首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After corneal injury, keratocytes become activated and transform into repair phenotypes-corneal fibroblasts or myofibroblasts, however, these important cells are difficult to identify histologically, compromising studies of stromal wound healing. Recent studies indicate that expression of the cell surface protein, Thy-1, is induced in fibroblast populations associated with wound healing and fibrosis in other tissues. We investigated whether keratocyte transformation to either repair-associated phenotype induced Thy-1 expression. Human corneal keratocytes were isolated by collagenase digestion. The cells were either processed immediately (i.e. freshly isolated keratocytes) or were cultured in the presence of 10% fetal bovine serum or transforming growth factor-beta to induce transformation to the corneal fibroblast and myofibroblast phenotypes, respectively. Thy-1 mRNA and protein expression by freshly isolated keratocytes and corneal fibroblasts were assessed by RT-PCR and Western blotting. mRNA also was extracted from the whole intact stroma and assessed by RT-PCR. Thy-1 was localised immunocytochemically in cultured human corneal fibroblasts, myofibroblasts, and in keratocytes in normal human corneal tissue sections. Thy-1 mRNA and protein were detectable in cultured human corneal fibroblasts, but not freshly isolated keratocytes. Whole uninjured stroma showed no detectable Thy-1 mRNA expression. Cultured human corneal fibroblasts and myofibroblasts both labelled for Thy-1, but keratocytes in the stroma of normal human cornea did not. We conclude that Thy-1 expression is induced by transformation of keratocytes to corneal fibroblasts and myofibroblasts, suggesting a potential functional role for Thy-1 in stromal wound healing and providing a surface marker to distinguish the normal keratocyte from its repair phenotypes.  相似文献   

2.
PURPOSE: Recent studies have shown that rabbit corneal keratocytes abundantly express two water-soluble proteins, transketolase (TKT) and aldehyde dehydrogenase class 1A1 (ALDH1A1), in vivo and that these proteins may contribute to corneal transparency at the cellular level. The purpose of this study was to determine the relationship between the expression of these proteins and the development of postnatal corneal transparency. METHODS: Rabbits 1 day to 42 days of postnatal age were evaluated by in vivo confocal microscopy (CM) to measure corneal epithelial thickness, stromal thickness, and corneal haze. Selected corneas were then processed for immunocytochemistry and Western and Northern blot analyses, to determine stromal cell density, cell cycle entry, and expression of ALDH1A1 and TKT. RESULTS: Quantitative measurement of corneal haze showed that the postnatal cornea was hazy after birth and became transparent during the first weeks after eyelid opening. Development of transparency was associated with decreased cytoplasmic light-scattering from postnatal corneal stromal cells, with the appearance of nuclear light-scattering after eyelid opening. Four days after birth, stromal cell density decreased rapidly, and the cells became quiescent, showing decreased staining by Ki67, a cell cycle marker. Whereas expression of TKT showed a gradual increase after birth, ALDH1A1 showed a marked increase after eyelid opening, and the combined expression significantly correlated with the reduction in light-scattering by postnatal stromal cells. CONCLUSIONS: The data suggest that development of postnatal corneal transparency is associated with decreased keratocyte density and quiescence and the expression of TKT/ALDH1A1.  相似文献   

3.
PURPOSE: To investigate the expression and function of toll-like receptor (TLR)-3 and -9 in corneal myofibroblasts. METHODS: Two types of human keratocytes were used, which were freshly isolated keratocytes from donor corneas and cultured keratocytes. Expression of the mRNAs for various molecular markers was analyzed in these cells by RT-PCR, and TLR-2, -3, -4, and -9 mRNAs were also analyzed by RT-PCR. Expression of TLR-3 and -9 at the protein level was assessed by flow cytometry. In addition, an antibody array and ELISA were used to detect chemokines and cytokines in the supernatant of cultured keratocytes, with or without stimulation by poly inosine-polycytidylic acid (poly (I:C)) or CpG-DNA. Furthermore, a phagocytosis assay was performed to evaluate whether signaling via TLR-3 and -9 enhances phagocytosis. RESULTS: Keratocytes cultured for three passages underwent differentiation into corneal myofibroblasts. TLR-3 and -9 were detected in corneal myofibroblasts at the mRNA and protein levels, but not in freshly isolated keratocytes. Stimulation of corneal myofibroblasts with poly (I:C) or CpG-DNA enhanced the production of IL-6, IL-8, GRO, ENA-78, and RANTES compared with that by untreated cells. Phagocytic activity of myofibroblasts was upregulated by signaling via TLR-3 and -9. CONCLUSIONS: This is the first report on the in vitro expression and function of TLR-3 and -9 in corneal myofibroblasts. The findings suggest that the keratocyte phenotype determines the expression of TLR-3 and -9 and that corneal myofibroblasts may have an important role in bacterial and viral clearance.  相似文献   

4.
Transparency is essential for normal corneal function. Recent studies suggest that corneal cells express high levels of so-called corneal crystallins, such as aldehyde dehydrogenase (ALDH) and transketolase (TKT) that contribute to maintaining cellular transparency. Stromal injury leads to the appearance of repair phenotype keratocytes, the corneal fibroblast and myofibroblast. Previous studies on keratocytes from species such as bovine and rabbit indicate that the transformation from the normal to repair phenotype is accompanied by a loss of corneal crystallin expression, which may be associated with loss of cellular transparency. Here we investigated if a similar loss occurs with human keratocyte repair phenotypes. Human corneal epithelial cells were collected by scraping and keratocytes were isolated by collagenase digestion from cadaveric corneas. The cells were either processed immediately (freshly isolated keratocytes) or were cultured in the presence of 10% fetal bovine serum or transforming growth factor-beta to induce transformation to the corneal fibroblast and myofibroblast phenotypes, respectively. RT-PCR, western blotting and immunolabeling were used to detect mRNA and protein expression of ALDH isozymes and TKT. ALDH enzyme activity was also quantitated and immunolabeling was performed to determine the expression of ALDH3A1 in human corneal tissue sections from normal and diseased corneas. Human corneal keratocytes isolated from three donors expressed ALDH1A1 and ALDH3A1 mRNA, and one donor also expressed ALDH2 and TKT. Corneal epithelial cells expressed ALDH1A1, ALDH2, ALDH3A1 and TKT. Compared to normal keratocytes, corneal fibroblast expression of ALDH3A1 mRNA was reduced by 27% (n=5). ALDH3A1 protein expression as detected by western blotting was markedly reduced in passage zero fibroblasts and undetectable in higher passages (n=3). TKT protein expression was reduced in fibroblasts compared to keratocytes (n=2). ALDH3A1 enzyme activity was not detectable in corneal fibroblasts (n=6) but was readily detected in corneal epithelial cells (0.29+/-0.1U/mg protein, n=4) and keratocytes (0.05+/-0.009U/mg protein, n=7). ALDH3A1 expression was also reduced in corneal fibroblasts and myofibroblasts as determined by immunolabeling of the cells in culture (n=3) and in diseased corneal tissues in situ (n=2). We conclude that expression of the crystallin ALDH3A1 is decreased in repair phenotype human keratocytes, compared to normal human keratocytes. Extrapolating from studies of bovine and rabbit, the reduced expression of ALDH3A1 may contribute to the loss of corneal transparency experienced by human patients after injury and refractive surgeries.  相似文献   

5.
There is a growing consensus that corneal myofibroblasts are derived from adjacent stromal keratocytes which undergo an orderly phenotypic transition from quiescent keratocyte to activated fibroblast to myofibroblast. Both in vivo and in vitro studies have shown this transition to be dependent, in part, on transforming growth factor beta (TGFbeta). In many fibroblastic cells autocrine production of platelet derived growth factor (PDGF) is known to mediate the growth up-regulation by TGFbeta. In this study, blocking antibodies to PDGF significantly reduced by 80% (P<0.025) the TGFbeta1 stimulated cell cycle entry of serum-free cultured rabbit corneal keratocytes. AntiPDGF treatment also markedly reduced the TGFbeta1-induced intracellular actin filament re-organization, fibronectin fibril assembly, and focal contact formation as well as reducing by 80% the expression of alpha-smooth muscle (alpha-SM) specific isoform of actin characteristic of myofibroblast differentiation. Although PDGF treatment of quiescent keratocytes produced an activated, fibroblastic cell type, PDGF stimulated keratocytes exhibited the same temporal, myofibroblastic differentiation response to TGFbeta1 as did quiescent keratocytes. Furthermore, blocking TGFbeta1 induction of myofibroblast differentiation with the Arg-Gly-Asp containing peptide, GRGDdSP, for 3 days followed by allowing progression of myofibroblast differentiation by removing GRGDdSP did not change the temporal response or tyrosine phosphorylation cascade (2-72 hr) leading to myofibroblast differentiation. Nor did PDGF treatment of keratocytes reverse the RGD blockade of TGFbeta1 induced myofibroblast differentiation. Overall these cumulative findings indicate that myofibroblast differentiation in the rabbit corneal keratocyte requires synergistic growth factor/integrin signaling involving TGFbeta, PDGF, and the fibronectin receptor. Additionally, the similar TGFbeta1 temporal response of PDGF-stimulated compared to nai;ve keratocytes suggests that myofibroblast differentiation does not require transition through a fibroblast phenotype.  相似文献   

6.
Choi TH  Tseng SC 《Cornea》2001,20(2):197-204
PURPOSE: To examine the role of epithelial cells in inducing the differentiation of keratocytes into myofibroblasts and to determine whether this effect may be inhibited by amniotic membrane matrix. METHODS: In vivo, a 9-mm diameter, partial-thickness corneal flap was created in 12 rabbit eyes (6 rabbits), which were equally subdivided into three groups. The first group was implanted with one layer of a 6-mm diameter human amniotic membrane, from which the epithelium had been removed by dispase. The second group received an implantation of dispase-treated amniotic membrane with cultured rabbit corneal epithelial cells. The third group received the same implantation as the second group except that the cultured corneal epithelial cells were sandwiched between two layers of membrane. All corneas were removed 2 weeks later and were subjected to Masson trichrome staining and immunofluorescence staining with monoclonal antibodies to alpha-smooth muscle (alpha-SM) actin for myofibroblasts and cytokeratins for epithelial cells. In vitro collagen gels impregnated with different types of human ocular surface fibroblasts were seeded with or without rabbit corneal epithelial cells before testing for gel contraction. RESULTS: Positive staining of alpha-SM actin was noted only in keratocytes adjacent to corneal epithelial cells at the incision site and those grown on the basement membrane side of the amniotic membrane. Negative staining was noted when epithelial cells were removed by dispase or when cultured corneal epithelial cells were sandwiched between two layers of membrane. Gel contraction by fibroblasts was significantly promoted when epithelial cells were seeded on the gel. In the latter situation, positive staining of alpha-SM actin was noted in fibroblasts subjacent to epithelial cells but not in those impregnated in the gel. CONCLUSION: Epithelial cells are capable of inducing the differentiation of adjacent fibroblasts into myofibroblasts; such an induction requires a close epithelial-mesenchymal contact. Amniotic membrane alone does not induce this effect and can help block such induction by epithelial cells.  相似文献   

7.
The keratocytes are specialized mesenchymal cells that produce and maintain the extracellular matrix of the corneal stroma. With a typical dendritic and flattened appearance, these cells can morph into fibroblasts and myofibroblasts upon injury, and produce abnormal or fibrotic extracellular matrices detrimental to corneal transparency. Insights into mechanisms that regulate these phenotypic switches and optimal culture conditions that preserve the keratocyte phenotype are important for tissue engineering of the corneal stroma. Like other cell types with self-renewing capacity, keratocytes can form spheres in culture. Here we investigated human and bovine keratocytes with respect to their sphere forming capabilities, and sought to identify potentially distinguishing markers for the keratocyte and fibroblast phenotypes. Keratocytes, isolated from bovine and human corneas, cultured in serum-free medium supplemented with insulin, selenium and transferrin, assumed typical keratocyte morphology, converted to fibroblasts in serum-containing medium and reverted to keratocytes after serum-deprivation. The bovine keratocytes produced spheres under adherent or low attachment conditions, while the human keratocytes produced spheres under low attachment conditions only. The primary keratocytes and fibroblasts expressed vimentin, confirming their mesenchymal origin. Keratocan, considered to be a marker for keratocytes, was also detected in early passage bovine fibroblasts. BMP3 was expressed in keratocytes and keratocyte-derived spheres, while cadherin 5 in keratocytes only, suggesting these as potential keratocyte markers.  相似文献   

8.
PURPOSE: In vitro and in vivo studies were performed to elucidate the effects of tranilast on cellular proliferation and collagen synthesis. METHODS: Subculturing was carried out using keratocytes from rabbits that underwent photorefractive keratectomy (PRK) and developed corneal haze, and keratocytes from normal rabbit cornea. RESULTS: Tranilast suppressed proliferation in cultured keratocytes from the corneal haze region at doses of 30 and 300 micromol/L and collagen synthesis at doses of 3, 30, and 300 micromol/L. Normal corneal cultures showed suppression of keratocyte proliferation and collagen synthesis only at a high dose of tranilast (300 micromol/L). Betamethasone suppressed proliferation of keratocytes in both haze and normal cornea at a dose of 10 micromol/L, as well as collagen synthesis at respective doses of 1 and 10 micromol/L. Diclofenac sodium suppressed collagen synthesis of keratocytes in haze cornea at a high dose of 100 micromol/L, and in keratocytes in normal cornea, at doses of 10 and 100 micromol/L. In an in vivo study, either 0.5% tranilast, 0.1% betamethasone phosphate eye drops, or a tranilast base solution (control) was instilled four times daily to rabbits that had undergone PRK. Weekly evaluation of the inhibitory effect of these drugs on the development of haze was performed 2 weeks after surgery. Tranilast suppressed haze 6-13 weeks after PRK, but betamethasone phosphate showed no effect. CONCLUSION: These results indicate that tranilast is potentially effective for inhibiting the corneal haze that occurs after PRK.  相似文献   

9.
PURPOSE: To elucidate biological processes underlying the keratocyte, fibroblast, and myofibroblast phenotypes of corneal stromal cells, the gene expression patterns of these primary cultures from mouse cornea were compared with those of the adult and 10-day postnatal mouse cornea. METHODS: Murine Genome_U74Av2 arrays (Affymetrix Inc., Santa Clara, CA) were used to elucidate gene expression patterns of adult and postnatal day-10 corneal stroma, keratocytes, fibroblasts, and myofibroblasts. RESULTS: Mobilization of stromal cells by culturing led to a wound-healing cascade in which specific extracellular matrix and cornea-transparency-related genes were turned off, and a repertoire of macrophage genes were switched on. Thus, novel transparency-related crystallins detected in the corneal gene expression patterns were downregulated in culture, whereas macrophage genes, mannose receptor type-1, Cd68, serum amyloid-A3, chemokine ligands (Ccl2, Ccl7, Ccl9), lipocalin-2, and matrix metalloproteinase-3 and -12 of innate immunity were induced in primary keratocyte cultures. Fibroblasts expressed the growth-related genes lymphocyte antigen 6 complex locus-A and preprokephalin-1, and myofibroblasts expressed annexin-A8, WNT1-inducible signaling pathway protein-1, arginosuccinate synthetase-1, and procollagen XI of late-stage wound healing. CONCLUSIONS: The emergent biological process suggests a dual role for resident stromal keratocytes in the avascular cornea: one of cornea maintenance, which involves synthesis of proteins related to the extracellular matrix and corneal transparency, and a second of barrier protection macrophage functions, which are switched on during corneal infection and injury.  相似文献   

10.
11.
Keratocytes can become fibroblasts and myofibroblasts during corneal injury and wound healing. We used the in vitro bovine keratocyte repair model system, which involves culturing collagenase-isolated keratocytes in serum-free media and then adding serum or serum plus TGF-beta to the culture media to induce the fibroblast and myofibroblast phenotypes, respectively, to evaluate the synthesis of secreted products by the cells. Serum and serum plus TGF-beta rapidly induced the fibroblast morphology and alpha smooth muscle actin, a marker of myofibroblasts. Keratocytes cultured in serum and serum plus TGF-beta also increased the synthesis of several high molecular weight products (approximately 100kD and larger) and the accumulation of a 43kD protein shown to be osteonectin/SPARC by both sequencing tryptic peptides from the protein and by reaction with antisera to osteonectin/SPARC. Immunohistochemical staining of mouse corneas with antisera to SPARC seven days post-wounding also demonstrated an increased accumulation of SPARC in the regions undergoing repair. These results indicate SPARC accumulation is a marker for stromal repair.  相似文献   

12.
Aquaporin-1 (AQP1) water channels are expressed in corneal keratocytes, which become activated and migrate following corneal wounding. The purpose of this study was to investigate the role of AQP1 in keratocyte migration. Keratocyte primary cell cultures from wildtype and AQP1-null mice were compared, as well as keratocyte cultures from pig cornea in which AQP1 expression was modulated by RNAi knockdown and adenovirus-mediated overexpression. AQP1 expression was found in a plasma membrane pattern in corneal stromal and cultured keratocytes. Osmotic water permeability, as measured by calcein fluorescence quenching, was AQP1-dependent in cultured keratocytes, as was keratocyte migration following a scratch wound. Keratocyte migration in vivo was compared in wildtype and AQP1 knockout mice by histology and immunofluorescence of corneal sections at different times after partial-thickness corneal stromal debridement. AQP1 expression in keratocytes was increased by 24 h after corneal debridement. Wound healing and keratocyte appearance near the wound margin were significantly reduced in AQP1 knockout mice, and the number of neutrophils was increased. These results implicate AQP1 water permeability as a new determinant of keratocyte migration in cornea.  相似文献   

13.
Involvement of S100A4 in stromal fibroblasts of the regenerating cornea   总被引:2,自引:0,他引:2  
PURPOSE. S100A4 is a member of the S100 family of calcium-binding proteins. Members of the S100 family have been implicated in a variety of cellular events, including growth, signaling, differentiation, and motility. It has been suggested that S100A4 modulates cell shape and motility by interacting with components of the cytoskeleton. In the present study, the distribution patterns of S100A4 were investigated in normal and regenerating mouse corneas. METHODS. Rabbit cDNA libraries were prepared from cultures of corneal fibroblasts. S100A4 was identified as the most abundant message present. Expression of S100A4 in the cornea was determined using Northern blot analysis, in situ hybridization, and immunohistochemistry. Distribution patterns of S100A4 in primary corneal fibroblast cultures treated with either FGF-2/heparin or TGFbeta1 were analyzed by immunofluorescence. RESULTS. S100A4 mRNA was rarely detected in keratocytes or epithelial cells of the normal rabbit cornea. Likewise, S100A4 antigen was not found in normal mouse corneas. However, after removal of the corneal epithelium, fibroblasts are activated and had readily detectable S100A4 expression 6 days after wounding. In the in vitro equivalent of activated keratocytes, cultured rabbit corneal fibroblasts, S100A4 was restricted to the cytoplasm. In contrast, in cultures treated with TGFbeta1, which induces a myofibroblast phenotype, more than 90% of the cells showed a nuclear localization of S100A4. CONCLUSIONS. The findings show that S100A4 is expressed in the keratocyte phenotypes that appear in stromal tissue of corneas recovering from damage, the fibroblasts, and myofibroblasts. Its expression and distinct subcellular redistribution patterns suggest that S100A4 may be involved in the interconversions that occur between keratocytes, fibroblasts, and myofibroblasts during corneal wound healing.  相似文献   

14.
PURPOSE: The effects of various eye drops on corneal wound healing, particularly in the subepithelial haze area, investigated histologically following superficial keratectomy in rabbits. MATERIAL AND METHODS: Mechanical superficial keratectomy was performed in rabbit eyes. Tranilast, betamethasone, hyaluronic acid and diclofenac eye drops were administered after the procedure. Physiological saline was used as a control. Corneas were excised 1, 2, 3, and 4 weeks after keratectomy, labeled with 3H-thymidine or 3H-proline, and subjected to autoradiography. RESULTS: In the control and diclofenac groups, corneal haze occurred three weeks after keratectomy. Histological examination revealed accumulation of proliferating keratocytes and active synthesis of collagen in the subepithelial area. In the tranilast and betamethasone groups, formation of corneal haze was reduced compared to the controls. The proliferation of keratocytes and the production of collagen in the corneal stroma were inhibited by these drugs. In the hyaluronic acid groups, corneal haze was decreased. In this group, although the proliferation of keratocytes was activated compared to the controls, abnormal accumulation of keratocytes in the subepithelial area was not detected. CONCLUSION: Tranilast and betamethasone decrease the formation of subepithelial haze by inhibiting keratocyte proliferation and synthesis of extracellular matrix in the corneal stroma. Hyaluronic acid, on the other hand, inhibits subepithelial haze by promoting physiologic wound healing.  相似文献   

15.
PURPOSE: To determine the mechanism through which topical mitomycin C prevents and treats corneal haze after photorefractive keratectomy (PRK) and to examine the effects of dosage and duration of exposure. METHODS: In 224 New Zealand rabbits, -9.0 diopter PRK with mitomycin C or balanced salt solution was performed. Haze level was graded at the slit-lamp. Rabbits were sacrificed at 4 hours, 24 hours, 4 weeks, or 6 months after surgery and immunohistochemistry was performed with TUNEL assay, Ki67, and alpha-SMA. RESULTS: TUNEL-positive apoptotic cells marginally increased in all mitomycin C groups whereas Ki67-positive mitotic cells decreased significantly following mitomycin C application. A greater decrease in myofibroblasts was noted with prophylactic mitomycin C treatment than therapeutic mitomycin C treatment. There was, however, an anterior stromal acellular zone (approximately 20% of the total stroma) in eyes treated with mitomycin C, which persisted to the maximum follow-up of 6 months. CONCLUSIONS: Mitomycin C treatment induces apoptosis of keratocytes and myofibroblasts, but the predominate effect in inhibiting or treating haze appears to be at the level of blocked replication of keratocytes or other progenitor cells of myofibroblasts. Treatment with 0.002% mitomycin C for 12 seconds to 1 minute appears to be just as effective as higher concentrations for longer duration in the rabbit model. However, a persistent decrease in keratocyte density in the anterior stroma could be a warning sign for future complications and treatment should be reserved for patients with significant risk of developing haze after PRK.  相似文献   

16.
New cryoprotectant for cryorefractive surgery   总被引:2,自引:0,他引:2  
Cryorefractive surgeries, keratomileusis, keratophakia, and epikeratophakia cause destruction of keratocytes, which may result in postoperative corneal haze. We examined the effects of two cryoprotectants on keratocyte survival following freeze injury. We compared the ability of CPTES and the standard cryoprotectant KM-26 to prevent keratocyte death by altering the length of time corneal tissue was exposed to the cryoprotectant. When corneal stroma was immersed in CPTES for five minutes prior to freezing, 66.5% of the keratocytes survived; when tissue was immersed in KM-26 for the same length of time, 27.5% survived (P less than .01). Immersion for one to 30 minutes in CPTES prior to freezing produced keratocyte viabilities that were 40% to 80% of those of fresh, unfrozen tissue; immersion in KM-26 produced keratocyte viabilities of 20% to 60%. We compared the ability of these cryoprotectants to reduce corneal haze following freeze injury using our rabbit model of lamellar keratoplasty. The postoperative data were comparable to those in the cell culture experiments. Based on our findings in rabbit corneas, a cryoprotective medium such as CPTES may promote cell survival and thereby speed recovery from cryorefractive procedures in humans.  相似文献   

17.
The purpose of this study was to evaluate specific keratocyte phenotypes (keratocyte, fibroblast, myofibroblast) for cell contractility and ability to contract extracellular matrix. Rabbit keratocyte phenotype was modulated by exposure to optimal proliferative doses of IGF-I, IL-1alpha, FGF2, PDGF-AB, and TGFbeta(1). Cells were then evaluated by immunocytochemistry, western blot, collagen gel contraction and LPA stimulation to measure: (1) focal adhesion (FA), fibronectin (FN) and f-actin assembly; (2) expression of alpha-smooth muscle actin (alpha-SMA); (3) ability to contract extracellular matrix and (4) determine contractile ability, respectively. Untreated keratocytes showed no ability to contract collagen matrix. IGF-I and IL-1alpha increased cell proliferation (70.2 and 74.3%, respectively) but did not alter keratocyte phenotype or ability to contract matrix. FGF2 and PDGF induced fibroblast differentiation with FA and FN assembly and significant (p<0.05) extracellular matrix contraction. TGFbeta(1) induced myofibroblast differentiation with prominent FA and FN assembly, expression of alpha-SMA and significantly greater (p<0.05) matrix contraction. Addition of LPA induced actin filament assembly in growth factor starved fibroblasts and myofibroblasts but had no effect on the cultured keratocyte phenotype. We report for the first time that the keratocyte phenotype is non-contractile and that cell quiescence is not a defining characteristic. We further establish that changes in environmental conditions modulate the keratocyte phenotype resulting in physiologically functional differences regarding cell contractility and capacity to contract extracellular matrix.  相似文献   

18.
PURPOSE: The wound healing process in the corneal stroma involves the activation of corneal keratocytes and the expression of associated phenotypes (fibroblasts and myofibroblasts). One of these phenotypes, the myofibroblasts, synthesizes alpha-smooth muscle actin in order to affect wound closure by contracting the surrounding matrix. Excessive contraction results in the formation of unresolvable scars that are undesirable in the corneal stroma. The authors tested the effect of vitronectin and fibronectin on the contraction process associated with corneal wound healing. METHODS: Collagen gels were prepared and were exposed to different treatments of fetal calf serum (FCS). The FCS used was either depleted of fibronectin and vitronectin or contained a known concentration of fibronectin, vitronectin, or both at 50 microg/ml. Contraction was measured using image analysis and cross sections of contracted gels were examined for alpha-smooth muscle actin expression using laser confocal microscopy. RESULTS: Fibroblasts seeded in collagen gels paralleled the morphologic characteristics and cell distribution of keratocytes in unwounded cornea. Matrix contraction was dependent on the presence of fibronectin and/or vitronectin where myofibroblasts were present. The cell-mediated contraction process was maximal at 0.5 x 10(5) fibroblasts/ml. CONCLUSIONS: These studies showed that vitronectin or fibronectin is required for the myofibroblast-associated contraction to occur in this in vitro model of stromal wound healing. This model system shows a distinct potential for further studies relating to the corneal wound healing process.  相似文献   

19.
PURPOSE: The effects of various eye drops on corneal wound healing, particularly in the subepithelial haze area, were investigated histologically following superficial keratectomy in rabbits. METHODS: Mechanical superficial keratectomy was performed in rabbit eyes. Tranilast, betamethasone, hyaluronic acid, and diclofenac eye drops were administered after the procedure. Physiological saline was used as a control. Corneas were excised 1, 2, 3, and 4 weeks after keratectomy, labeled with 3H-thymidine or 3H-proline, and subjected to autoradiography. RESULTS: In the control and diclofenac groups, corneal haze occurred 3 weeks after keratectomy. Histological examination revealed an accumulation of proliferating keratocytes and active synthesis of collagen in the subepithelial area. In the tranilast and betamethasone groups, formation of corneal haze was reduced compared to the controls. The proliferation of keratocytes and the production of collagen in the corneal stroma were inhibited by these drugs. In the hyaluronic acid group also, corneal haze was decreased. In this group, although the proliferation of keratocytes was activated compared to the controls, abnormal accumulation of keratocytes in the subepithelial area was not detected. CONCLUSIONS: Tranilast and betamethasone decrease the formation of subepithelial haze by inhibiting keratocyte proliferation and synthesis of extracellular matrix in the corneal stroma. Hyaluronic acid, on the other hand, inhibits subepithelial haze by promoting physiologic wound healing.  相似文献   

20.
PURPOSE: Corneal crystallins are lost from resident cells of the corneal stroma during wound repair, and this is associated with a loss of cell transparency. The goal of this study was to identify factors inducing loss of the corneal crystallin transketolase (TKT). METHODS: A cell culture model of freshly isolated rabbit corneal keratocytes was used. Fibrotic markers included cell proliferation, adoption of a "fibroblastic" spindle-shaped morphology associated with cytoskeletal rearrangement, loss of TKT, and expression of alpha-smooth muscle actin (alpha-sm actin), a marker for the myofibroblast. RESULTS: When freshly isolated keratocytes were cultured in the continuous presence of 10% calf serum, the high level of intracellular TKT protein was reduced dramatically within 24 to 48 hours. In contrast, TKT protein was retained in cells maintained in the absence of serum. When cells were prevented from proliferating by exposure to serum for <24 hours or by continuously exposing to serum at a contact-inhibiting plating density, TKT loss was inhibited. TKT loss was induced by treatment of serum-free cultures with the serum cytokines platelet-derived growth factor or basic fibroblast growth factor, both of which also stimulated keratocyte proliferation, although not other changes associated with fibrosis. However, TKT loss was not induced by treatment of serum-free cultures with a third serum cytokine, transforming growth factor- (TGF)-beta, even though TGF-beta stimulated cell proliferation at low doses and induced the fibroblastic spindle-shape and express alpha-sm actin at high doses. CONCLUSIONS: TKT loss in corneal keratocytes can be induced by PDGF or bFGF and this loss can be uncoupled from other fibrotic markers. Targeting these cytokines or the signaling pathways that they activate could enable retention of corneal crystallin in stromal cells during repair, a more regenerative outcome. The result would be enhanced clarity of the cornea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号