首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
15q24 microdeletion and microduplication syndromes are genetic disorders caused by non-allelic homologous recombination between low-copy repeats (LCRs) in the 15q24 chromosome region. Individuals with 15q24 microdeletion and microduplication syndromes share a common 1.2 Mb critical interval, spanning from LCR15q24B to LCR15q24C. Patients with 15q24 microdeletion syndrome exhibit distinct dysmorphic features, microcephaly, variable developmental delay, multiples congenital anomalies while individuals with reciprocal 15q24 microduplication syndrome show mild developmental delay, facial dysmorphism associated with skeletal and genital abnormalities. We report the first case of a 10 year-old girl presenting mild developmental delay, psychomotor retardation, epilepsy, ventricular arrhythmia, overweight and idiopathic central precocious puberty. 180K array-CGH analysis identified a 1.38 Mb heterozygous interstitial 15q24.1 BP4-BP1 microdeletion including HCN4 combined with a concomitant 2.6 Mb heterozygous distal 15q24.2q24.3 microduplication. FISH analysis showed that both deletion and duplication occurred de novo in the proband. Of note, both copy number imbalances did not involve the 1.2 Mb minimal deletion/duplication critical interval of the 15q24.1q24.2 chromosome region (74.3–75.5 Mb). Sequencing of candidate genes for epilepsy and obesity showed that the proband was hemizygous for paternal A-at risk allele of BBS4 rs7178130 and NPTN rs7171755 predisposing to obesity, epilepsy and intellectual deficits. Our study highlights the complex interaction of functional polymorphisms and/or genetic variants leading to variable clinical manifestations in patients with submicroscopic chromosomal aberrations.  相似文献   

2.
3.
Deletions in the 9q33‐q34 region have been reported in patients with early onset epileptic encephalopathy, but a consistent phenotype has yet to emerge. We report on the diagnosis of a de novo 9q33‐q34.12 microdeletion of 4 Mb in a 15‐month‐old girl presenting with severe psychomotor delay, facial dysmorphisms, thin corpus callosum and early myoclonic encephalopathy. This deletion encompasses 101 RefSeq genes, including the four autosomal dominant genes STXBP1, SPTAN1, ENG and TOR1A. We discuss genetic, clinical and epileptic features comparing our patient with those previously reported in the literature.  相似文献   

4.
Microdeletions of 17q24.2‐q24.3 have been described in several patients with developmental and speech delay, growth retardation, and other features. The relatively large size and limited overlap of the deletions complicate the genotype‐phenotype correlation. We identified a girl with intellectual disability, growth retardation, dysmorphic features, and a de novo 2.8 Mb long deletion of 17q24.2‐q24.3. Her phenotype was strikingly similar to one previously described boy with Dubowitz syndrome (MIM 223370) and a de novo 3.9 Mb long deletion encompassing the deletion of our patient. In addition, both patients had the shortest telomeres among normal age‐matched controls. Our review of all 17q24.2‐q24.3 deletion patients revealed additional remarkable phenotypic features shared by the patients, some of which have consequences for their management. Proposed novel genotype‐phenotype correlations based on new literature information on the region include the role of PSMD12 and BPTF, the genes recently associated with syndromic neurodevelopmental disorders, and a possible role of the complex topologically associated domain structure of the region, which may explain some of the phenotypic discrepancies observed between patients with similar but not identical deletions. Nevertheless, although different diagnoses including the Dubowitz, Nijmegen breakage (MIM 251260), Silver‐Russell (MIM 180860), or Myhre (MIM 139210) syndromes were originally considered in the 17q24.2‐q24.3 deletion patients, they clearly belong to one diagnostic entity defined by their deletions and characterized especially by developmental delay, specific facial dysmorphism, abnormalities of extremities and other phenotypes, and possibly also short telomere length.  相似文献   

5.
Deletions involving 17q21–q24 have been identified previously to result in two clinically recognizable contiguous gene deletion syndromes: 17q21.31 and 17q23.1–q23.2 microdeletion syndromes. Although deletions involving 17q22 have been reported in the literature, only four of the eight patients reported were identified by array-comparative genomic hybridization (array-CGH) or flourescent in situ hybridization. Here, we describe five new patients with 1.8–2.5-Mb microdeletions involving 17q22 identified by array-CGH. We also present one patient with a large karyotypically visible deletion involving 17q22, fine-mapped to ∼8.2 Mb using array-CGH. We show that the commonly deleted region in our patients spans 0.24 Mb and two genes; NOG and C17ORF67. The function of C17ORF67 is not known, whereas Noggin, the product of NOG, is essential for correct joint development. In common with the 17q22 patients reported previously, the disease phenotype of our patients includes intellectual disability, attention deficit hyperactivity disorder, conductive hearing loss, visual impairment, low set ears, facial dysmorphology and limb anomalies. All patients displayed NOG-related bone and joint features, including symphalangism and facial dysmorphology. We conclude that these common clinical features indicate a novel clinically recognizable, 17q22 contiguous microdeletion syndrome.  相似文献   

6.
Interstitial deletions of chromosome band 10q22 are rare. We report on the characterization of three overlapping de novo 10q22 deletions by high-resolution array comparative genomic hybridization in three unrelated patients. Patient 1 had a 7.9 Mb deletion in 10q21.3–q22.2 and suffered from severe feeding problems, facial dysmorphisms and profound mental retardation. Patients 2 and 3 had nearly identical deletions of 3.2 and 3.6 Mb, the proximal breakpoints of which were located at an identical low-copy repeat. Both patients were mentally retarded; patient 3 also suffered from growth retardation and hypotonia. We also report on the results of breakpoint analysis by array painting in a mentally retarded patient with a balanced chromosome translocation 46,XY,t(10;13)(q22;p13)dn. The breakpoint in 10q22 was found to disrupt C10orf11, a brain-expressed gene in the common deleted interval of patients 1–3. This finding suggests that haploinsufficiency of C10orf11 contributes to the cognitive defects in 10q22 deletion patients.  相似文献   

7.
The 22q11.2 microdeletion syndrome is the most frequent microdeletion syndrome in humans, yet its genetic basis is complex and is still not fully understood. Most patients harbor a 3-Mb deletion (typically deleted region [TDR]), but occasionally patients with atypical deletions, some of which do not overlap with each other and/or the TDR, have been described. Microduplication of the TDR leads to a phenotype similar, albeit not identical, to the deletion of this region. Here we present a child initially suspected of having 22q11 microdeletion syndrome, who in addition developed a fatal malignant rhabdoid tumor of the kidney. Detailed cytogenetic and molecular analyses revealed a complex de novo rearrangement of band q11 of the paternally derived chromosome 22. This aberration exhibited two novel features. First, a microduplication of the 22q11 TDR was associated with an atypical 22q11 microdeletion immediately telomeric of the duplicated region. Second, this deletion was considerably larger than previously reported atypical 22q11 deletions, spanning 2.8 Mb and extending beyond the SMARCB1/SNF5/INI1 tumor suppressor gene, whose second allele harbored a somatic frameshift-causing sequence alteration in the patient's tumor. Two nonallelic homologous recombination events between low-copy repeats (LCRs) could explain the emergence of this novel and complex mutation associated with the phenotype of 22q11 microdeletion syndrome.  相似文献   

8.
Patients with an interstitial 13q deletion that contains the RB1 gene show retinoblastoma and variable clinical features. Relationship between phenotypic expression and loss of specific neighboring genes are unresolved, yet. We obtained clinical, cytogenetic and molecular data in 63 patients with an interstitial 13q deletion involving RB1. Whole-genome array analysis or customized high-resolution array analysis for 13q14.11q14.3 was performed in 38 patients, and cytogenetic analysis was performed in 54 patients. Deletion sizes ranged between 4.2 kb and more than 33.43 Mb; breakpoints were non-recurrent. Sequence analysis of deletion junctions in five patients revealed microhomology and insertion of 2–34 base pairs suggestive of non-homologous end joining. Milder phenotypic expression of retinoblastoma was observed in patients with deletions larger than 1 Mb, which contained the MED4 gene. Clinical features were compared between patients with small (within 13q14), medium (within 13q12.3q21.2) and large (within 13q12q31.2) deletions. Patients with a small deletion can show macrocephaly, tall stature, obesity, motor and/or speech delay. Patients with a medium deletion show characteristic facial features, mild to moderate psychomotor delay, short stature and microcephaly. Patients with a large deletion have characteristic craniofacial dysmorphism, short stature, microcephaly, mild to severe psychomotor delay, hypotonia, constipation and feeding problems. Additional features included deafness, seizures and brain and heart anomalies. We found no correlation between clinical features and parental origin of the deletion. Our data suggest that hemizygous loss of NUFIP1 and PCDH8 may contribute to psychomotor delay, deletion of MTLR1 to microcephaly and loss of EDNRB to feeding difficulties and deafness.  相似文献   

9.
Distal 15q25.2 microdeletions have recently been reported as a copy number variation (CNV) locus for neurodevelopmental and neuropsychiatric disorders with variable outcome. In addition, more proximal microdeletions of 15q25.2 have been described as a susceptibility locus for cognitive deficits, congenital diaphragmatic hernia (CDH), and Diamond–Blackfan anaemia (DBA). We describe two patients with 15q25.2 deletion, one with the more distal deletion and the other with a deletion overlapping both the distal and proximal 15q25.2 deletions and compare them to the 18 so far reported patients with 15q25.2 deletions. We provide a characterization of the 15q25.2 microdeletions and contribute to the genotype–phenotype delineation for these two novel microdeletion syndromes. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Interstitial deletions of 10q are rare, and only one patient with a deletion confined to chromosome band 10q22 has been reported so far. We report on a 2 6/12-year-old girl with a constitutional interstitial deletion of one homologue of 10q [karyotype: 46,XX,del(10)(q22.2q22.3)de novo]. Our patient had muscular hypotonia, developmental delay, growth retardation, mild facial dysmorphism, and hypoplastic labia minora. The precise location and extent (3.6 Mb) of the deletion was determined by fluorescence in situ hybridization (FISH) using 16 YAC and BAC clones. The clinical features in our patient are remarkably similar to the previously reported patient with a 10q22.2 deletion.  相似文献   

11.
Chromosome 12q15 microdeletion syndrome is characterized by intellectual disability and dysmorphic facial features, but the associations between each of the deleted genes and the phenotypes of 12q15 microdeletion syndrome remain unclear. Recently, the smallest region of overlap in 16 previously reported patients was used to define three candidate genes for the 12q15 microdeletion syndrome: CNOT2, KCNMB4, and PTPRB. Among these three candidate genes, CNOT2 maintains the structural integrity of the carbon catabolite repressor 4 (CCR4)‐negative on TATA (NOT) complex, which plays a key role in regulating global gene expression, and is essential for the enzymatic activity of the CCR4‐NOT complex. Disruption of the CCR4‐NOT complex results in dysregulation of global gene expression, and is associated with various human disease processes, including neuronal diseases. Therefore, CNOT2 haploinsufficiency might account for the neurological features of the 12q15 microdeletion syndrome. Herein, we document a 12‐year ‐ old female patient with mild intellectual disability and multiple structural abnormalities including cleft lip and palate and 2–3 toe syndactyly. She exhibited dysmorphic facial features such as upslanting and short palpebral fissures, micrognathia, low‐set ears, and hypoplastic antihelix. A microarray analysis showed a de novo 1.32‐Mb deletion within 12q15 that included CNOT2 and 14 other genes. Remapping of the 12q15 deletion region in the 16 previously reported patients together with that in the newly identified patient indicated that CNOT2 is the only gene that is commonly deleted. These findings suggest that CNOT2 is the prime candidate for the neurological phenotypes of the 12q15 microdeletion syndrome.  相似文献   

12.
The 15q13.3 microdeletion syndrome (OMIM #612001) is characterized by a wide range of phenotypic features, including intellectual disability, seizures, autism, and psychiatric conditions. This deletion is inherited in approximately 75% of cases and has been found in mildly affected and normal parents, consistent with variable expressivity and incomplete penetrance. The common deletion is approximately 2 Mb and contains several genes; however, the gene(s) responsible for the resulting clinical features have not been clearly defined. Recently, four probands were reported with small deletions including only the CHRNA7 gene. These patients showed a wide range of phenotypic features similar to those associated with the larger 15q13.3 microdeletion. To further correlate genotype and phenotype, we queried our database of >15,000 patients tested in the Mayo Clinic Cytogenetics Laboratory from 2008 to 2011 and identified 19 individuals (10 probands and 9 family members) with isolated heterozygous CHRNA7 gene deletions. All but two infants displayed multiple features consistent with 15q13.3 microdeletion syndrome. We also identified the first de novo deletion confined to CHRNA7 as well as the second known case with homozygous deletion of CHRNA7 only. These results provide further evidence implicating CHRNA7 as the gene responsible for the clinical findings associated with 15q13.3 microdeletion.  相似文献   

13.
The pure 3.5 Mb subtelomeric deletion syndrome is very rare but causes a recognizable phenotype characterized by prenatal lymphedema with increased nuchal translucency, pronounced muscular hypotonia in infancy, borderline intelligence, postnatal short stature with delayed bone age due to growth hormone deficiency, and multiple minor anomalies including mildly bell-shaped chest, minor congenital heart defects, and a distinct facial gestalt. Terminal deletions including the adjacent approximately 2 Mb NSD1-locus show a compound phenotype with overlap to Sotos syndrome. Larger terminal deletions including also chromosomal bands 5q35.1 and 5q35.2 cause a more severe phenotype with normal body length, significant congenital heart defect, microcephaly, profound developmental retardation or early death due to respiratory failure. Heart defects in the latter are explained by haploinsufficiency of the NKX2.5 gene at 5q35.1. The deletion breakpoint of the 3.5 Mb subtelomeric microdeletion maps to a low copy repeat which is identical to the distal copy of two highly similar regions flanking the recurrent interstitial NSD1 microdeletion. As meiotic mispairing between these low copy repeats seem to be much more likely than a terminal aberration, these neighborhood may prevent occurrence of the subtelomeric deletion syndrome, which could explain the rareness of the latter.  相似文献   

14.
Microdeletions in the 15q22 region have not been well documented. We collected genotype and phenotype data from five patients with microdeletions involving 15q22.2, which were between 0.7 Mb and 6.5 Mb in size; two were of de novo origin and one was of familial origin. Intellectual disability and epilepsy are frequently observed in patients with 15q22.2 deletions. Genotype-phenotype correlation analysis narrowed the critical region for such neurologic symptoms to a genomic region of 654 Kb including the NMDA receptor-regulated 2 gene (NARG2) and the PAR-related orphan receptor A gene (RORA), either of which may be responsible for neurological symptoms commonly observed in patients with deletions in this region. The neighboring regions, including the forkhead box B1 gene (FOXB1), may also be related to the additional neurological features observed in the patients with larger deletions.  相似文献   

15.
Mutations or deletions of ACSL4 (FACL4, OMIM 300157) are a rare cause of non‐syndromic X‐linked intellectual disability. We report on a 10‐year‐old male patient with moderate intellectual disability, sensorineural hearing loss, facial dysmorphism, pyloric stenosis, and intestinal obstruction in whom a de novo Xq22.3–q23 deletion was detected by SNP array analysis. The deleted 1.56 Mb interval harbored ACSL4 and eight neighboring genes (GUCY2F, NXT2, KCNE1L, TMEM164, MIR3978, AMMECR1, SNORD96B, and RGAG1). In contrast to previously reported patients with chromosome aberrations in the region of the AMME complex (Alport syndrome, intellectual disability, midface hypoplasia, and elliptocytosis, OMIM 300194), this deletion did not contain the Alport syndrome gene COL4A5, suggesting that loss of one or several of the other genes in this interval is responsible for the clinical problems. In summary, the patient reported here broadens our knowledge of the phenotypic consequences of deletions of chromosome region Xq22.3–q23 and provides further proof for ACSL4 as an X‐linked intellectual disability gene. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Chromosome 15q24 microdeletion syndrome is characterized by developmental delay, facial dysmorphism, hearing loss, hypotonia, recurrent infection, and other congenital malformations including microcephaly, scoliosis, joint laxity, digital anomalies, as well as sometimes having autism spectrum disorder (ASD) and attention deficit hyperactivity disorder. Here, we report a boy with a 2.58‐Mb de novo deletion at chromosome 15q24. He is diagnosed with ASD and having multiple phenotypes similar to those reported in cases having 15q24 microdeletion syndrome. To delineate the critical genes and region that might be responsible for these phenotypes, we reviewed all previously published cases. We observe a potential minimum critical region of 650 kb (LCR15q24A‐B) affecting NEO1 among other genes that might pertinent to individuals with ASD carrying this deletion. In contrast, a previously defined minimum critical region downstream of the 650‐kb interval (LCR15q24B‐D) is more likely associated with the developmental delay, facial dysmorphism, recurrent infection, and other congenital malformations. As a result, the ASD phenotype in this individual is potentially attributed by genes particularly NEO1 within the newly proposed critical region.  相似文献   

17.
Interstitial deletions of the proximal long arm of chromosome 3 are very rare and a defined clinical phenotype is not established yet. We report on the clinical, cytogenetic and molecular findings of a 20-month-old Hispanic male with a 2.5 Mb de novo deletion on q13.11q13.12. Up to now, this is the smallest deletion reported among patients with the proximal 3q microdeletion syndrome. The patient has distinct facial features including brachycephaly, broad and prominent forehead, flat nasal bridge, prominent ears, anteverted nose, tetralogy of Fallot, bilateral cryptorchidism, and peripheral skeletal abnormalities. To further delineate the proximal 3q deletion syndrome, the phenotype of our patient was compared with 10 other patients previously described. We found that ALCAM and CBLB are the only genes deleted in our patient and based on previously published data, we propose that the CBLB gene is responsible for the craniofacial phenotype in patients with deletions of proximal 3q region.  相似文献   

18.
We describe two unrelated patients with cytogenetically visible deletions of 21q22.2-q22.3 and mild phenotypes. Both patients presented minor dysmorphic features including thin marfanoid build, facial asymmetry, downward-slanting palpebral fissures, depressed nasal bridge, small nose with bulbous tip, and mild mental retardation (MR). FISH and molecular studies indicated common deleted areas but different breakpoints. In patient 1, the breakpoint was fine mapped to a 5.2 kb interval between exon 5 and exon 8 of the ETS2 gene. The subtelomeric FISH probe was absent on one homologue 21 indicating a terminal deletion spanning approximately 7.9 Mb in size. In patient 2, the proximal breakpoint was determined to be 300-700 kb distal to ETS2, and the distal breakpoint 2.5-0.3 Mb from the 21q telomere, indicating an interstitial deletion sized approximately 4.7-7.3 Mb. The 21q- syndrome is rare and typically associated with a severe phenotype, but different outcomes depending on the size and location of the deleted area have been reported. Our data show that monosomy 21q of the area distal to the ETS2 gene, representing the terminal 7.9 Mb of 21q, may result in mild phenotypes comprising facial anomalies, thin marfanoid build, and mild MR, with or without signs of holoprosencephaly.  相似文献   

19.
Deletions of the chromosomal region 2q37 cause brachydactyly-mental retardation syndrome (BDMR), also known as Albright hereditary osteodystrophy-like syndrome. Recently, histone deacetylase 4 (HDAC4) haploinsufficiency has been postulated to be the critical genetic mechanism responsible for the main clinical characteristics of the BDMR syndrome like developmental delay and behavioural abnormalities in combination with brachydactyly type E (BDE). We report here on the first three generation familial case of BDMR syndrome with inheritance of an interstitial microdeletion of chromosome 2q37.3. The deletion was detected by array comparative genomic hybridization and comprises the HDAC4 gene and two other genes. The patients of this pedigree show a variable severity of psychomotor and behavioural abnormalities in combination with a specific facial dysmorphism but without BDE. Given that only about half of the patients with 2q37 deletions have BDE; we compared our patients with other patients carrying 2q37.3 deletions or HDAC4 mutations known from the literature to discuss the diagnostic relevance of the facial dysmorphism pattern in 2q37.3 deletion cases involving the HDAC4 gene. We conclude that HDAC4 haploinsufficiency is responsible for psychomotor and behavioural abnormalities in combination with the BDMR syndrome-specific facial dysmorphism pattern and that these clinical features have a central diagnostic relevance.  相似文献   

20.
The chromosome 22q11 region is prone to rearrangements, including deletions and duplications, due to the presence of multiple low copy repeats (LCRs). DiGeorge/velo-cardio-facial syndrome is the most common microdeletion syndrome with more than 90% of patients having a common 3-Mb deletion of 22q11.2 secondary to non-homologous recombination of flanking LCRs. Meiotic reciprocal events caused by LCR-mediated rearrangement should theoretically lead to an equal number of deletions and duplications. Duplications of this region, however, have been infrequently reported and vary in size from 3 to 6 Mb. This discrepancy may be explained by the difficulty in detecting the duplication and the variable, sometimes quite mild phenotype. This newly described 22q duplication syndrome is characterized by palatal defects, cognitive deficits, minor ear anomalies, and characteristic facial features. We report on a male with truncus arteriosus and an interrupted aortic arch, immunodeficiency, and hypocalcemia. The patient is mosaic for two abnormal cell lines: a deletion [del(22)(q11.2q11.2)] found in 11 cells and a duplication [dup(22)(q11.2q11.2)] found in 9 cells. Molecular cytogenetic analysis in our patient revealed a 1.5 Mb deletion/duplication, the first duplication reported of this size. Deletion/duplication mosaicism, which is rare, has been reported in a number of cases involving many different chromosome segments. We present the clinical phenotype of our patient in comparison to the phenotypes seen in patients with the 22q11.2 deletion or duplication alone. We propose that this rearrangement arose by a mitotic event involving unequal crossover in an early mitotic division facilitated by LCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号