首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple signaling pathways involving protein kinase C (PKC) have been implicated in the development of cardiac hypertrophy. We observed that a putative PKC inhibitor, PICOT (PKC-Interacting Cousin Of Thioredoxin) was upregulated in response to hypertrophic stimuli both in vitro and in vivo. This suggested that PICOT may act as an endogenous negative feedback regulator of cardiac hypertrophy through its ability to inhibit PKC activity, which is elevated during cardiac hypertrophy. Adenovirus-mediated gene transfer of PICOT completely blocked the hypertrophic response of neonatal rat cardiomyocytes to enthothelin-1 and phenylephrine, as demonstrated by cell size, sarcomere rearrangement, atrial natriuretic factor expression, and rates of protein synthesis. Transgenic mice with cardiac-specific overexpression of PICOT showed that PICOT is a potent inhibitor of cardiac hypertrophy induced by pressure overload. In addition, PICOT overexpression dramatically increased the ventricular function and cardiomyocyte contractility as measured by ejection fraction and end-systolic pressure of transgenic hearts and peak shortening of isolated cardiomyocytes, respectively. Intracellular Ca(2+) handing analysis revealed that increases in myofilament Ca(2+) responsiveness, together with increased rate of sarcoplasmic reticulum Ca(2+) reuptake, are associated with the enhanced contractility in PICOT-overexpressing cardiomyocytes. The inhibition of cardiac remodeling by of PICOT with a concomitant increase in ventricular function and cardiomyocyte contractility suggests that PICOT may provide an efficient modality for treatment of cardiac hypertrophy and heart failure.  相似文献   

2.
We have previously shown that genetic ablation of melusin, a muscle specific beta 1 integrin interacting protein, accelerates left ventricle (LV) dilation and heart failure in response to pressure overload. Here we show that melusin expression was increased during compensated cardiac hypertrophy in mice subjected to 1 week pressure overload, but returned to basal levels in LV that have undergone dilation after 12 weeks of pressure overload. To better understand the role of melusin in cardiac remodeling, we overexpressed melusin in heart of transgenic mice. Echocardiography analysis indicated that melusin over-expression induced a mild cardiac hypertrophy in basal conditions (30% increase in interventricular septum thickness) with no obvious structural and functional alterations. After prolonged pressure overload (12 weeks), melusin overexpressing hearts underwent further hypertrophy retaining concentric LV remodeling and full contractile function, whereas wild-type LV showed pronounced chamber dilation with an impaired contractility. Analysis of signaling pathways indicated that melusin overexpression induced increased basal phosphorylation of GSK3beta and ERK1/2. Moreover, AKT, GSK3beta and ERK1/2 were hyper-phosphorylated on pressure overload in melusin overexpressing compared with wild-type mice. In addition, after 12 weeks of pressure overload LV of melusin overexpressing mice showed a very low level of cardiomyocyte apoptosis and stromal tissue deposition, as well as increased capillary density compared with wild-type. These results demonstrate that melusin overexpression allows prolonged concentric compensatory hypertrophy and protects against the transition toward cardiac dilation and failure in response to long-standing pressure overload.  相似文献   

3.
The matricellular protein thrombospondin (TSP) 1 is induced after tissue injury and may regulate reparative responses by activating transforming growth factor-β, by suppressing angiogenesis and by modulating inflammation and matrix metabolism. We hypothesized that endogenous TSP-1 may be involved in the pathogenesis of cardiac remodeling in the pressure-overloaded heart. Myocardial TSP-1 expression was increased in a mouse model of pressure overload because of transverse aortic constriction. TSP-1(-/-) mice exhibited increased early hypertrophy and enhanced late dilation in response to pressure overload. Pressure-overloaded TSP-1 null mice had intense degenerative cardiomyocyte changes, exhibiting more extensive sarcomeric loss and sarcolemmal disruption when compared with wild-type hearts. Accentuated hypertrophy and cardiomyocyte injury in TSP-1(-/-) hearts was accompanied by increased myofibroblast density. However, despite a 2-fold higher infiltration of the cardiac interstitium with myofibroblasts, pressure-overloaded TSP-1 null hearts did not exhibit significantly increased collagen content when compared with wild-type hearts. The disproportionately low collagen content in TSP-1 null hearts was attributed to infiltration with abundant, but functionally defective, fibroblasts that exhibited impaired myofibroblast differentiation and reduced collagen expression in comparison with wild-type fibroblasts. Impaired myofibroblast activation in TSP-1 null hearts was associated with reduced Smad2 phosphorylation reflecting defective transforming growth factor-β signaling. Moreover, TSP-1 null hearts had increased myocardial matrix metalloproteinase 3 expression and enhanced matrix metalloproteinase 9 activation after pressure overload. TSP-1 upregulation in the pressure-overloaded heart critically regulates fibroblast phenotype and matrix remodeling by activating transforming growth factor-β signaling and by promoting matrix preservation, thus preventing chamber dilation.  相似文献   

4.
OBJECTIVE: Oxidative stress-mediated activation of protein kinase C (PKC) beta(2) in the myocardium has been implicated in the development of cardiomyopathy. Overexpression of PKCbeta(2) is associated with increased expression of connective tissue growth factor (CTGF) in myocardium, resulting in myocardial hypertrophy. We hypothesized that chronic treatment with the antioxidant N-acetylcysteine (NAC) would normalize oxidative stress-mediated overexpression of myocardial PKCbeta(2) and CTGF and attenuate the development of myocardial hypertrophy. METHODS: Control and streptozotocin-induced diabetic rats were treated with NAC in drinking water for 8 weeks. At termination rats were surgically prepared for hemodynamic measurement, subsequent to which their hearts were removed to evaluate cardiac performance and histological and biochemical changes. Further, the role of PKCbeta(2) in hyperglycemia-induced cardiomyocyte hypertrophy was tested in cultured neonatal cardiomyocytes. RESULTS: Myocardial hypertrophy, characterized by an increased ratio of ventricle weight to body weight and cardiomyocyte cross-sectional area was found to be higher in untreated diabetic rats. Further, in myocardium, increased levels of 15-F(2t)-isoprostane were accompanied by an increased expression of membrane-bound PKCbeta(2) and CTGF. N-acetylcysteine treatment not only attenuated these changes but also prevented hyperglycemia-induced hypertrophy in cultured neonatal rat cardiomyocytes. CONCLUSIONS: The results suggest that PKCbeta(2) overexpression represents a mechanism causing hyperglycemia-mediated myocardial hypertrophy, which can be prevented by the antioxidant N-acetylcysteine.  相似文献   

5.
Molecular mechanism of cardiac hypertrophy   总被引:1,自引:0,他引:1  
Pressure overload induces cardiac hypertrophy and reexpression of contractile protein isogenes. To ascertain the molecular mechanism of these events, we examined the expression of cellular oncogenes and the early change in the translational activity of specific cardiac mRNA by two-dimensional gel electrophoresis of in vitro translational products. Pressure overload increased the expression levels of c-fos, c-myc, and c-Ha-ras genes. The relative predominance of 8 species out of over 400 translational products was increased by pressure overload while that of 2 translational products was decreased. We cloned four pressure-overload-responsive cDNA clones by differential dot blot hybridization. The expression pattern of each cDNA clone in the pressure-overloaded hearts was similar to that in fetal hearts. To examine whether mechanical stimuli directly induce specific gene expression in the heart, we cultured rat neonatal cardiocytes in elastic silicone dishes and stretched these adherent cells. Myocytes stretching stimulated amino acid uptake and expression of the c-fos gene, which was blocked by protein kinase C inhibitors. These results suggest that there are some early responsive genes in cardiac hypertrophy and that mechanical loading directly stimulates gene expression possibly via protein kinase C activation.  相似文献   

6.
环孢素A对儿茶酚胺诱导的大鼠心肌肥大的作用   总被引:16,自引:0,他引:16  
目的 观察环孢素A(CaA)对儿茶酚胺诱导的大鼠心肌肥大的作用。方法 雌性Wistar大鼠21只,实验分三组,每组7只:(1)单纯肥大组:给大鼠皮下注射异丙肾上腺素(5mg.kg^-1,d^-1),连续10d:(2)CsA治疗组:除注射异丙肾上腺素外,同时腹腔注射CsA(20mg.kg^-1,d^-1),连续10d;(3)对照组:不作特殊处理。三组大鼠计大小,组织形态,心系数以及心肌组织抑制钙调神经磷酸酶CaN,丝裂素活化蛋白激酶(MAPK)及蛋白激酶C(PKC)活性的变化。在培养的大鼠心肌细胞上,观察CsA对去甲肾上腺素(NE)刺激的^3H-亮氨酸掺入的影响。结果 单纯注射异丙肾上腺素组的大鼠心脏明显增大,心肌细胞肥大,排列紊乱,并出现广泛间质纤维化,CaA治疗组大鼠心脏未明显增大,但仍可见部分心肌纤维化,大鼠心重及心系数明显低于单纯肥大组(P<0.05)。肥大组大鼠心肌组织CaN活性明显高于对照组(P<0.05),CaA治疗组大鼠心肌组织CaN活性低于肥大组(P<005),三组大鼠心肌组织MAPK活性差异无显著性,但肥大组大鼠心肌组织PKC活性较对照组增高4倍(P<0.001),CsA治疗组的大鼠心肌组织PKC活性较肥大组下降50%(P<0.001),CsA可明显抑制NE刺激的大鼠心肌细胞^3H-亮氨酸掺入,结论 CaN信号通中可能以儿茶酚胺诱导的心肌肥大中起一定作用,CsA可阻滞儿茶酚胺诱导的心肌肥大,这种作用可能主要通过抑制CaN及PKC活性,阻断CaN和PKC介导的信号传导通路所致。  相似文献   

7.
目的 观察肿瘤抑制因子PTEN在心肌肥厚大鼠心肌组织以及在血管紧张素Ⅱ诱导的肥大心肌细胞中的表达,探讨PTEN在心肌肥大发生发展中的作用以及相关机制。方法采用腹主动脉狭窄术制备压力超负荷心肌肥厚动物模型,及血管紧张素Ⅱ诱导新生大鼠心肌细胞肥大模型,应用逆转录-聚合酶链式反应(RT-PCR)方法、Western blot及免疫组化等方法,分别检测各组PTEN mRNA和蛋白表达的变化,以及PTEN蛋白在心肌细胞中的定位。结果(1)与对照组相比,心肌肥厚组大鼠左室肌PTEN mRNA和蛋白表达均明显减少;血管紧张素Ⅱ诱导心肌细胞肥大组PTEN蛋白表达明显减少。(2)与心肌肥厚组相比,卡托普利组大鼠左室心肌PTEN mRNA和蛋白表达增加,接近对照组。(3)免疫组化实验结果显示心肌细胞胞核内有阳性免疫产物生成,提示PTEN蛋白定位于心肌细胞核内。结论PTEN在心肌肥大发生发展中可能起负调控作用,该作用与肾素-血管紧张素系统密切相关。  相似文献   

8.
Previous attempts to delineate the consequences of Galpha (q) activation in cardiomyocytes relied largely on molecular strategies in cultures or transgenic mice. Modest levels of wild-type Galpha(q) overexpression induce stable cardiac hypertrophy, whereas intense Galpha(q) stimulation induces cardiomyocyte apoptosis. The precise mechanism(s) whereby traditional targets of Galpha (q) subunits that induce hypertrophy also trigger cardiomyocyte apoptosis is not obvious and is explored with recombinant Pasteurella multocida toxin (rPMT, a Galpha(q) agonist). Cells cultured with rPMT display cardiomyocyte enlargement, sarcomeric organization, and increased atrial natriuretic factor expression in association with activation of phospholipase C, novel protein kinase C (PKC) isoforms, extracellular signal-regulated protein kinase (ERK), and (to a lesser extent) JNK/p38-MAPK. rPMT stimulates the ERK cascade via epidermal growth factor (EGF) receptor transactivation in cardiac fibroblasts, but EGF receptor transactivation plays no role in ERK activation in cardiomyocytes. Surprisingly, rPMT (or novel PKC isoform activation by PMA) decreases basal Akt phosphorylation; rPMT prevents Akt phosphorylation by EGF or IGF-1 and functionally augments cardiomyocyte apoptosis in response to H2O2. These results identify a Galpha(q)-PKC pathway that represses basal Akt phosphorylation and impairs Akt stimulation by survival factors. Because inhibition of Akt enhances cardiomyocyte susceptibility to apoptosis, this pathway is predicted to contribute to the transition from hypertrophy to cardiac decompensation and could be targeted for therapy in heart failure.  相似文献   

9.
Glucocorticoids induce hypertrophy of the neonatal ileal mucosa but the molecular mechanisms behind this growth induction remain poorly understood. Ileal epithelial cells (IECs) are dependent upon IGF-II for proliferation both in vivo and in culture. The type-2 IGF receptor (IGFR-2) is a lysosomal transport protein that attenuates IGF-II-driven growth and is highly abundant in the ileum. The cellular repressor of E1A-stimulated genes (CREG) is a secreted phosphoglycoprotein that affects cell fate via ligand binding with IGFR-2, although the mechanism by which it does so is unknown. We hypothesized that glucocorticoids might facilitate IGF-mediated hypertrophy through CREG-mediated degradation of IGFR-2. To test this hypothesis, confluent rat IECs (IEC-18) were cultured for 72 h with or without dexamethasone (DEX) and harvested for Western blot, immunocytochemistry, gene array and CREG immunoneutralization experiments. IGFR-2 and CREG immunohistochemistry were also performed in archived ileal specimens from control and DEX-exposed newborn mice and extremely premature infants to investigate in vivo and clinical relevance. DEX exposure was found to diminish IGFR-2 immunolocalization in cultured rat IECs, newborn mouse ileal mucosa and human neonatal ileal mucosa. Gene array data indicated that IGFR-2 expression was unchanged with DEX treatment, suggesting a mechanism of protein degradation. CREG immunolocalization and abundance was found to be increased by DEX and immunoneutralization of CREG resulted in the abolition of IGFR-2 degradation. We have concluded that CREG is a secreted mediator by which DEX induces degradation of IGFR-2 and speculate that this is a fundamental mechanism of mucosal growth induction.  相似文献   

10.
Receptor-mediated Gq signaling promotes hypertrophic growth of cultured neonatal rat cardiac myocytes and is postulated to transduce in vivo cardiac pressure overload hypertrophy. Although initially compensatory, hypertrophy can proceed by unknown mechanisms to cardiac failure. We used adenoviral infection and transgenic overexpression of the alpha subunit of Gq to autonomously activate Gq signaling in cardiomyocytes. In cultured cardiac myocytes, overexpression of wild-type Gαq resulted in hypertrophic growth. Strikingly, expression of a constitutively activated mutant of Gαq, which further increased Gq signaling, produced initial hypertrophy, which rapidly progressed to apoptotic cardiomyocyte death. This paradigm was recapitulated during pregnancy in Gαq overexpressing mice and in transgenic mice expressing high levels of wild-type Gαq. The consequence of cardiomyocyte apoptosis was a transition from compensated hypertrophy to a rapidly progressive and lethal cardiomyopathy. Progression from hypertrophy to apoptosis in vitro and in vivo was coincident with activation of p38 and Jun kinases. These data suggest a mechanism in which moderate levels of Gq signaling stimulate cardiac hypertrophy whereas high level Gq activation results in cardiomyocyte apoptosis. The identification of a single biochemical stimulus regulating cardiomyocyte growth and death suggests a plausible mechanism for the progression of compensated hypertrophy to decompensated heart failure.  相似文献   

11.
目的:研究调节PCBP2表达水平对心肌细胞肥大的影响 方法:分离、培养原代乳鼠心肌细胞;在体外应用儿茶酚胺类物质(血管紧张素II、异丙肾上腺素、苯肾上腺素)来诱导心肌细胞。诱导心肌细胞发生肥大,通过对心肌细胞表面积和心肌肥大标志物的检测,观察敲低和过表达PCBP2对血管紧张素II诱导的心肌细胞肥大的影响。 结果:血管紧张素II、异丙肾上腺素、苯肾上腺素均可诱导心肌细胞肥大,使心肌细胞表面积增加。敲低心肌细胞PCBP2后,血管紧张素II诱导心肌细胞肥大的程度更大,使心肌细胞表面积显著增大;而过表达心肌细胞PCBP2后,可有效抑制血管紧张素II诱导的心肌细胞肥大,使心肌细胞表面积显著缩小。 结论:PCBP2参与调节心肌细胞肥大,是抑制病理条件下心肌细胞肥大的负性调节因子。  相似文献   

12.
13.
Aldosterone directly stimulates cardiac myocyte hypertrophy   总被引:3,自引:0,他引:3  
BACKGROUND: Clinical and experimental studies suggest that aldosterone modulates myocardial hypertrophy. From in vivo studies, it is not possible to distinguish between direct actions on myocyte growth and effects of mechanical load. In this study we tested the hypothesis that aldosterone induces myocyte hypertrophy in low-density, serum-free cultures of neonatal rat ventricular myocytes. METHODS AND RESULTS: Hypertrophy was quantified by [(14)C]-phenylalanine incorporation and confocal microscopic assessment of myocyte surface area. Aldosterone caused a 27% increase in protein incorporation (EC(50) = 40 nmol/L) and a 29% increase in myocyte surface area compared with the vehicle control. This response was associated with increased mRNA levels of atrial natriuretic factor, alpha- and beta-myosin heavy chain measured by RNase protection assay, and it was suppressed by the mineralocorticoid receptor blocker spironolactone. Analysis of early signaling events showed that aldosterone stimulation acutely translocated protein kinase C (PKC)-alpha to the membrane fraction and increased the levels of phosphorylated ERK1/2 and JNK. PD 98059, an inhibitor of the ERK activator MEK (mitogen-activated protein kinase kinase) and bisindolylmaleimide I, an inhibitor of PKC activation, each blocked aldosterone-stimulated hypertrophy. CONCLUSION: Aldosterone directly stimulates hypertrophy in neonatal rat ventricular myocytes. The growth response is dependent on the mineralocorticoid receptor and is associated with activation of ERK, JNK, and PKC-alpha.  相似文献   

14.
Aims: We investigated the effect of the water extract of Salacia oblonga (SOE), an ayurvedic antidiabetic and antiobesity medicine, on obesity and diabetes‐associated cardiac hypertrophy and discuss the role of modulation of cardiac angiotensin II type 1 receptor (AT1) expression in the effect. Methods: SOE (100 mg/kg) was given orally to male Zucker diabetic fatty (ZDF) rats for 7 weeks. At the end‐point of the treatment, the hearts and left ventricles were weighed, cardiomyocyte cross‐sectional areas were measured, and cardiac gene profiles were analysed. On the other hand, angiotensin II–stimulated embryonic rat heart–derived H9c2 cells and neonatal rat cardiac fibroblasts were pretreated with SOE and one of its prominent components mangiferin (MA), respectively. Atrial natriuretic peptide (ANP) mRNA expression and protein synthesis and [3H]thymidine incorporation were determined. Results: SOE‐treated ZDF rats showed less cardiac hypertrophy (decrease in weights of the hearts and left ventricles and reduced cardiomyocyte cross‐sectional areas). SOE treatment suppressed cardiac overexpression of ANP, brain natriuretic peptide (BNP) and AT1 mRNAs and AT1 protein in ZDF rats. SOE (50–100 μg/ml) and MA (25 μmol) suppressed angiotensin II–induced ANP mRNA overexpression and protein synthesis in H9c2 cells. They also inhibited angiotensin II–stimulated [3H]thymidine incorporation by cardiac fibroblasts. Conclusions: Our findings demonstrate that SOE decreases cardiac hypertrophy in ZDF rats, at least in part by inhibiting cardiac AT1 overexpression. These studies provide insights into a potential cardioprotective role of a traditional herb, which supports further clinical evaluation in obesity and diabetes‐associated cardiac hypertrophy.  相似文献   

15.
16.
17.
BackgroundCardiac hypertrophy is a common response to pressure overload and leads to left ventricular (LV) dysfunction. Thrombomodulin (TM), an endothelial anticoagulant protein, was found to have direct effects on cellular proliferation and inflammation. We examined the TM expression in cardiomyocytes during cardiac hypertrophy and investigated its physiological significance.Methods and ResultsTM expression was evaluated in cardiomyocytes from hearts of mice that underwent transverse aortic constriction (TAC). The effects of recombinant TM protein on cardiomyocytes apoptosis and related signaling pathways were examined. Recombinant TM protein was administered continuously in mice that underwent TAC, and serial LV function was determined. There was significant TM expression in cardiomyocytes during cardiac hypertrophy elicited by TAC in mice. TM treatment decreased doxorubicin-induced apoptosis of cardiomyocytes and increased the Bcl-2/Bax ratio. It also increased cardiomyocytes hypertrophy, expression of atrial natriuretic peptide, and significantly activated the extracellular signal–regulated kinase 1/2 (ERK1/2) and the phosphatidylinositol-3-kinase (PI3-K)/protein kinase B (Akt) signaling pathways in cardiomyocytes. Continuous TM supply after TAC prevented the progression of LV contractile dysfunction in mice.ConclusionsTM treatment decreased cardiomyocyte apoptosis and maintained LV contractile function in response to pressure overload.  相似文献   

18.
目的 观察钙敏感受体(CaSR)在血管紧张素Ⅱ(Ang Ⅱ)诱导心肌细胞肥大中的作用和可能机制.方法 用Ang Ⅱ处理原代新生大鼠心室肌细胞复制心肌肥大细胞模型;用CaSR激动剂氯化钆(GdCl3),GdCl3+蛋白激酶C(PKC)通路阻断剂(Ro318220)处理AngⅡ诱导的肥大心肌细胞分别作为GdCl3、Ro318220组.通过苏木素-伊红染色(HE)法测定细胞直径,考马斯亮蓝蛋白试剂盒测定蛋白含量来评价细胞肥大的情况;利用激光共聚焦显微镜检测心肌细胞内钙浓度([Ca2+]i;Western blot法检测CaSR和PKC通路的蛋白表达.结果 ①与对照组(0.1263±0.0443)比较,Ang Ⅱ组(0.1963±0.0375)和GdCl3组(0.2778±0.0564)CaSR蛋白表达明显增加(P均< 0.05),且GdCl3组明显高于AngⅡ组(P<0.05).②与对照组(222.70±22.09)比较,Ang Ⅱ组(392.16±36.85)和GdCl3组(502.60±44.21)心肌细胞内[Ca2+]i显著增加(P均<0.05);与Ang Ⅱ组比较,GdCl3组[Ca2+]i显著增加(P<0.05).③与对照组比较,Ang Ⅱ可诱导心肌细胞肥大,GdCl3可促进Ang Ⅱ的诱导作用,而Ro318220可抑制GdCl3的作用;④与对照组(0.27±0.07、0.69±0.06、0.87±0.04)比较,Ang Ⅱ组PKCα、PKCε和PKCδ蛋白表达明显增加(0.60±0.16、1.02±0.13、1.20±0.18,P均<0.05),GdCl3组PKCα、PKCε蛋白表达明显增加(0.82±0.16、1.34±0.12,P均<0.05);与Ang Ⅱ组比较,GdCl3组PKCα、PKCε蛋白表达明显增加(P均< 0.05);与GdCl3组比较,Ro318220组PKCα、PKCε蛋白表达(0.41±0.10、0.85±0.14)明显减少(P均< 0.05).结论 PKC通路参与CaSR激活促进心肌细胞肥大的信号转导.  相似文献   

19.
Xu X  Fassett J  Hu X  Zhu G  Lu Z  Li Y  Schnermann J  Bache RJ  Chen Y 《Hypertension》2008,51(6):1557-1564
This study examined whether endogenous extracellular adenosine acts to facilitate the adaptive response of the heart to chronic systolic overload. To examine whether endogenous extracellular adenosine can protect the heart against pressure-overload-induced heart failure, transverse aortic constriction was performed on mice deficient in extracellular adenosine production as the result of genetic deletion of CD73. Although there was no difference in left ventricular size or function between CD73-deficient mice (knockout [KO] mice) and wild-type mice under unstressed conditions, aortic constriction for 2 or 4 weeks induced significantly more myocardial hypertrophy, left ventricular dilation, and left ventricular dysfunction in KO mice compared with wild-type mice. Thus, after 2 weeks of transverse aortic constriction, left ventricular fractional shortening decreased to 27.4+/-2.5% and 21.9+/-1.7% in wild-type and KO mice, respectively (P<0.05). Consistent with a role of adenosine in reducing tissue remodeling, KO mice displayed increased myocardial fibrosis and myocyte hypertrophy compared with wild-type mice. Furthermore, adenosine treatment reduced phenylephrine-induced cardiac myocyte hypertrophy and collagen production in cultured neonatal rat cardiac myocytes and cardiac fibroblasts, respectively. Consistent with a role for adenosine in modulating cardiomyocyte hypertrophy, KO mice demonstrated increased activation of mammalian target of rapamycin signaling, accompanied by higher expression of the hypertrophy marker atrial natriuretic peptide. Conversely, the adenosine analogue 2-chloro-adenosine significantly reduced cell size, mammalian target of rapamycin/p70 ribosomal S6 kinase activation, and atrial natriuretic peptide expression in cultured neonatal cardiomyocytes. These data demonstrate that CD73 helps to preserve cardiac function during chronic systolic overload by preventing maladaptive tissue remodeling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号