首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subconfluent normal human keratinocytes exhibit autonomous (autocrine growth factor driven) proliferation and express the specific markers for keratinocyte proliferation K5 (keratin 5) and K14 (keratin 14). Utilizing this model the effects of PKD1 (Protein kinase D1) knockdown on activation of differentiation was studied. siRNA approach was applied to achieve specific knockdown of PKD1 and the mRNA levels of different keratinocyte markers—K14 and PCNA (markers of basal proliferating keratinocytes), involucrin and K10 (early differentiation markers) were analyzed. Treatment of cultured keratinocytes with siRNA for PKD1 resulted in reduction of mRNA levels of PKD1, altered cell phenotype and promotion of keratinocyte differentiation, demonstrated by increased expression of involucrin and K10 mRNAs. No significant changes in K14 mRNA expression levels were detected, but the expression of PCNA mRNA was markedly diminished. This study was the first to show that mRNA expression of PKD1 in subconfluent normal human keratinocytes is very low, the PKD1 mRNA levels were more than 8-fold lower than the same ones in hTert keratinocytes. These findings suggest antidifferentiative role of PKD1 in normal human keratinocytes, contrary to the prodiferentiative role of PKD1 in human hTert keratinocytes. We came to the conclusion that there are differences between transduction pathways involving PKD1 in primary human keratinocyte cultures and these in immortalized hTert keratinocytes.  相似文献   

2.
3.
Abstract:  The keratinocyte growth and differentiation switch, tightly regulated by several mechanisms, is generally associated with decreased proliferation, cell cycle arrest in G0/G1 phase and expression of epidermal differentiation markers, such as keratin 1 (K1), keratin 10 (K10) and involucrin. In vitro , the spontaneously immortalized human keratinocyte cell line HaCaT is often used as a model to study keratinocyte functions. Comparative differentiation studies between HaCaT cells and normal human keratinocytes (NHK) over an extended time-period have rarely been reported. Therefore, we studied their switch from a proliferating to a differentiated state over 13 days. As culture conditions involved changes in cellular responses, cells were cultured in a specific medium for keratinocyte growth and differentiation was induced by increasing extracellular calcium concentration from 0.09 to 1.2 m m . In NHK, addition of calcium-induced morphological changes and concomitant decreased proliferation. For HaCaT cells, calcium addition resulted in morphological changes, but in an unexpected manner, cells were more proliferative than when cultured at low calcium levels. HaCaT cell hyperproliferation correlated with cell cycle analysis, showing an accumulation in S/G2-M phases. Furthermore, RT-PCR and western blot analysis revealed a delay in the expression of the differentiation markers K1, K10 and involucrin in HaCaT cells compared with NHK. In conclusion, even though calcium-induced differentiation was not associated with a decreased cell proliferation, HaCaT cells conserved properties characteristic of differentiation.  相似文献   

4.
5.
MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that play important roles in the regulation of gene expression. We previously identified a characteristic miRNA expression profile in psoriasis, distinct from that of healthy skin. One of the most downregulated miRNAs in psoriasis skin was microRNA-125b (miR-125b). In this study, we aimed to identify the potential role(s) of miR-125b in psoriasis pathogenesis. In situ hybridization results showed that the major cell type responsible for decreased miR-125b levels in psoriasis lesions was the keratinocyte. Overexpression of miR-125b in primary human keratinocytes suppressed proliferation and induced the expression of several known differentiation markers. Conversely, inhibition of endogenous miR-125b promoted cell proliferation and delayed differentiation. Fibroblast growth factor receptor 2 (FGFR2) was identified as one of the direct targets for suppression by miR-125b by luciferase reporter assay. The expression of miR-125b and FGFR2 was inversely correlated in both transfected keratinocytes and in psoriatic skin. Knocking down FGFR2 expression by siRNA suppressed keratinocyte proliferation, but did not enhance differentiation. Altogether, our results demonstrate a role for miR-125b in the regulation of keratinocyte proliferation and differentiation, partially through the regulation of FGFR2. Loss of miR-125b in psoriasis skin may contribute to hyperproliferation and aberrant differentiation of keratinocytes.  相似文献   

6.
Aquaporin-3 (AQP3) is a water/glycerol transporting protein expressed strongly at the plasma membrane of keratinocytes. There is evidence for involvement of AQP3-facilitated water and glycerol transport in keratinocyte migration and proliferation, respectively. Here, we investigated the involvement of AQP3 in keratinocyte differentiation. Studies were done using AQP3 knockout mice, primary cultures of mouse keratinocytes (AQP3 knockout), neonatal human keratinocytes (AQP3 knockdown), and human skin. Cells were cultured with high Ca2+ or 1α,25-dihydroxyvitamin D3 (VD3) to induce differentiation. The expression of differentiation marker proteins and differentiating responses were comparable in control and AQP3-knockout or knockdown keratinocytes. Topical application of all-trans retinoic acid (RA), a known regulator of keratinocyte differentiation and proliferation, induced comparable expression of differentiation marker proteins in wildtype and AQP3 null epidermis, though with impaired RA-induced proliferation in AQP3 null mice. Immunostaining of human and mouse epidermis showed greater AQP3 expression in cells undergoing proliferation than differentiation. Our results showed little influence of AQP3 on keratinocyte differentiation, and provide further support for the proposed involvement of AQP3-facilitated cell proliferation.  相似文献   

7.
8.
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like (APOBEC) family consists of deaminases. Some isozymes of APOBEC3 are induced upon human papillomavirus infection or development of psoriasis skin lesions. However, the involvement of APOBEC3 in keratinocyte differentiation has not been addressed. We herein sought to evaluate the roles of APOBECs in mouse primary keratinocyte differentiation. We found that expression levels of APOBEC1 and APOBEC3 were increased during calcium‐induced keratinocyte differentiation. Unexpectedly, however, the expression levels of keratinocyte differentiation markers keratin 1/10, involucrin, loricrin and filaggrin were higher in keratinocytes treated with APOBEC3 siRNAs than in those treated with control RNAs. In addition, the treatment of keratinocytes with APOBEC3 siRNAs increased the gene expression levels of Notch3, a master regulator of keratinocyte differentiation. Moreover, calcium‐induced increase in Notch3 expression and keratinocyte differentiation were impaired by transfection with an APOBEC3 expression plasmid. Furthermore, co‐treatment with Notch3 siRNAs reduced the APOBEC3 siRNA‐mediated upregulation of Notch3 expression and in part attenuated the increased expression levels of keratinocyte differentiation markers. These results suggest that APOBEC3 is induced upon keratinocyte differentiation and negatively regulates the keratinocyte differentiation in part by its inhibitory role for Notch3 expression.  相似文献   

9.
10.
We investigated the expression of P2X5, P2X7, P2Y1 and P2Y2 receptor subtypes in normal human epidermis and in relation to markers of proliferation (PCNA and Ki-67), keratinocyte differentiation (cytokeratin K10 and involucrin) and markers of apoptosis (TUNEL and anticaspase-3). Using immunohistochemistry, we showed that each of the four receptors was expressed in a spatially distinct zone of the epidermis, suggesting different functional roles for these receptors. Functional studies were performed on primary cultures of human keratinocytes and on explanted rat skin, where different P2 receptor subtype agonists and antagonists were applied to cultured keratinocytes or injected subcutaneously into the skin, respectively. An increase in cell number was caused by low doses of the nonspecific P2 receptor agonist ATP, the P2Y2 receptor agonist UTP (p<0.001), and the P2Y1 receptor agonist 2MeSADP (p<0.05). There was a significant decrease in cell number as a result of treatment with the P2X5 receptor agonist ATPgammaS (p<0.001) and the P2X7 receptor agonist BzATP (p<0.001). Suramin caused a significant block in the effect of 100 microm ATP (p<0.01) and 1000 microm ATP (p<0.001) on cell number. These results imply that different purinergic receptors have different functional roles in the human epidermis with P2Y1 and P2Y2 receptors controlling proliferation, while P2X5 and P2X7 receptors control early differentiation, terminal differentiation and death of keratinocytes, respectively.  相似文献   

11.
Calpain is a ubiquitous neutral calcium-activated thiol protease that is implicated in various cellular functions including exocytosis, cell fusion, apoptosis and proliferation. The calpain system is composed of the enzymes μ-calpain and m-calpain and their endogenous inhibitor, calpastatin. We employed the spontaneously immortalized human HaCaT keratinocytes, which retain their ability to differentiate in vitro and in vivo , to study the modulation of the calpain system during keratinocyte differentiation. The cellular levels of keratinocyte differentiation markers and of the components of the calpain system were monitored by immunoblotting. Three established differentiation stimuli: increase in cell density as a function of time in culture, elevation of extracellular calcium concentration and exposure to 1,25-dihydroxyvitamin D3 enhanced the expression of the three keratinocyte differentiation markers keratin 10, involucrin and transglutaminase. The differentiation of HaCaT cells was accompanied by elevation of the components of the calpain system, although the pattern of increase varied according to the specific differentiation stimulus. A higher increase in calpains as compared with the increase in calpastatin suggests an increase in net calpain activity during differentiation. Such an increase may play a part in the differentiation process itself and/or in the regulation of key events in differentiating keratinocyte metabolism.  相似文献   

12.
CD40 ligation alters the cell cycle of differentiating keratinocytes   总被引:4,自引:0,他引:4  
CD40 is expressed in normal human keratinocytes, especially in the basal cell layer. We have recently reported that CD40 ligation strongly inhibits keratinocyte proliferation and induces their differentiation. In this study, the CD40 pathway that prevents keratinocyte growth was investigated. We first reported that interferon-gamma treatment potentiated the CD40-mediated inhibition of keratinocyte proliferation. CD40-CD40 ligand interactions, in the presence or absence of interferon-gamma, neither enhanced spontaneous keratinocyte apoptosis, nor did it enhance apoptosis induced by various agents. More importantly, we showed that CD40 signaling altered the keratinocyte cell cycle, as demonstrated by a decreasing number of cells in the G1 and S phases and an accumulation in G2/M phase of the cell cycle. Furthermore, western blot analysis of cell cycle regulatory proteins, showed a decrease in cyclin A and E expression in CD40-activated keratinocytes. Collectively, these results indicate that CD40 ligation inhibits keratinocyte renewal by a mechanism independent of cell apoptosis and that modulation of the keratinocyte cell cycle is an additional outcome of CD40 signaling.  相似文献   

13.
BACKGROUND: ATP2C1 is a calcium/manganese-ATPase localized in the Golgi apparatus and known as responsible gene for Hailey-Hailey disease. But its localization and roles in the epidermis are not fully elucidated. OBJECTIVE: To explore the localization and biological role of ATP2C1 in normal epidermis in terms of differentiation states. METHODS: We examined the immunohistochemical distribution of ATP2C1 in normal epidermis and measured the expression of ATP2C1 in cultured keratinocytes following forced detachment from culture dish or following treatment with high concentrations of calcium. Furthermore, we knockdown ATP2C1 expression in cultured keratinocytes by using RNA interference procedure to abrogate cation accumulation in cell organelles. RESULTS: ATP2C1 is specifically localized at the basal cell layer in normal epidermis. Neither detachment of keratinocyte from culture dish nor treatment with high concentrations of calcium suppressed ATP2C1 expression, while both procedures induced differentiation markers, K10 keratin and involucrin. In contrast, knockdown of ATP2C1 induced these differentiation markers of cultured keratinocytes. Furthermore, treatment of keratinocytes with a calcium ionophore, A23187, did not up-regulate differentiation markers of keratinocytes, while a more manganese selective ionophore Br-A23187 up-regulated these differentiation markers. CONCLUSION: Our results suggest that ATP2C1 plays an essential role for basal keratinocytes to keep in the undifferentiated state and that its reduction evokes differentiation and up-localization to suprabasal layers most likely via the manganese starvation in the Golgi apparatus of keratinocytes.  相似文献   

14.
Differentiation and proliferation of keratinocyte are controlled by various signalling pathways. The epidermal growth factor receptor (EGFR) is known to be an important regulator of multiple epidermal functions. Inhibition of EGFR signalling disturbs keratinocyte proliferation, differentiation and migration. Previous studies have revealed that one of the EGFR downstream signalling molecules, phospholipase Cγ1 (PLCγ1), regulates differentiation, proliferation and migration of keratinocytes in in vitro cell culture system. However, the role of PLCγ1 in the regulation of keratinocyte functions in animal epidermis remains unexplored. In this study, we generated keratinocyte‐specific PLCγ1 knockout (KO) mice (PLCγ1 cKO mice). Contrary to our expectations, loss of PLCγ1 did not affect differentiation, proliferation and migration of interfollicular keratinocytes. We further examined the role of PLCγ1 in irritant contact dermatitis (ICD), in which epidermal cells play a pivotal role. Upon irritant stimulation, PLCγ1 cKO mice showed exaggerated ICD responses. Further study revealed that epidermal loss of PLCγ1 induced sebaceous gland hyperplasia, indicating that PLCγ1 regulates homeostasis of one of the epidermal appendages. Taken together, our results indicate that, although PLCγ1 is dispensable in interfollicular keratinocyte for normal differentiation, proliferation and migration, it is required for normal ICD responses. Our results also indicate that PLCγ1 regulates homeostasis of sebaceous glands.  相似文献   

15.
Fibroblast growth factor 10 is a novel member of the fibroblast growth factor family, which is involved in morphogenesis and epithelial proliferation. It is highly homologous to the keratinocyte growth factor (or fibroblast growth factor 7), a key mediator of keratinocyte growth and differentiation. Both fibroblast growth factor 10 and keratinocyte growth factor bind with high affinity to the tyrosine kinase keratinocyte growth factor receptor. Here we analyzed the effect of fibroblast growth factor 10 on primary cultures of human keratinocytes, grown in chemically defined medium, and we compared the proliferative and differentiative cell responses to fibroblast growth factor 10 with those induced by keratinocyte growth factor and epidermal growth factor. Cell counting, 5-bromo-2'-deoxyuridine incorporation, and western blot analysis showed that fibroblast growth factor 10, similarly to keratinocyte growth factor, not only is a potent mitogen for human keratinocytes, but also promotes the expression of both early differentiation markers K1 and K10 and late differentiation marker filaggrin in response to the Ca2+ signal, and seems to sustain the proliferative activity in suprabasal stratified cells. Immunoprecipitation/western blot analysis revealed that fibroblast growth factor 10, similarly to keratinocyte growth factor, is able to induce tyrosine phosphorylation of keratinocyte growth factor receptor and of cellular substrates such as PLCgamma.  相似文献   

16.
The epidermal differentiation complex (EDC), located on chromosomal band 1q21, consists of at least 43 genes that are expressed during keratinocyte differentiation. Indicative of a role for chromatin structure in tissue specificity of EDC gene expression, we identified an inverse correlation between expression and DNA methylation for two EDC genes (S100A2 and S00A6) in human keratinocytes and fibroblasts. 5-azacytidine (5AC) and sodium butyrate (NaB) are two agents known to promote 'open' chromatin structure. To explore the relationship between chromatin structure and keratinocyte differentiation, we treated normal human keratinocytes (NHK) with 5AC or NaB, or with protocols known to promote their terminal differentiation. We then measured the steady-state mRNA levels for several S100 genes, small proline rich region-1, -2, and -3, loricrin, and involucrin by Northern blotting. 5AC and NaB each markedly increased expression of SPRR1/2 and involucrin in NHK. In contrast, expression of S100A2 was reduced by both agents, and by induction of keratinocyte differentiation. Moreover, while the clustered EDC genes displayed a general tendency to be expressed in epithelial cells, they displayed different patterns of cell type-specific expression. These results indicate that local, gene-specific factors play an important role in the regulation of EDC gene expression in the keratinocyte lineage and during keratinocyte terminal differentiation.  相似文献   

17.
18.
Xenobiotic transporters of the ATP-binding cassette (ABC) protein superfamily play important roles in maintaining the biochemical barrier of various tissues, but their precise functions in the skin are not yet known. Screening of the expressions of the known xenobiotic transporter genes in two in vitro keratinocyte differentiation models revealed that the ABCC4 and ABCG2 transporters are highly expressed in proliferating keratinocytes, their expressions decreasing along with differentiation. Abrogation of the ABCC4 and ABCG2 protein functions by siRNA-mediated silencing and chemical inhibition did not affect the proliferation of HaCaT cells. In contrast, disruption of the ABCG2 function had no effect on normal human epidermal keratinocyte proliferation, while the inhibition of ABCC-type transporters by probenecid resulted in a striking decrease in the proliferation of the cells. These results indicate that, besides their possible therapy-modulating effects, xenobiotic transporters may contribute significantly to other keratinocyte functions, such as cell proliferation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号