首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutations in the glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase gene cause GNE myopathy, a mildly progressive autosomal recessive myopathy. We performed a prospective natural history study in 24 patients with GNE myopathy to select evaluation tools for use in upcoming clinical trials. Patient clinical conditions were evaluated at study entry and one-year follow-up. Of the 24 patients, eight (33.3%) completed a standard 6-min walk test without assistance. No cardiac events were observed. Summed manual muscle testing of 17 muscles, grip power, and percent force vital capacity (%FVC) were significantly reduced (p < 0.05), and scores for 6-min walk test and gross motor function measure were decreased (p < 0.1) after one year. The decrement in %FVC was significant among non-ambulant patients, whereas the decrement in grip power tended to be greater among ambulant patients. The 6-min walk test, gross motor function measure, manual muscle testing, grip power, and %FVC reflect annual changes and are thus considered good evaluation tools for clinical trials.  相似文献   

2.
3.
Homozygous mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene cause hereditary inclusion body myopathy type 2 (HIBM2). We describe two unrelated American patients with novel GNE mutations. While one patient followed a typical disease course for HIBM2 with an onset at age 25 and rimmed vacuole pathology on muscle biopsy, the second patient had several features atypical for HIBM2. This patient’s onset was at age 55, included distal weakness, quadriceps sparing and respiratory insufficiency. His muscle biopsy showed prominent necrosis without rimmed vacuoles. This study expands the phenotype and illustrates the clinical spectrum of HIBM2 identified in a U.S. based neuromuscular clinic.  相似文献   

4.
GNE myopathy is an autosomal recessive adult onset disorder caused by mutations in the GNE gene. GNE encodes the bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetyl mannosamine kinase, the key enzyme in the biosynthesis pathway of sialic acid. Additional functions for GNE have been described recently, but the mechanism leading from GNE mutation to this myopathy is unclear. Therefore a gene therapy approach could address all potential defects caused by GNE mutations in muscle. We show that AAV8 viral vectors carrying wild type human GNE cDNA are able to transduce murine muscle cells and human GNE myopathy-derived muscle cells in culture and to express the transgene in these cells. Furthermore, the intravenous administration of this viral vector to healthy mice allows expression of the GNE transgene mRNA and of the coexpressed luciferase protein, for at least 6 months in skeletal muscles, with no clinical or pathological signs of focal or general toxicity, neither from the virus particles nor from the wild type human GNE overexpression. Our results support the future use of an AAV8 based vector platform for a safe and efficient therapy of muscle in GNE myopathy.  相似文献   

5.
GNE myopathy is an autosomal recessive muscular disorder caused by mutations in the gene encoding the key enzyme in sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE/MNK). Here, we report two siblings with myopathy with rimmed vacuoles and congenital thrombocytopenia who harbored two compound heterozygous GNE mutations, p.V603L and p.G739S. Thrombocytopenia, which is characterized by shortened platelet lifetime rather than ineffective thrombopoiesis, has been observed since infancy. We performed exome sequencing and array CGH to identify the underlying genetic etiology of thrombocytopenia. No pathogenic variants were detected among the known causative genes of recessively inherited thrombocytopenia; yet, candidate variants in two genes that followed an autosomal recessive mode of inheritance, including previously identified GNE mutations, were detected. Alternatively, it is possible that the decreased activity of GNE/MNK itself, which would lead to decreased sialic content in platelets, is associated with thrombocytopenia in these patients. Further investigations are required to clarify the association between GNE myopathy and the pathogenesis of thrombocytopenia.  相似文献   

6.
Autosomal-recessive hereditary inclusion-body myopathy with relative quadriceps sparing is associated with mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene. Two Italian sisters affected with autosomal-recessive hIBM were shown to be compound heterozygous for a novel GNE mutation: a p.A310P amino acid change along with a p.R246W mutation on the second allele both in the epimerase domain. This is the first mutation event observed in a human GNE allele inducing a proline. Muscle biopsy showed abundant rimmed and non-rimmed vacuoles. Severe disease progression was noted in the elder sister. The Italian family further expands the wide phenotypic and genotypic spectrum of hIBM.  相似文献   

7.
Hereditary inclusion body myopathy (IBM2) was mainly reported in Middle Eastern Jewish patients. Distal myopathy with rimmed vacuoles has been described as a worldwide distributed distal myopathy. Both diseases are caused by mutations of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene. Herein we report two patients: an Egyptian Muslim patient with the “common” Middle Eastern mutation (M712T), rarely described in non-Jewish patients; and an Italian patient carrying a novel GNE mutation (L179F) in the epimerase domain. Our patients share common clinical and histopathological features, with some interesting aspects. The first patient presented a clinical deterioration during her first pregnancy confirming that an increased requirement of sialic acid during pregnancy may trigger a clinical worsening. The second patient showed a slowly progressive deterioration, different from other patients carrying mutations in the epimerase domain, who had a severe and rapid progression.  相似文献   

8.
Congenital myopathies are difficult to classify correctly through molecular testing due to the size and heterogeneity of the genes involved. Therefore, the prevalence of the various genetic causes of congenital myopathies is largely unknown. In our cohort of 94 patients with congenital myopathy, two related female patients and two sporadic, male patients were found to carry mutations in the tropomyosin 2 (TPM2) and tropomyosin 3 (TPM3) genes, respectively. This indicates a low (4.3%) frequency of TPM2 and TPM3 mutations as a cause of congenital myopathy. Compared to previously described patients carrying the same mutations as found in our study (c.503G > A, and c.502C > T in TPM3, and c.415_417delGAG in TPM2), clinical presentation and muscle morphological findings differed in our patients. Differences included variation in distribution of muscle weakness, presence of scoliosis and ptosis, physical performance and joint contractures. The variation in clinical profiles emphasizes the phenotypic heterogeneity. However, common features were also present, such as onset of symptoms in infancy or childhood, musculoskeletal deformities and normal or low plasma levels of creatine kinase.One patient had nemaline myopathy and fiber size disproportion, while three patients had congenital fiber type disproportion (CFTD) on muscle biopsies. TPM2-related CFTD has only been described in two cases, indicating that mutations in TPM2 are rare causes of CFTD.  相似文献   

9.
Cap myopathy is a rare congenital myopathy characterized by the presence of caps within muscle fibres and caused by mutations in ACTA1, TPM2 or TPM3. Thus far, only three cases with TPM3-related cap myopathy have been described. Here, we report on the first autosomal dominant family with cap myopathy in three-generations, caused by a novel heterozygous mutation in the alpha-tropomyosin-slow-encoding gene (TPM3; exon 4; c.445C>A; p.Leu149Ile). The three patients experienced first symptoms of muscle weakness in childhood and followed a slowly progressive course. They presented generalized hypotrophy and mild muscle weakness, elongated face, high arched palate, micrognathia, scoliosis and respiratory involvement. Intrafamilial variability of skeletal deformities, respiratory involvement and mild cardiac abnormalities was noted. Muscle MRI revealed a recognizable pattern of fatty muscle infiltration and masseter muscle hypertrophy. Subsarcolemmal caps were present in 6–10% of the fibres and immunoreactive with anti-tropomyosin antibodies. We conclude that the MRI-pattern of muscle involvement and the presence of masseter muscle hypertrophy in cap myopathy may guide molecular genetic diagnosis towards a mutation in TPM3. Regular respiratory examinations are important, even if patients have no anamnestic clues. We compare our findings to all cases of cap myopathy with identified mutations (n = 11), thus far reported in the literature.  相似文献   

10.
UDP‐N‐acetylglucosamine 2‐epimerase/N‐acetylmannosamine kinase (GNE) is necessary for sialic acid biosynthesis. GNE myopathy is caused by a defect in GNE, and hyposialylation is a key factor in the pathomechanism of GNE myopathy. Although candidates for evaluating hyposialylation have been reported, it is difficult to measure them in routine clinical practice. Sialylation is necessary for synthesis of various glycoproteins, including Krebs von den Lungen‐6 (KL‐6)/mucin 1 (MUC1). Here we report that KL‐6/MUC1 is decreased in GNE myopathy. We observed that KL‐6 levels were decreased in the serum of patients with GNE myopathy, and that KL‐6 and MUC1‐C were also decreased in muscle biopsy specimens from these patients. An immunofluorescent study revealed that KL‐6 and MUC1‐C were not present in the sarcolemma but were, instead, localized in rimmed vacuoles in specimens from patients with GNE myopathy. KL‐6 is already used to detect lung diseases in clinical practice, and this glycoprotein may be a novel candidate for evaluating hyposialylation in GNE myopathy.  相似文献   

11.
Hereditary inclusion body myopathy (HIBM) is a genetic muscle disease due to mutations in the gene encoding the enzyme complex UDP-N-acetylglucosamine 2 epimerase-N-acetylmannosamine kinase (GNE), which catalyzes the rate-limiting step in sialic acid production. The review describes some of the disease features that may be relevant for further understanding of the metabolic impairment of HIBM and its future therapy. It also addresses the biochemical basis behind the substrate supplementation therapy designed for this condition.  相似文献   

12.
Dynamin 2 (DNM2)-related dominant centronuclear myopathy is usually a mild disorder, but more severe variants have been associated with mutations affecting the pleckstrin homology (PH) domain of the protein, mainly implicated in different forms of Charcot–Marie–Tooth Disease (CMT). Whilst DNM2-related CMT may feature non-neurological findings including cataracts, this has not been reported in DNM2-related centronuclear myopathy. We report a girl presenting from birth with hypotonia, respiratory and feeding difficulties. Motor development was delayed and at 9 years she lost the ability to walk. She had ptosis, external ophthalmoplegia and bilateral cataracts. Muscle biopsy showed increase in central nuclei with type 1 hypotrophy and fibrosis. DNM2 screening revealed a novel heterozygous substitution (c.1862T>C; p.Leu621Pro) affecting the PH domain of the protein. Her further course was progressive and at 14 years she died from respiratory failure. Our findings expand the phenotypical spectrum associated with DNM2 mutations and provide a new clinical indicator for involvement of this gene in patients with centronuclear myopathy.  相似文献   

13.
Muscle biopsy is a mainstay diagnostic tool for investigating neuromuscular disorders in children. We report the yield of pediatric muscle biopsy in a population of 415 children by a retrospective study of 419 biopsies performed between 1/01/2000 and 31/12/2009 in a neuropediatric department, including mitochondrial respiratory chain analysis for 87 children. Two hundred and fifty-five biopsies were from boys (61%) 164 from girls (39%). Their mean age at biopsy was 6.5 years; 155 (37%) biopsies were obtained before the child was 5 years old. Final histopathological diagnoses were: congenital myopathy (n = 193, including 15 structural congenital myopathies); progressive muscular dystrophy (n = 75 [18%] including 57 dystrophinopathies); congenital muscular dystrophy (n = 17, including six primary merosinopathies); dermatomyositis (n = 11); spinal muscular atrophy (n = 9, including six atypical spinal muscular atrophies); metabolic myopathy (n = 32, including 19 mitochondrial myopathies); encephalomyopathy (n = 53 [13%], including 27 with a mitochondrial respiratory chain defect). Pathological diagnosis remained undetermined in 16 cases. In 184 patients (44%), the muscle biopsy revealed specific histopathological anomalies (dystrophic process; specific ultrastructural abnormalities; perifascicular atrophy; neurogenic atrophy; metabolic anomalies) enabling a precise etiological diagnosis. For 85% of progressive muscular dystrophies, the biopsy resulted in a genetic diagnosis after identification of the protein defect. In 15% of the congenital myopathies, histopathological anomalies focused attention on one or several genes. Concerning dystrophinopathies, quantification of dystrophin deficiency on the biopsy specimen contributed to the definition of the clinical phenotype: Duchenne, or Becker. In children with a myopathy, muscle biopsy is often indispensable to establish the etiological diagnosis. Based on the results from this series, muscle biopsy can provide a precise orientation in 45% of patients, leading to a genetic hypothesis.  相似文献   

14.
Distal myopathy with rimmed vacuoles and hereditary inclusion body myopathy   总被引:3,自引:0,他引:3  
Distal myopathy with rimmed vacuoles (DMRV) and hereditary inclusion body myopathy (hIBM) share similar clinical features, including onset in young adulthood with preferential involvement of the anterior compartment of the lower legs and sparing of the quadriceps femoris muscles. The most significant muscle pathology is the presence of rimmed vacuoles, which appear to play a major role in muscle atrophy and weakness. After the discovery of the gene locus in both DMRV and hIBM on chromosome 9 and mutations in the gene encoding the enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), it became clear that they are allelic disorders. From gene analysis, it is evident that these diseases are not restricted to people of Japanese and Jewish ancestry, but that they are widely distributed throughout all ethnic groups. Although defective glycosylation to a muscle fiber has been suggested, the mechanism by which myofibrillar degeneration is followed by rimmed vacuole formation remains to be clarified.  相似文献   

15.
DOK7 mutations cause a congenital myasthenic syndrome (OMIM 254300) characterized by a “limb-girdle” phenotype. We identified 7 French-Canadian patients with a previously undiagnosed proximal myopathy. A genome wide scan was performed. Homozygosity mapping identified a locus on chromosome 4p16.2 containing DOK7. Sequencing of DOK7 revealed homozygous 1124_1127dupTGCC mutations in all individuals. SNP genotyping of 42 kb surrounding DOK7 in our cohort and in 9 patients of various European origins demonstrated a shared haplotype suggesting a common ancestral European mutation. In our cohort, fatigability was not prominent; rather patients reported prolonged periods of increased weakness. Abnormalities on repetitive nerve stimulation and single fiber EMG were not invariably present. There was considerable intra-familial phenotypic variability, and we report an asymptomatic individual. DOK7 mutations should be considered in patients with early-onset myopathy, even in the absence of symptoms suggesting a possible myasthenia.  相似文献   

16.
Mutations in PNPLA2 cause neutral lipid storage disease with myopathy (NLSDM) or triglyceride deposit cardiomyovasculopathy (TGCV). We report a 59-year-old patient with NLSDM/TGCV presenting marked asymmetric skeletal myopathy and cardiomyovasculopathy. Skeletal muscle and endomyocardial biopsies showed cytoplasmic vacuoles containing neutral lipid. Gene analysis revealed a novel homozygous mutation (c.576delC) in PNPLA2. We reviewed 37 genetically-proven NLSDM/TGCV cases; median age was 30 years; distribution of myopathy was proximal (69%) and distal predominant (16%); asymmetric myopathy (right > left) was reported in 41% of the patients. Frequently-affected muscles were posterior compartment of leg (75%), shoulder girdle to upper arm (50%), and paraspinal (33%). Skeletal muscle biopsies showed lipid accumulation in 100% and rimmed vacuoles in 22%. Frequent comorbidities were cardiomyopathy (44%), hyperlipidemia (23%), diabetes mellitus (24%), and pancreatitis (14%). PNPLA2 mutations concentrated in Exon 4–7 without apparent genotype-phenotype correlations. To know the characteristic features is essential for the early diagnosis of NLSDM/TGCV.  相似文献   

17.
Dynamin 2 gene (DNM2) mutations result in an autosomal dominant centronuclear myopathy (CNM) and a Charcot-Marie-Tooth (CMT) neuropathy. DNM2-CMT but not DNM2-CNM patients were noted to have neutropenia. We here report a man with paravertebral muscles hypertrophy and mild neutropenia. His muscle biopsy was typical for CNM with additional “necklace” fibers. Sequencing of DNM2 revealed a known heterozygous c.1269C > T (p.Arg369Trp) mutation. Necklace fibers were considered as a pathological hallmark of late onset X-linked CNM due to mutations in MTM1 but have not been observed in DNM2-CNM. The findings broaden the features of DNM2-myopathy.  相似文献   

18.
Hereditary inclusion body myopathy is a neuromuscular disorder characterized by muscle weakness with a late onset and slow progression. It is caused by mutations of the gene encoding UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE). One of the most frequent mutations is an exchange of methionine to threonine at position 712 (M712T). Here we analyzed wildtype (wt) and M712T-mutated (M712T) GNE. We identified threonine 712 as an additional possible phosphorylation site and found by two-dimensional gel-electrophoresis a lower isoelectric point compared to wt-GNE. This lower isoelectric point could be partially reversed back to the wildtype isoelectric point after treatment with protein phosphatase. Furthermore, in contrast to wt-GNE, a significant fraction of M712T-GNE was in the insoluble fraction. Finally, by using bimolecular fluorescence complementation we demonstrate that the M712T mutation does not disrupt the formation of GNE-oligomers.  相似文献   

19.
This study investigated the genetic and enzymological features of Leigh syndrome due to respiratory chain complex deficiency in Chinese patients. The clinical features of 75 patients were recorded. Mitochondrial respiratory chain enzyme activities were determined via spectrophotometry. Mitochondrial gene sequence analysis was performed in 23 patients. Five core pedigrees were investigated via restriction fragment length polymorphism and gene sequencing. Psychomotor retardation (55%), motor regression (20%), weakness (29%), and epilepsy (25%) were the most frequent manifestations. Sixty-four patients (85.3%) had isolated respiratory complex deficiencies: complex I was seen in 28 patients (37.3%); complex II, seven (9.3%); complex III, six (8%); complex IV, ten (13.3%); and complex V, 13 patients (17.3%). Eleven patients (14.7%) had combined complex deficiencies. Mitochondrial DNA mutations were detected in 10 patients. Eight point mutations were found in mitochondrial structural genes: m.4833A > G in ND2, m.10191T > C in ND3, m.12338T > C and m.13513G > A in ND5, m.14502T > C and m.14487T > C in ND6, m.8108A > G in COXII, and m.8993T > G in ATPase6. Three mutations were found in tRNA genes: m.4395A > G in tRNA-Gln, m.10454T > C in tRNA-Arg, and m.5587T > C in tRNA-Ala. One patient and their mother both had the m.12338T > C and m.8993T > C mutations. In conclusion, mitochondrial respiratory chain complex I deficiency and structural gene mutations frequently occur in Chinese Leigh syndrome patients.  相似文献   

20.
Mutations in the glucocerebrosidase (GBA1) gene, the most common genetic contributor to Parkinson’s disease (PD), are associated with an increased risk of PD in heterozygous and homozygous carriers. While glucocerebrosidase enzyme (GCase) activity is consistently low in Gaucher disease, there is a range of leukocyte GCase activity in healthy heterozygous GBA1 mutation carriers. To determine whether GCase activity may be a marker for PD with heterozygous GBA1 mutations (GBA1 mutation PD, GBA PD), GBA PD patients (n = 15) were compared to PD patients without heterozygous GBA1 mutations (idiopathic PD; n = 8), heterozygous GBA1 carriers without PD (asymptomatic carriers; n = 4), and biallelic mutation carriers with PD (Gaucher disease with PD, GD1 PD; n = 3) in a pilot study. GCase activity (nmol/mg protein/hour) in GD1 PD (median [interquartile range]; minimum–maximum: 6.4 [5.7]; 5.3–11) was lower than that of GBA PD (16.0 [7.0]; 11–40) (p = 0.01), while GCase activity in GBA PD was lower than idiopathic PD (28.5 [15.0]; 16–56) (p = 0.01) and asymptomatic carriers (25.5 [2.5]; 23–27) (p = 0.04). Therefore, GCase activity appears to be a possible marker of heterozygous GBA1 mutation PD, and larger studies are warranted. Prospective studies are also necessary to determine whether lower GCase activity precedes development of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号