首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cell-encapsulating hydrogels used in regenerative medicine are designed to undergo a rapid liquid-to-solid phase transition in the presence of cells and tissues so as to maximize crosslinking and minimize cell toxicity. Light-activated free-radical crosslinking (photopolymerization) is of particular interest in this regard because it can provide rapid reaction rates that result in uniform hydrogel properties with excellent temporal and spatial control features. Among the many initiator systems available for photopolymerization, only a few have been identified as suitable for cell-based hydrogel formation owing to their water solubility, crosslinking properties and non-toxic reaction conditions. In this study, three long-wave ultraviolet (UV) light-activtied photoinitiators (PIs) were comparatively tested in terms of cytotoxicity, crosslinking efficiency and crosslinking kinetics of cell-encapsulating hydrogels. The hydrogels were photopolymerized from poly(ethylene glycol) (PEG) diacrylate or PEG–fibrinogen precursors using Irgacure® PIs I2959, I184 and I651, as well as with a chemical initiator/accelerator (APS/TEMED). The study specifically evaluated the PI type, PI concentration and UV light intensity, and how these affected the mechanical properties of the hydrogel (i.e. maximum storage modulus), the crosslinking reaction times and the reaction’s cytotoxicity to encapsulated cells. Only two initiators (I2959 and I184) were identified as being suitable for achieving both high cell viability and efficient crosslinking of the cell-encapsulating hydrogels during the photopolymerization reaction. Optimization of PI concentration or irradiation intensity was particularly important for achieving maximum mechanical properties; a sub-optimal choice of PI concentration or irradiation intensity resulted in a substantial reduction in hydrogel modulus.Cytocompatibility may be compromised by unnecessarily prolonging exposure to cytotoxic free radicals or inadvertently enhancing the instantaneous dose of radicals in solution, both of which are dependent on the PI type/concentration and irradiation intensity. In the absence of a radical initiator, the short exposures to long-wave UV light irradiation (up to 5 min, 20 mW cm–2, 365 nm) did not prove to be cytotoxic to cells. Therefore, it is important to understand the relationship between PIs, light irradiation conditions and crosslinking when attempting to identify a suitable hydrogel formation process for cell encapsulating hydrogels.  相似文献   

2.
The biocompatibility of titania/hydroxyapatite (TiO2 /HA) composite coatings, at different ratio obtained by sol-gel process, were investigated studying the behaviour of human MG63 osteoblast-like cells. The biocompatibility was evaluated by means of cytotoxicity and cytocompatibility tests. Cytotoxicity tests, i.e., neutral red (NR), MTT and kenacid blue (KB) assays, were performed to assess the influence of the material extracts on lysosomes, mitochondria and cell proliferation, respectively. Cell proliferation, some preliminary indications of cell morphology, alkaline phosphatase activity, collagen and osteocalcin production of MG63 cells, cultured directly onto TiO2/HA substrates, were evaluated. The results showed that these materials have no toxic effects. Cell growth and morphology were similar on all the materials tested: on the contrary, alkaline-phosphatase-specific activity and collagen production of osteoblasts cultured on TiO2/HA coatings were significantly higher than uncoated titanium and polystyrene of culture plate and were influenced by chemical composition of the coatings. In particular, TiO2/HA coating at 1:1 ratio (w/w) seems to stimulate more than others the expression of some differentiation markers of osteoblastic phenotype. TiO2/HA coatings resulted to be bioactive owing to the presence of hydroxyl groups detected on their surface that promote the calcium and phosphate precipitation and improve the interactions with osteoblastic cells.  相似文献   

3.
Polyimides with intrinsic microporosity (PIM‐PIs) are widely regarded as one of the most promising next‐generation membrane materials to simultaneously achieve high permeability and selectivity. Despite the fact that tremendous microporous polyimides have been synthesized, only cost‐ef?cient PIM‐PIs have the potential to be used in industrial applications. In this work, a PIM‐PI is prepared by using the commercial and inexpensive planar pyromellitic dianhydride (PMDA) as the dianhydride monomer, and 2,6‐diaminotriptycene as the diamine monomer. The CO2 permeability of PMDA‐DAT is ≈23‐fold higher than that of Kapton, one of the commercially available polyimide membranes also made from PMDA, and with almost the same CO2/CH4 selectivity. In addition, no plasticization phenomenon is observed for PMDA‐DAT membrane even at a CO2 pressure up to 15 atm. The good plasticization resistance performance of PMDA‐DAT can be mainly attributed to the formation of pseudo‐physical crosslinking by interlocking and π–π interactions in triptycene moieties.  相似文献   

4.
The biological function of adherent cell populations strongly depends on the physical and biochemical properties of extracellular matrix molecules. Therefore, numerous biocompatible cell carriers have been developed to specifically influence cell attachment, proliferation, cellular differentiation, and tissue formation for diverse cell culture applications and cell-based therapies. In the present study, we evaluated the mechanical and the cell biological properties of a novel, thin, and planar collagen scaffold. The cell carrier is based on fibrillar bovine collagen type I and exhibits a low material thickness coupled with a high mechanical stability as measured by tensile tests. The influence of this new biomaterial on cell viability, proliferation, and cell differentiation was analyzed using 5-bromo-2-deoxyuridine (BrdU) proliferation assay, immunocytochemistry, water-soluble tetrazolium salt-1 assay (WST-1), live cell imaging, and electron microscopy. Cell culture experiments with the human osteosarcoma cell line Saos-2, human mesenchymal stem cells, and rodent cardiomyocytes demonstrated the in vitro biocompatibility of this chemically noncrosslinked scaffold. Both the mechanical characteristics and the in vitro biocompatibility of this collagen type I carrier facilitate the engineering of thin transferable tissue constructs and offer new possibilities in the fields of cell culture techniques, tissue engineering, and regenerative medicine.  相似文献   

5.
Mg-Zr-Sr alloys as biodegradable implant materials   总被引:2,自引:0,他引:2  
Novel Mg-Zr-Sr alloys have recently been developed for use as biodegradable implant materials. The Mg-Zr-Sr alloys were prepared by diluting Mg-Zr and Mg-Sr master alloys with pure Mg. The impact of Zr and Sr on the mechanical and biological properties has been thoroughly examined. The microstructures and mechanical properties of the alloys were characterized using optical microscopy, X-ray diffraction and compressive tests. The corrosion resistance was evaluated by electrochemical analysis and hydrogen evolution measurement. The in vitro biocompatibility was assessed using osteoblast-like SaOS2 cells and MTS and haemolysis tests. In vivo bone formation and biodegradability were studied in a rabbit model. The results indicated that both Zr and Sr are excellent candidates for Mg alloying elements in manufacturing biodegradable Mg alloy implants. Zr addition refined the grain size, improved the ductility, smoothed the grain boundaries and enhanced the corrosion resistance of Mg alloys. Sr addition led to an increase in compressive strength, better in vitro biocompatibility, and significantly higher bone formation in vivo. This study demonstrated that Mg-xZr-ySr alloys with x and y ≤5 wt.% would make excellent biodegradable implant materials for load-bearing applications.  相似文献   

6.
To evaluate the biocompatibility of chemically and structurally modified polyurethane elastomers for use as blood vessel replacements, small squares of vascular prostheses were cultured in direct contact with endothelium from chick embryo aorta using an organotypic culture assay. The polyurethane materials tested were: Vascugraft (fibrous, open pore structure); commercial Hydrophilic Mitrathane prosthesis (high porosity, smooth surface, non-permeable, closed pore structure); experimental hydrophobic Mitrathane (less porosity but a fibrous, open pore structure, similar to Vascugraft). The commercial expanded polytetrafluoroethylene prostheses Impra and reinforced GORETEX were included as controls on account of their extensive clinical application in the femoropopliteal position. After 5 d incubation at 37 degrees C biocompatibility was assessed in terms of average area of migrating cells on the biomaterial, total number of cells surrounding the explant and level of adhesion between the cells and the biomaterial. The Vascugraft prosthesis promoted the growth of a continuous monolayer of cells on its surface. This behaviour was equivalent to Impra and reinforced GORETEX materials in terms of cell density and area of cell migration but appeared to be superior for cell adhesion. From a second series of cell culture tests, in which the extractables leached from the biomaterials were added to the nutrient medium, it was concluded that none of the biomaterials tested released cytotoxic contaminants.  相似文献   

7.
Medical devices based on microelectro-mechanical systems (MEMS) platforms are currently being proposed for a wide variety of implantable applications. However, biocompatibility data for typical MEMS materials of construction and processing, obtained from standard tests currently recognized by regulatory agencies, has not been published. Likewise, the effects of common sterilization techniques on MEMS material properties have not been reported. Medical device regulatory requirements dictate that materials that are biocompatibility tested be processed and sterilized in a manner equivalent to the final production device. Material, processing, and sterilization method can impact the final result. Six candidate materials for implantable MEMS devices, and one encapsulating material, were fabricated using typical MEMS processing techniques and sterilized. All seven materials were evaluated using a baseline battery of ISO 10993 physicochemical and biocompatibility tests. In addition, samples of these materials were evaluated using a scanning electron microscope (SEM) pre- and post-sterilization. While not addressing all facets of ISO 10993 testing, the biocompatibility and SEM data indicate few concerns about use of these materials in implant applications.  相似文献   

8.
Current problems associated with bone allografts include risk of disease transmission, limited availability, and cost. Synthetic scaffolds have been proposed as substitute graft materials to address these issues. Calcium polyphosphate is a novel synthetic scaffold material that has shown good mechanical properties and biocompatibility. Here, we evaluated calcium polyphosphate in terms of its ability to support cell proliferation and differentiation in?vivo. Calcium polyphosphate, morsellized cancellous bone, and hydroxyapatite/tricalcium phosphate particles were seeded with marrow stromal cells and implanted subcutaneously in the back of NOD/Scid mice. At 7, 14, and 28 days the samples were harvested and the proliferation characteristics and gene expression were analyzed. All tested graft materials had similar proliferation characteristics and gene expression. The subcutaneous environment had a stronger impact on the proliferation and differentiation of the cells than the scaffold material itself. However, it was shown that calcium polyphosphate is superior to hydroxyapatite/tricalcium phosphate and bone in its ability to support cell survival in?vivo. The study confirmed that calcium polyphosphate has potential for replacing morsellized cancellous bone as a graft material for bone regeneration.  相似文献   

9.
Xenogeneic extracellular matrices (ECMs) have been developed as off-the-shelf biologic scaffolds that have been effectively used in preclinical and clinical applications for tissue reconstruction. Such materials must be suitable for terminal sterilization and capable of storage for extended periods of time without significant changes in material properties and bioactivity. Material properties of interest for ECM scaffolds include hydrostatic permeability index (PI), uniaxial maximum load and elongation, maximum tangential stiffness (MTS), suture retention strength (SRS), and ball-burst strength (BBS). The present study evaluated these material properties for lyophilized forms of an ECM scaffold derived from the porcine urinary bladder, termed urinary bladder matrix (UBM), that was terminally sterilized by e-beam irradiation at 22 kGy and stored at room temperature (RT; 20-24 degrees C) or refrigerated temperature (REFT; 4-8 degrees C) for up to 12 months. UBM devices showed no change in SRS, BBS, and hydrostatic PI after the evaluation period. Lyophilized devices stored at RT showed an increase in maximum load and MTS while devices stored at REFT showed an increase in maximum elongation after 1 year of storage (p < 0.05). These results indicate that structural changes in the UBM device may slowly occur as a function of prolonged storage and storage temperature.  相似文献   

10.
背景:骨软骨支架是用于承载细胞,供细胞黏附、生长、增殖、分化的载体。 目的:总结运动性关节软骨缺损支架材料的应用进展及其生物替代材料的生物相容性。 方法:以“关节软骨,生物材料,工程软骨,支架材料,生物相容性”为中文关键词,以“ tissue enginneering ,articular cartilage,scaffold material”为英文关键词,采用计算机检索维普数据库、PubMed数据库1993-01/2010-11相关文章。纳入与有关修复关节软骨损伤、生物材料、支架材料、生物相容性等相关的文章。以20篇文献为重点对运动性关节软骨缺损修复用的生物材料的生物相容性进行了讨论。 结果与结论:天然软骨支架材料因其具有细胞识别信号,故生物相容性好,细胞黏附率高,但力学性能较差。有些人工合成材料生物相容性不理想、亲水性差、对细胞吸附不足,人工合成高分子聚合物生物相容性良好。复合支架利用不同生物材料的优点克制材料的局限性制备理想的复合支架,其混合比例、混合技术还有待进一步研究。目前尚无一种材料完全满足组织工程的要,通过材料制备技术的改进或将几种不同材料的复合,材料的性能会不断的提高。  相似文献   

11.
目的 体外构建丝素蛋白(silk fibroin,SF)、I型胶原(type I collagen,Col-I)和羟基磷灰石(hydroxyapatite, HA)共混体系制备二维复合膜和三维仿生支架,研究其理化性质和生物相容性,探讨其在组织工程支架材料中应用的可行性。方法 通过在细胞培养小室底部共混SF/Col-I/HA以及低温3D打印结合真空冷冻干燥法制备二维复合膜及三维支架。通过机械性能测试、电子显微镜和Micro-CT检测材料的理化性质,检测细胞的增殖评估其生物相容性。结果 通过共混和低温3D打印获得稳定的二维复合膜及三维多孔结构支架;力学性能具有较好的一致性,孔径、吸水率、孔隙率和弹性模量均符合构建组织工程骨的要求;支架为网格状的白色立方体,内部孔隙连通性较好; HA均匀分布在复合膜中,细胞黏附在复合膜上,呈扁平状;细胞分布在支架孔壁周围,呈梭形状,生长及增殖良好。结论 利用SF/Col-I/HA共混体系成功制备复合膜及三维支架,具有较好的孔连通性与孔结构,有利于细胞和组织的生长以及营养输送,其理化性能以及生物相容性符合骨组织工程生物材料的要求。  相似文献   

12.
A new culture system was developed to clarify the biocompatibility of implant materials with bone tissue using the MC3T3-E1 osteogenic cell line. The cells were inoculated onto specimens such as aluminium oxide, titanium, dental casting silver-palladium alloy (PD), and a plastic coverslip. To study the effects of these materials on cell growth, differentiation, and calcification, DNA and protein content, alkaline phosphatase activity, and calcium content, respectively, were determined. The results from biochemical analysis suggest titanium and aluminum oxide to have adequate biocompatibility, while PD has an irritant effect on cell metabolism. It is clear that an objective view of the differentiation and calcification processes of osteogenic cells can be understood through such analysis. From the results of this study, our culture system appears suitable for evaluating the biocompatibility of implant materials with bone tissue.  相似文献   

13.
This work reports on the biocompatibility evaluation of new biodegradable starch-based polymers that are under consideration for use in orthopaedic temporary applications and as tissue engineering scaffolds. It has been shown in previous works that by using these polymers it is both possible to produce polymer/hydroxyapatite (HA) composites (with or without the use of coupling agents) with mechanical properties matching those of the human bone, and to obtain 3D structures generated by solid blowing agents, that are suitable for tissue engineering applications. This study was focused on establishing the influence of several additives (ceramic fillers, blowing agents and coupling agents) and processing methods/conditions on the biocompatibility of the materials described above. The cytotoxicity of the materials was evaluated using cell culture methods, according to ISO/EN 109935 guidelines. A cell suspension of human osteosarcoma cells (HOS) was also seeded on a blend of corn starch with ethylene vinyl alcohol (SEVA-C) and on SEVA-C/HA composites, in order to have a preliminary indication on cell adhesion and proliferation on the materials surface. In general, the obtained results show that all the different materials based on SEVA-C, (which are being investigated for use in several biomedical applications), as well as all the additives (including the novel coupling agents) and different processing methods required to obtain the different properties/products, can be used without inducing a cytotoxic behaviour to the developed biomaterials.  相似文献   

14.
Methods of assessing the biocompatibility of materials for use in medical devices were evaluated. Ten materials were tested using quantitative, objectively graded in vitro biochemical and functional assays employing four cell lines (CCL 1, 74, 76, and 131) used in previous work and five primary cell types (human lymphocytes, polymorphonuclear leukocytes, and mixed leukocytes, mouse macrophages, and mouse embryo). The biochemical methods (DNA synthesis, protein synthesis, and ATP activity) demonstrated good agreement in toxicity ranking of the materials, regardless of which cell culture was used and, also, the cell cultures responded similarly for each method. Methods that measured functional characteristics of cells (adhesion and phagocytosis) were highly sensitive but had low toxicity ranking agreement and reproducibility. Assays (defined as method and cell culture combinations) using cell lines were more reproducible than assays using primary cell types. Significant differences in sensitivity were noted among the assay systems for particular material types. The in vitro assays were more sensitive to differences in material composition than was a 90-day assay by subcutaneous implantation in rats.  相似文献   

15.
The current challenge in peripheral nerve tissue engineering is to produce an implantable scaffold capable of bridging long nerve gaps that will produce results similar to autograft without requiring the harvest of autologous donor tissue. Aligned and random polycaprolactone/gelatin (PCL/gelatin) nanofibrous scaffolds were fabricated for the in vitro culture of Schwann cells that assist in directing the growth of regenerating axons in nerve tissue engineering. The average fiber diameter attained by electrospinning of polymer blend (PCL/gelatin) ranged from 232 ± 194 to 160 ± 86 nm with high porosity (90%). Blending PCL with gelatin resulted in increased hydrophilicity of nanofibrous scaffolds and yielded better mechanical properties, approaching those of PCL nanofibers. The biocompatibility of fabricated nanofibers was assessed for culturing and proliferation of Schwann cells by MTS assay. The results of the MTS assay and scanning electron microscopy confirmed that aligned and random PCL/gelatin nanofibrous scaffolds are suitable substrates for Schwann cell growth as compared to PCL nanofibrous scaffolds for neural tissue engineering.  相似文献   

16.
医用级硅凝胶的生物学实验研究   总被引:3,自引:0,他引:3  
有机硅凝胶(GNY—514,GNY—515)具有较好的物理机械性能而被用于医学各个领域,但对该材料的毒性及生物相容性研究报道较少,作者参考了有关标准,对硅凝胶材料及制品进行了系统的毒性及生物相容性研究。结果表明红外分析制品内未查出残留单体,从细胞培养试验证实无细胞毒性,Ames试验未见致突变现象,三种刺激试验表明均无刺激反应,硅凝胶的四种介质浸提液无急性毒性反应,小鼠微核试验微核率正常,材料肌肉植入无明显的组织学改变。该研究结果证明了硅凝胶材料是无毒、无刺激、生物相容好的生物医用材料。  相似文献   

17.
There has been growing interest in innovative materials with physico-chemical properties that provide improved blood/cell compatibility. We propose new polymeric membranes made of modified polyetheretherketone (PEEK-WC) as materials with potential for use in biohybrid devices. PEEK-WC exhibits high chemical, thermal stability and mechanical resistance. Owing to its lack of crystallinity this polymer can be used for preparing membranes with cheap and flexible methods. We compared the properties of PEEK-WC membranes to polyurethane membranes prepared using the same phase inverse technique and commercial membranes. The physico-chemical properties of the membranes were characterised by contact angle measurements. The different parameters acid (gamma+), base (gamma-) and Lifshitz-van der Waals (gammaLW) of the surface free energy were calculated according to Good-van Oss's model. We evaluated the cytocompatibility of PEEK-WC membranes by culturing hepatocytes isolated from rat liver. Cell adhesion and metabolic behaviour in terms of ammonia elimination, urea synthesis and protein synthesis were evaluated during the first days of culture. Liver cells adhered and formed three-dimensional aggregates on the most tested membranes. PEEK-WC membranes promoted hepatocyte adhesion most effectively. Urea synthesis, ammonia elimination and protein synthesis improved significantly when cells adhered to PEEK-WC membrane. The considerable metabolic activities of cells cultured on this membrane confirmed the good structural and physico-chemical properties of the PEEK-WC membrane that could be a promising biomaterial for cell culture in biohybrid devices.  相似文献   

18.
This paper describes an extensive biocompatibility evaluation of biodegradable starch-based materials aimed at orthopaedic applications as temporary bone replacement/fixation implants. For that purpose, a polymer (starch/ethylene vinyl alcohol blend, SEVA-C) and a composite of SEVA-C reinforced with hydroxyapatite (HA) particles, were evaluated in both in vitro and in vivo assays. For the in vitro analysis cell culture methods were used. The in vivo tissue reactions were evaluated in an intramuscular and intracortical bone implantation model on goats, using light and scanning electron microscopy. A computerized image analysis system was used to obtain histomorphometric data regarding bone contact and remodelling after 6 and 12 weeks of implantation. In both in vitro and in vivo models, the SEVA-C-based materials did not induce adverse reactions, which in addition to their bone-matching mechanical properties makes them promising materials for bone replacement fixation.  相似文献   

19.
In this study two organic soluble polyimides were successfully synthesized via polycondensation of a hexafluoropropyl group contained dianhydride with two kinds of diamines. These two polyimides (DMDB/6FDA, OT/6FDA) can be dissolved in most aprotic solvents (for example, NMP, DMAc) and many other common solvents (for example, THF, DMSO). The soluble polyimides also show good thermal stability and high absorption at the KrF excimer laser wavelength (λ = 248 nm). (The absorption coefficients of DMDB/6FDA and OT/6FDA were 1.26×105 cm–1 and 1.49×105 cm–1, respectively.) The photoablation properties of the polyimides were studied in detail. Due to incorporating the hexafluoropropyl group into the chemical structure, these two polyimides have higher etching rates than Kapton (a commercial PI film). The effects of exposure parameters on linewidth and taper‐angle of polyimides with different chemical structure were also investigated here. Under the proper control of exposure conditions, good precision patterns with near‐vertical side wall can be produced. The 300 mm thick comb‐shape and Fresnel patterns with 10 mm linewidth have been made. Moreover, the complementary metallic microstructures have also been realized in the following electroforming procedure. The results showed that these two soluble polyimides were very suitable for KrF Laser LIGA process.  相似文献   

20.
Two soluble functional aromatic polyimides (PIs), 6F‐CzTZ PI and 6F‐OCzTZ PI, are synthesized for memory device applications. The chemical structures of the 6F‐CzTZ PI and 6F‐OCzTZ PI are basically identical, with the only difference lying in the incorporation of phenoxy linkages in 6F‐OCzTZ PI. However, vastly different memory behaviors are observed. The 6F‐CzTZ PI displays a non‐volatile write‐once read‐many times (WORM) memory effect with no polarity, while the 6F‐OCzTZ PI exhibits volatile static random access memory (SRAM) characteristics and has polarity. Both the PIs exhibit good long‐term operation stability, survive to 108 reading cycles with no current degradation, and show ultrafast switching with a response time less than 20 ns. The charge‐transfer mechanisms and the roles of the donor and acceptor components in the PIs associated with the electrical switching effect are elucidated on the basis of the experimental and quantum simulation results.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号