作用及重组人可溶性补体受体Ⅰ型SCR15-18蛋白(sCR1-SCR15-18)的保护作用。方法: 75只雄性SD大鼠,随机分为假手术组、I/R组和sCR1 -SCR15-18保护组。采用线栓法建立大鼠大脑中动脉闭塞模型(middle cerebral artery occlusion MCAO),缺血2 h,再灌注24 h后,进行神经功能学评分,测定脑梗死体积、大脑皮质髓过氧化物酶(myeloperoxidase,MPO)活性,观察大脑皮质区补体C3b沉积和病理改变。结果: 缺血/再灌注24 h后,sCR1-SCR15-18保护组神经功能学评分,脑梗死体积及脑皮质MPO活性明显低于I/R组(P<0.05);sCR1 -SCR15-18保护组缺血脑组织补体C3b沉积明显减少,病理损伤减轻。结论: 补体在脑I/R损伤中起一定作用,sCR1-SCR15-18蛋白对大鼠I/R损伤脑具有保护作用。  相似文献   

10.
The complement C5 anaphylatoxin receptor is a member of the seven transmembrane-spanning G protein-coupled receptor superfamily that signals through Gcxi and Gtz16. C5aR is mostly expressed on neutrophils, macrophages and endothelial cells. C5a and C5aR interaction plays an important role in numerous biological effects such as in vivo cytokine storm which results in inflammatory damage. Considering the limitation of collection of human peripheral blood neutrophils and their short half life, the stably transfected cell line for studying the biological effects of C5aR is needed. In this study, we transfected C5aR gene into Molt-4 cell line and examined the function of ectopic C5aR. Our results showed stable expression of the C5aR in Molt-4 cell line and their interaction with human C5a induced ERKI/2 phosphorylation, Ca++ influx. This stable transfected cell line may provide a useful tool for studying signal pathways related to C5a and C5aR interplay and antibody development specific for C5aR. Cellular & Molecular Immunology.  相似文献   

11.
The human complement receptor type 1 (CR1, CD35), is a single-chain glycoprotein consisting of 30 repeating homologous protein domains known as short consensus repeats (SCR) followed by transmembrane and cytoplasmic domains. The SCR themselves, considered in groups of seven, form long homologous repeats (LHR) which have been designated LHR-A, -B, -C, and -D for the most common human allotype of CR1. A soluble deletion mutant of CR1 which lacks the first seven N-terminal SCR (LHR-A) as well as the transmembrane and cytoplasmic domains was produced and characterized. The resulting protein, designated sCR1[desLHR-A], lacks the C4b binding site found in LHR-A, but retains the two C3b binding sites found in LHR-B and -C, respectively. The functional activities of sCR1[desLHR-A] were quantitatively compared in vitro to those of soluble complement receptor type 1 (sCR1) which has been shown to retain all known functions of the native cell surface receptor. sCR1[desLHR-A] and sCR1 competed equally for the binding of dimeric C3b to erythrocyte CR1. sCR1[desLHR-A] and sCR1 were similar in their capacity to serve as a cofactor in the factor I-mediated degradation of the C3b and C4b α chains. sCR1[desLHR-A] and sCR1 were comparable in their capacity to inhibit erythrocyte lysis and anaphylatoxin production mediated by the alternative complement pathway. sCR1[desLHR-A], however, was significantly less effective an inhibitor of erythrocyte lysis and anaphylatoxin production than sCR1 under conditions which allow classical pathway activation. These results demonstrate sCR1[desLHR-A] to be a selective inhibitor of the alternative complement pathway in vitro.  相似文献   

12.
Appropriate complement inhibition is an absolute requirement for normal pregancy. Uncontrolled complement activation in the maternal-fetal interface leads to fetal death. Here we show that complement activation is a crucial and early mediator of pregnancy loss in two different mouse models of pregnancy loss. Using a mouse model of fetal loss and growth restriction (IUGR) induced by antiphospholipid antibodies (aPL), we examined the role of complement activation in fetal loss and IUGR. We found that C5a-C5aR interaction and neutrophils are key mediators of fetal injury. Treatment with heparin, the standard therapy for pregnant patients with aPL, prevents complement activation and protects mice from pregnancy complications induced by aPL, and anticoagulants that do not inhibit complement do not protect pregnancies. In an antibody-independent mouse model of spontaneous miscarriage and IUGR (CBA/JxDBA/2) we also identified C5a as an essential mediator. Complement activation caused dysregulation of the angiogenic factors required for normal placental development. In CBA/JxDBA/2 mice, we observed inflammatory infiltrates in placentas, functional deficiency of free vascular endothelial growth factor (VEGF), elevated levels of soluble VEGF receptor-1 (sVEGFR-1, also known as sFlt-1; a potent anti-angiogenic molecule), and defective placental development. Inhibition of complement activation blocked the increase in sVEGFR-1 and rescued pregnancies. Our studies in antibody-dependent and antibody-independent models of pregnancy complications identified complement activation as the key mediator of damage and will allow development of new interventions to prevent pregnancy loss and IUGR.  相似文献   

13.
Complement activation is traditionally thought to occur in the extracellular space. However, it has been suggested that complement proteins are activated and function at additional locations. T cells contain intracellular stores of C3 and C5 that can be cleaved into C3a and C5a and bind to intracellular receptors, which have been shown to be of vital importance for the differentiation and function of these cells. However, whether the origin of the complement proteins located within T cells is derived from endogenous produced complement or from an uptake dependent mechanism is unknown.The presence of intracellular C3 in T cells from normal donors was investigated by fluorescence microscopy and flow cytometry. Moreover, mRNA expression levels of several genes encoding for complement proteins with primary focus on C3, C3aR, C5 and C5aR1 during resting state and upon activation of CD4+ T cells were investigated by a quantitative PCR technique. Furthermore, the gene expression level was evaluated at different time points.We confirmed the presence of intracellular C3 protein in normal T-cells. However, we could not see any increase in mRNA levels using any activation strategy tested. On the contrary, we observed a slight increase in C3 and C5aR1 mRNA only in the non-activated T-cells compared to the activated T cells, and a decrease in the activated T-cells at different incubation time points.Our results show that there is a baseline intracellular expression of the complement C3, C5, C3aR and C5aR1 genes in normal CD4+ T cells, but that expression is not increased during T-cell activation, but rather down regulated. Thus, the pool of intracellular complement in CD4+ T cells may either be due to accumulated complement due low-grade expression or arise from the circulation from an uptake dependent mechanism, but these possibilities are not mutually exclusive.  相似文献   

14.
We set out to determine whether inhibition of complement using sCR1 could influence the development and progression of collagen arthritis in the Lewis rat. Collagen arthritis was successfully established in the Lewis rat, using a novel immunization schedule. In separate experiments, cobra venom factor (CVF) and sCR1 were used to achieve systemic complement inhibition. Their respective effects on disease onset and on the progression of established disease compared with saline-treated control animals was explored. Arthritis was assessed by measurement of clinical score, paw diameter and paw volume. Complement inhibition using either CVF or sCR1, prior to the onset of clinical signs of inflammation, delayed the development of disease. CVF was ineffective in the treatment of established disease, whereas sCR1 delayed the progression of disease in affected joints and prevented the recruitment of further joints while the animals were complement-depleted. In the control saline-treated groups the disease continued to progress relentlessly. We conclude that complement activation is important in the initiation and maintenance of inflammation in collagen arthritis. The potent disease-modulating effect of sCR1 provides persuasive evidence that specific complement inhibiting agents may be an effective approach to the treatment of inflammatory joint diseases  相似文献   

15.
Intraarticular injection of interferon inducer, double-stranded polyinosinate-polycytidylate (Poly I · C) caused acute synovitis in rats. This acute inflammatory response was accompanied by an increased concentration of prostaglandin E (PGE) in the synovial tissue. Double-stranded polyadenylate-polyuridylate (Poly A · Poly U) was less potent than Poly I · Poly C in inducing synovitis and increasing PGE concentration, while single-stranded polyinosinate (Poly I) or polycytidylate (Poly C) were inactive in these respects. Intraarticular injection of partially purified mouse fibroblast interferon also induced synovial inflammation. The present results suggest that interferon may be a mediator of viral inflammatory responses.Investigation supported in part by a grant from the Chief Scientist's Office, Ministry of Health, Israel.  相似文献   

16.
Decay-accelerating factor (DAF), a membrane inhibitor of homologous complement activation, is present in synovial cells lining joint space and detected in synovial fluid. DAF is considered to protect synovial membrane from complement-mediated injury associated with articular inflammation. We studied the immunohistopathological features of DAF molecules in synovial membrane of rheumatoid synovitis using a DAF-specific monoclonal antibody, 1C6. Reacting molecules with the 1C6 antibodies in synovial tissue extracts formed a 70-kD band in Western blot analysis. DAF was strongly detected on the flat synovial lining cells, but weakly on the hyperplastic and multi-layered lining cells in rheumatoid synovitis. The latter cells reacted with anti-Leu-M3 antibodies specific for a cell surface marker of activated macrophages, sometimes accompanied by C3 and IgM deposition on the superficial synovial membrane. These results suggest that active rheumatoid synovitis characteristically with hyperplastic synovial lining cells is out of control by DAF, thereby permitting further complement-mediated injury.  相似文献   

17.
We examined the effect of soluble complement receptor type 1 (sCR1) on mucosal injury and inflammation in a rat model of ischemia/reperfusion. Groups of vehicle- and sCR1-treated rats underwent 30 min of mesenteric ischemia followed by 60 or 120 min of reperfusion. When compared to vehicle-treated rats, treatment with sCR1 (12 mg/kg) prior to 120 min of reperfusion significantly reduced mucosal injury, neutrophil infiltration, leukotriene B4 production, and restored villus height to control levels. The protective effect of sCR1 evident at 120 min of reperfusion was not observed at 60 min of reperfusion despite rapid inactivation of complement. These data suggest that complement inhibition minimized mucosal disruption by facilitating mucosal restitution or interrupting the inflammatory process. Delayed administration of sCR1 for 30 or 60 min into the reperfusion period progressively reduced the protection. sCR1-mediated rapid recovery of rat intestine after ischemia/reperfusion underscores the fundamental role of complement activation in neutrophil-mediated tissue injury.  相似文献   

18.
Inflammation has been suggested as a mechanism underlying the development of alcoholic hepatitis (AH). The activation of the complement system plays an important role in inflammation. Although it has been shown that ethanol-induced activation of the complement system contributes to the pathophysiology of ethanol-induced liver injury in mice, whether ethanol consumption activates the complement system in the human liver has not been investigated. Using antibodies against C1q, C3, and C5, the immunoreactivity of the complement system in patients with AH was examined by immunohistochemistry and quantified by morphometric image analysis. The immunoreactivity intensity of C1q, C3, and C5 in patients with AH was significantly higher than that seen in normal controls. Further, the gene expression of C1q, C3, and C5 was examined using real-time PCR. There were increases in the levels of C1q and C5, but not C3 mRNA in AH. Moreover, the immunoreactivity of C5a receptor (C5aR) also increased in AH. To explore the functional implication of the activation of the complement system in AH, we examined the colocalization of C5aR in Mallory–Denk bodies (MDBs) forming balloon hepatocytes. C5aR was focally overexpressed in the MDB forming cells. Collectively, our study suggests that alcohol consumption increases the activity of the complement system in the liver cells, which contributes to the inflammation-associated pathogenesis of AH.  相似文献   

19.
Cadaveric renal transplants suffer frequently from delayed graft function, which is associated with increased risk for long-term graft survival loss. One-third of kidney grafts that are stored in current organ preservation solutions experience delayed graft function, demonstrating the urgent need for improvement. Although ischaemic graft injury is complex in nature, complement activation is considered important to the process. Here we show that pharmacological targeting of the complement 5a receptor (C5aR) during cold ischaemia has a protective effect on early kidney graft survival, inflammation and apoptosis in a mouse model of syngeneic kidney transplantation. Graft survival of kidneys that were stored in University of Wisconsin solution in the presence of a C5aR antagonist increased from 29% to 57%. Increased graft survival was associated with less tubular damage and apoptosis, protection from sustained C5aR expression and decreased production of tumour necrosis factor-alpha and macrophage inflammatory protein-2. In a translational approach, we determined C5aR expression in paediatric living-related and cadaveric allografts. C5aR expression was significantly higher in all compartments of kidneys from cadaveric compared with kidneys from living-related donors. C5aR expression in cadaveric kidneys correlated positively with cold ischaemia time, renal dysfunction and the frequency of apoptotic tubular cells, suggesting a novel role for C5a in delayed graft function pathogenesis. Supplementing organ preservation solutions with C5aR inhibitors may improve early graft function following cadaveric kidney transplantation.  相似文献   

20.
Studies have implicated tumour necrosis factor-alpha (TNF-alpha) in type-II collagen (CII)-induced arthritis (CIA), a well established animal model of human rheumatoid arthritis. Precisely how TNF is involved in CIA is not yet clear. In this study the effects of TNF on CIA were examined, independent of its potential effects on the immune response, by performing peri-articular injection of TNF in combination with passive immunization of rats. A sub-arthritic dose (5 mg) of affinity-purified anti-CII IgG, which alone was insufficient to induce spontaneous clinical arthritis, was used throughout the study. Obvious clinical arthritis that persisted for several days was rapidly induced by injections of 100 ng TNF into hindpaws of rats that were passively immunized shortly before the TNF injection. Injections of TNF in non-immunized control rats did not induce clinical arthritis, nor did buffer-only injections in passively immunized controls. The clinical arthritic response was a local phenomenon, limited only to the TNF-injected hindpaws. No swelling was observed in the opposite, buffer-injected hindpaws, indicating the effects of TNF were not systemic. Depletion of peripheral blood phagocytes with anti-rat neutrophil antiserum before passive immunization completely abolished the ability of TNF to induce clinical arthritis, identifying phagocytic cells as the essential target cells in evoking this arthritic response. A role for complement activation was also demonstrated in this model through the use of a soluble recombinant version of CD35, the cell surface complement receptor type-1 (sCR1, BRL55730), which significantly reduced TNF-induced arthritis in phagocyte-replete rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号