首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The broad objective of the research presented here is to develop a noncatalytic plasmid maintenance system for the stabilization of multicopy expression plasmids encoding foreign antigens in a Salmonella typhi live-vector vaccine strain such as CVD 908-htrA. We have enhanced the maintenance of expression plasmids at two independent levels. First, we removed dependence upon balanced-lethal maintenance systems that involve catalytic enzymes expressed from multicopy plasmids; we accomplished this through incorporation into expression plasmids of a postsegregational killing system based on the noncatalytic hok-sok plasmid addiction system from the antibiotic resistance factor pR1. We also included at least one naturally occurring plasmid partition function in our expression plasmids, which eliminates random segregation of these plasmids, thereby enhancing their inheritance and stability; to accomplish this, we incorporated either the par locus from pSC101, the parA locus from pR1, or both. We monitored the stability of optimized expression plasmids within CVD 908-htrA by quantitating expression of a variant of green fluorescent protein (GFPuv) by using flow cytometry. In this report, we demonstrate the utility of this novel plasmid maintenance system in enhancing the stability of our expression plasmids and go on to show that as the copy number of stabilized plasmids increases, the toxicity of GFPuv synthesis also increases. The implications of these observations for the rational design of immunogenic and protective bacterial live vector vaccines are discussed.  相似文献   

2.
Injections with a hypodermic needle and syringe (HNS) are the current standard of care globally, but the use of needles is not without limitation. While a plethora of needle-free injection devices exist, vaccine reformulation is costly and presents a barrier to their widespread clinical application. To provide a simple, needle-free, and broad-spectrum protein antigen delivery platform, we developed novel potassium-doped hydroxyapatite (K-Hap) microparticles with improved protein loading capabilities that can provide sustained local antigen presentation and release. K-Hap showed increased protein adsorption over regular hydroxyapatite (P < 0.001), good structural retention of the model antigen (CRM197) with 1% decrease in α-helix content and no change in β-sheet content upon adsorption, and sustained release in vitro. Needle-free intradermal powder inoculation with K-Hap–CRM197 induced significantly higher IgG1 geometric mean titers (GMTs) than IgG2a GMTs in a BALB/c mouse model (P < 0.001) and induced IgG titer levels that were not different from the current clinical standard (P > 0.05), namely, alum-adsorbed CRM197 by intramuscular (i.m.) delivery. The presented results suggest that K-Hap microparticles may be used as a novel needle-free delivery vehicle for some protein antigens.  相似文献   

3.
A gene cassette incorporating the crs-rsd site-specific recombination system from the Salmonella enterica subsp. enterica serovar Dublin virulence plasmid improved the inheritance in S. enterica serotype Typhi strain CVD908-htrA of a multicopy plasmid expression vector. Use of this recombination cassette may improve expression of heterologous antigens from multicopy plasmid expression vectors in attenuated bacterial vaccine strains.  相似文献   

4.
Salmonella enterica serovar Typhi strain CVD 908-htrA is a live attenuated strain which may be useful as an improved oral typhoid vaccine and as a vector for cloned genes of other pathogens. We conducted a phase 2 trial in which 80 healthy adults received one of two dosage levels of CVD 908-htrA in a double-blind, placebo-controlled, crossover study. There were no differences in the rates of side effects among volunteers who received high-dose vaccine (4.5 x 10(8) CFU), lower-dose vaccine (5 x 10(7) CFU), or placebo in the 21 days after vaccination, although recipients of high-dose vaccine (8%) had more frequent diarrhea than placebo recipients (0%) in the first 7 days. Seventy-seven percent and 46% of recipients of high- and lower-dose vaccines, respectively, briefly excreted vaccine organisms in their stools. All blood cultures were negative. Antibody-secreting cells producing antilipopolysaccharide (LPS) immunoglobulin A (IgA) were detected in 100 and 92% of recipients of high- and lower-dose vaccines, respectively. Almost half the volunteers developed serum anti-LPS IgG. Lymphocyte proliferation and gamma interferon production against serovar Typhi antigens occurred in a significant proportion of vaccinees. This phase 2 study supports the further development of CVD 908-htrA as a single-dose vaccine against typhoid fever and as a possible live vector for oral delivery of other vaccine antigens.  相似文献   

5.
Salmonella typhi vaccine strain CVD 908 can deliver heterologous antigens to the host immune system following mucosal immunization. Stable expression of foreign proteins in Salmonella cells often requires antigen-specific engineering strategies. Fusion of antigens to stabilizing proteins has proven to be a successful strategy for rescuing otherwise unstable proteins. We designed plasmids to allow the fusion of antigens to the amino terminus or carboxyl terminus of fragment C of tetanus toxin, separated by a 4-amino-acid hinge region. Towards the ultimate goal of developing a live oral diphtheria-pertussis-tetanus vaccine, we used these plasmids to stably express the S1 subunit of pertussis toxin in CVD 908. Driven by the anaerobically inducible nirB promoter, the S1 subunit alone was expressed poorly in Salmonella cytoplasm. In contrast, hybrid proteins with S1 fused to either the amino or carboxyl terminus of fragment C were expressed at a high level in CVD 908 and were recognized in Western blot (immunoblot) analysis by monoclonal antibodies directed to S1 and to fragment C. Mice were immunized by the oral or intranasal routes with CVD 908 derivatives harboring these recombinant plasmids. All fusion proteins elicited serum antibody responses to fragment C following intranasal immunization, whereas oral inoculation did not. The configuration of antigens constituting the fusion was critical; S1 fused to the amino terminus of fragment C was less effective than S1 fused to the carboxyl terminus in generating anti-fragment C antibodies. CVD 908 expressing truncated S1 fused to the carboxyl terminus of fragment C elicited neutralizing serum pertussis antitoxin following intranasal immunization of mice.  相似文献   

6.
7.
A promising live attenuated typhoid vaccine candidate strain for mucosal immunization was developed by introducing a deletion in the guaBA locus of pathogenic Salmonella enterica serovar Typhi strain Ty2. The resultant DeltaguaBA mutant, serovar Typhi CVD 915, has a gene encoding resistance to arsenite replacing the deleted sequence within guaBA, thereby providing a marker to readily identify the vaccine strain. CVD 915 was compared in in vitro and in vivo assays with wild-type strain Ty2, licensed live oral typhoid vaccine strain Ty21a, or attenuated serovar Typhi vaccine strain CVD 908-htrA (harboring mutations in aroC, aroD, and htrA). CVD 915 was less invasive than CVD 908-htrA in tissue culture and was more crippled in its ability to proliferate after invasion. In mice inoculated intraperitoneally with serovar Typhi and hog gastric mucin (to estimate the relative degree of attenuation), the 50% lethal dose of CVD 915 (7.7 x 10(7) CFU) was significantly higher than that of wild-type Ty2 (1.4 x 10(2) CFU) and was only slightly lower than that of Ty21a (1.9 x 10(8) CFU). Strong serum O and H antibody responses were recorded in mice inoculated intranasally with CVD 915, which were higher than those elicited by Ty21a and similar to those stimulated by CVD 908-htrA. CVD 915 also elicited potent proliferative responses in splenocytes from immunized mice stimulated with serovar Typhi antigens. Used as a live vector, CVD 915(pTETlpp) elicited high titers of serum immunoglobulin G anti-fragment C. These encouraging preclinical data pave the way for phase 1 clinical trials with CVD 915.  相似文献   

8.
Currently, no cholera vaccine is available for persons traveling from the United States to areas of high cholera transmission and who for reasons of occupation or host factors are at increased risk for development of the disease. A single-dose oral cholera vaccine with a rapid onset of protection would be particularly useful for such travelers and might also be an adjunct control measure for cholera outbreaks. The attenuated Vibrio cholerae O1 vaccine strain CVD 103-HgR harbors a 94% deletion of the cholera toxin A subunit gene (ctxA) and has a mercury resistance gene inserted in the gene encoding hemolysin A. We undertook a phase I randomized placebo-controlled two-site trial to assess the safety and immunogenicity of a preliminary formulation of CVD 103-HgR prepared from new master and working cell banks. Healthy young adults were randomized (5:1 vaccinees to placebo recipients) to receive a single oral dose of ∼4.4 × 108 CFU of vaccine or a placebo. Blood serum vibriocidal and cholera toxin-specific IgG antibodies were measured before and 10, 14, and 28 days following vaccination or placebo. Excretion of the vaccine strain in the stool was assessed during the first week postvaccination. A total of 66 subjects were enrolled, comprising 55 vaccinees and 11 placebo recipients. The vaccine was well tolerated. The overall vibriocidal and anti-cholera toxin seroconversion rates were 89% and 57%, respectively. CVD 103-HgR is undergoing renewed manufacture for licensure in the United States under the auspices of PaxVax. Our data mimic those from previous commercial formulations that elicited vibriocidal antibody seroconversion (a correlate of protection) in ∼90% of vaccinees. (This study has been registered at ClinicalTrials.gov under registration no. NCT01585181.)  相似文献   

9.
Oligosaccharides were made from Haemophilus influenzae type b capsular polysaccharide and conjugated to CRM197 by reductive amination. Conjugates were made with a range of lengths and multiplicities of saccharide chains. All elicited a strongly enhanced anti-H. influenzae type b capsular polysaccharide response when injected into weanling rabbits. One series of conjugates also elicited antibodies to diphtheria toxin.  相似文献   

10.
通过聚合酶链式反应(PCR)从一中国株中型白喉产毒杆菌的β噬菌体基因组中克隆出1065碱基对的白喉毒素全基因编码序列,将PCR产物直接克隆到pGEM-T/载体系统,经有关限制性内切酶消化,核苷酸序列分析表明,成功的克隆出白喉毒素全基因编码序列。利用上下游引物中导人的NdeI和BamHI位点,将白喉毒素基因插入原核表达载体PET-3a,从而构建出白喉毒素表达载体PET/DT。以BL21(DE3)为工程菌,用IPTG诱导T7启动子进行表达,经SDS-PAGE分析表明,在58000处可见一产物条带,表达量可达菌体蛋白的25%,经豚鼠毒性实验和Western-blot实验表明,表达产物与白喉杆菌分泌的毒素有相同的免疫学及生物学活性。  相似文献   

11.
12.
The effects of heterologous gene dosage as well as Salmonella typhimurium strain variability on immune response toward both the heterologous antigen, the nontoxic mutant of the Escherichia coli heat-labile enterotoxin LTK63, and the carrier Salmonella strain have been analyzed. Effects of a single integration into the host DNA and different-copy-number episomal vectors were compared in S. typhimurium Δcya Δcrp Δasd strains of two different serotypes, UK-1 and SR-11. Expression of the enterotoxin in the different Salmonella isolates in vitro was found to vary considerably and, for the episomal vectors, to correlate with the plasmid copy number. LTK63-specific serum immunoglobulin G (IgG) and mucosal immunoglobulin A (IgA) antibodies were highest in mice immunized with the high-level-expression strain. High anti-LTK63 IgG and IgA titers were found to correspond to higher anti-Salmonella immunity, suggesting that LTK63 exerts an adjuvant effect on response to the carrier. Statistically significant differences in anti-LTK63 immune response were observed between groups of mice immunized with the attenuated Δcya Δcrp UK-1 and SR-11 derivatives producing the antigen at the same rate. These data indicate that the same attenuation in S. typhimurium strains of different genetic backgrounds can influence significantly the immune response toward the heterologous antigen. Moreover, delivery of the LTK63 enterotoxin to the immune system by attenuated S. typhimurium strains is effective only when synthesis of the antigen is very high during the initial phase of invasion, while persistence of the S. typhimurium strain in deep tissues has only marginal influence.

Enterotoxigenic Escherichia coli strains produce a plasmid-encoded heat-labile enterotoxin (LT) (15, 34) related to cholera toxin (CT) (9, 35). LT is composed of two subunits, A and B, which are exported to the periplasmic space, where they assemble into an AB5 multimeric complex (16). Several mutants of LT-A have been constructed, and in particular, a nontoxic mutant which contains a substitution of serine 63 with lysine (LTK63) has been shown to maintain the structural and immunogenic properties of wild-type LT (21, 27, 28). LTK63 has also been found to display the strong mucosal adjuvant activity pertaining to wild-type LT. Efficient induction of mucosal immune response, specifically in the mouse vagina, has been achieved via the intranasal route of immunization (10). For the development of oral vaccines, however, it would be desirable to exploit the properties of LTK63 for enhancing antigen-specific immune response in the intestinal mucosa by means of oral delivery of the potent mucosal adjuvant.Oral delivery of antigens by live vaccines is known to lead to a more effective production of antigen-specific antibodies in mucosal secretions than oral administration of the soluble antigen (36, 39). Several antigen delivery systems which use as carriers mutant intracellular pathogens that have lost the ability to persist and produce the disease while retaining limited growth in vivo have been developed. In particular, attenuated Salmonella mutants are suitable immunological carriers for virulence determinants from other enteric bacteria in that they can induce humoral immune response selectively at the site of colonization, the gut mucosa. Vaccine strains of Salmonella have been successfully attenuated by introducing different types of mutations (5, 8, 23, 26). Notably, Salmonella strains with a galactose epimerase (galE) mutation (18) or deletions in genes for the biosynthesis of aromatic compounds (aro mutants) (11, 12, 17, 19) or in the adenylate cyclase (cya) and cyclic AMP receptor protein (crp) genes (6) are the most extensively characterized.Delivery of the B subunit of the E. coli enterotoxin (LT-B) by a galE mutant of Salmonella typhimurium has been shown to elicit low levels of anti-LT-B serum and mucosal antibodies. Since the vector used for expression of LT-B was rapidly lost in vivo, i.e., in the absence of the antibiotic required for selection of the plasmid, the level of immune response could be correlated only with the amount of antigen expressed during the initial phase of invasion (3).Recently, direct comparison between the aroA aroD/pnirB and the Δcya Δcrp Δasd/asd+ delivery systems for the ability to induce humoral and cellular immunity after a single immunization showed that the former vaccine strain had greater potential as a carrier for antigen delivery (20). However, the balanced lethal asd system for in vivo selection of plasmids expressing heterologous antigens in the attenuated Δcya Δcrp Δasd strains is still very attractive in that asd+ plasmids do not require antibiotic resistance markers for selection while stably maintained in vivo (24). In addition, the Δcya Δcrp Δasd/asd+ delivery system has been reported to induce protective immunity against several pathogens (25, 29, 40). Most of these studies have restricted analysis of the immune response to antigens expressed from the same asd+ plasmid carried by Δcya Δcrp Δasd mutants usually of the same S. typhimurium serotype. In this work, we have analyzed the influence of heterologous gene dosage, and thus level of expression, as well as S. typhimurium strain variability on immune response toward both the heterologous antigen, a nontoxic mutant of E. coli LT, and the carrier Salmonella strain. Effects of a single integration into the host DNA and episomal vectors at different copy numbers were compared in S. typhimurium strains of two different Δcya Δcrp Δasd serotypes, UK-1 and SR-11.  相似文献   

13.
CRM197, a nontoxic mutant of diphtheria toxin, is a specific inhibitor of heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), which belongs to the EGF family that has been implicated in the increased progression, proliferation, and metastasis of oral cancer. In this study, we analyzed the antitumor effects of CRM197, which represent possible chemotherapeutic agents for oral cancer. In the experiment, we used the oral squamous cell carcinoma cell lines HSC3 and SAS. Cells treated with CRM197 were analyzed based on cell viability, MTT assay, invasion assay, Western blot, and zymography. HSC3 cells were injected subcutaneously into female BALB/c nu/nu mice at 5 weeks of age. CRM197 and/or CDDP were injected intraperitoneally into tumor-bearing mice, and tumor volume was measured over time. HB-EGF expression in HSC3 and SAS cells treated with CRM197 was significantly reduced and cell proliferation was inhibited. The invasiveness of CRM197-treated cells was relatively low. MMP-9 and VEGF were suppressed in HSC3 treated with CRM197 on zymography and Western blot. Further, tumor growth in xenografted mice was suppressed by CRM197 or CDDP at 1 mg/kg/day. Also, the coadministration of CDDP and CRM197 at 1 mg/kg/day completely inhibited tumor formation. These results suggest that HB-EGF is a target for oral cancer and that CRM197 is effective in oral cancer therapy.  相似文献   

14.
Haemophilus ducreyi expresses a soluble cytolethal distending toxin (CDT) that kills HeLa, HEp-2, and other human epithelial cells in vitro. H. ducreyi CDT activity is encoded by a three-gene cluster (cdtABC), and antibody to the cdtC gene product can neutralize CDT activity in vitro (L. D. Cope, S. R. Lumbley, J. L. Latimer, J. Klesney-Tait, M. K. Stevens, L. S. Johnson, M. Purven, R. S. Munson, Jr., T. Lagergard, J. D. Radolf, and E. J. Hansen, Proc. Natl. Acad. Sci. USA 94:4056-4061, 1997). Culture supernatant fluid from a recombinant Escherichia coli strain containing the H. ducreyi cdtABC gene cluster readily killed both HeLa cells and HaCaT keratinocytes and had a modest inhibitory effect on the growth of human foreskin fibroblasts. Insertional inactivation of the cdtC gene in this recombinant E. coli strain eliminated the ability of this strain to kill HeLa cells and HaCaT keratinocytes. This mutated H. ducreyi cdtABC gene cluster was used to construct an isogenic H. ducreyi cdtC mutant. Monoclonal antibodies against the H. ducreyi CdtA, CdtB, and CdtC proteins were used to characterize protein expression by this cdtC mutant. Culture supernatant fluid from this H. ducreyi cdtC mutant did not detectably affect any of the human cells used in this study. The presence of the wild-type H. ducreyi cdtC gene in trans in this H. ducreyi mutant restored its ability to express a CDT that killed both HeLa cells and HaCaT keratinocytes. The isogenic H. ducreyi cdtC mutant was shown to be as virulent as its wild-type parent strain in the temperature-dependent rabbit model for experimental chancroid. Lack of expression of the H. ducreyi CdtC protein also did not affect the ability of this H. ducreyi mutant to survive in the skin of rabbits.  相似文献   

15.
The properties of two candidate Salmonella typhi-based live oral typhoid vaccine strains, BRD691 (S. typhi Ty2 harboring mutations in aroA and aroC) and BRD1116 (S. typhi Ty2 harboring mutations in aroA, aroC, and htrA), were compared in a number of in vitro and in vivo assays. BRD1116 exhibited an increased susceptibility to oxidative stress compared with BRD691, but both strains were equally resistant to heat shock. Both strains showed a similar ability to invade Caco-2 and HT-29 epithelial cells and U937 macrophage-like cells, but BRD1116 was less efficient at surviving in epithelial cells than BRD691. BRD1116 and BRD691 were equally susceptible to intracellular killing within U937 cells. Similar findings were demonstrated in vivo, with BRD1116 being less able to survive and translocate to secondary sites of infection when inoculated into the lumen of human intestinal xenografts in SCID mice. However, translocation of BRD1116 to spleens and livers in SCID mice occurred as efficiently as that of BRD691 when inoculated intraperitonally. The ability of BRD1116 to increase the secretion of interleukin-8 following infection of HT-29 epithelial cells was comparable to that of BRD691. Therefore, loss of the HtrA protease in S. typhi does not seem to alter its ability to invade epithelial cells or macrophages or to induce proinflammatory cytokines such as IL-8 but significantly reduces intracellular survival in human intestinal epithelial cells in vitro and in vivo.  相似文献   

16.
17.
Qian F  Pan W 《Infection and immunity》2002,70(4):2029-2038
Attenuated Salmonella strains are an attractive live vector for delivery of a foreign antigen to the human immune system. However, the problem with this vector lies with plasmid segregation and the low level of expression of the foreign gene in vivo when constitutive expression is employed, leading to a diminished immune response. We have established inducible expressions of foreign genes in the Salmonella enterica serovar Typhi CVD908 vaccine strain using the tetracycline response regulatory promoter. To set up this system, a tetracycline repressor (tetR) was integrated into a defined Delta aroC locus of the chromosome via suicide plasmid pJG12/tetR-neo. To remove the neo gene conferring kanamycin resistance from the locus, a cre expression vector under the control of the tetracycline response promoter was transformed into the clone; expression of the Cre recombinase excised the neo gene and generated the end strain CVD908-tetR. Expression of the luciferase reporter gene in this strain is dependent on the presence of tetracycline in the medium and can be regulated up to 4,773-fold. Moreover, the tightly controlled expression of major merozoite surface protein 1 (MSP1) and parts of Plasmodium falciparum was achieved, and the product yield was increased when the inducible expression system was employed. Inoculation of bacteria harboring plasmid pZE11/MSP1(42) in mice produced the protein in liver and spleen controlled by the inducer. The persistence of the plasmid-carrying bacteria in mice was determined. Peak colonization of both liver and spleen was detected on the third day postinoculation and was followed by a decline in growth curves. After 14 days postinfection, the majority of the bacteria (>90%) recovered from the liver and spleen of the mice retained the plasmid when expression was induced; this clearly indicated that stability of the expression vector in vivo was improved by inducible expression. Establishment of the regulatory system in the vaccine strain may broaden the range of its use by enhancing plasmid stability and expression levels in vivo. Moreover, the availability of the vaccine strain inducibly expressing the entire MSP1 provides possibilities for examining its immunogenicity, particularly the cellular response in animal models.  相似文献   

18.
Enterotoxigenic Escherichia coli (ETEC) is a primary cause of traveler''s diarrhea for which there is no licensed vaccine. This phase 1 trial determined the safety and immunogenicity of a recombinantly produced double mutant heat-labile enterotoxin (dmLT) of ETEC. It was administered as a single oral dose of dmLT in escalating doses of 5 μg, 25 μg, 50 μg, and 100 μg, followed by a 72-h inpatient observation, outpatient visits at 8, 14, and 28 days, and telephone calls at 2 and 6 months postvaccination. Safety was assessed by frequency of adverse events, and immune responses determined after immunization included dmLT-specific serum IgA and IgG, fecal IgA, antibody-secreting cells (ASC), and antibodies in lymphocyte supernatant (ALS) responses. All doses were well tolerated by the 36 healthy adults enrolled. Immune responses were limited in the 5- and 25-μg dose recipients. The 50-μg dose recipients trended toward stronger responses than the 100-μg dose recipients by serum IgA (67% versus 33%, P = 0.22), serum IgG (58% versus 33%, P = 0.41), and fecal IgA (58% versus 33%, P = 0.41). By day 14 postvaccination, there were significantly more positive responders (≥4-fold increase from baseline) among the 50- versus 100-μg dose recipients for serum IgA (P = 0.036) but not serum IgG (P = 0.21). In conclusion, a single oral dose of dmLT was well tolerated and immunogenic, with immune responses plateauing at the 50-μg dose. (This clinical trial is registered at www.clinicaltrials.gov, registration number NCT01147445.)  相似文献   

19.
20.
Oligosaccharides (OSs) related to the pneumococcal type 14 capsular polysaccharide (Pn14PS) were studied for their ability to inhibit the binding between anti-PS14 antisera and native PS14. A synthetic tetrasaccharide corresponding to the repeating unit of the Pn14PS, a hexasaccharide mimic, and an octasaccharide fragment obtained by Pn14PS depolymerization were good inhibitors. CRM197 conjugates of the tetrasaccharide and an octasaccharide mimic were prepared by using either adipic acid diester or diethyl squarate linkers. The conjugate with the tetrasaccharide chains induced anti-Pn14PS antibodies when injected subcutaneously into mice, as determined by an enzyme-linked immunosorbent assay, and antibody titers increased with oligosaccharide loading. The adipic acid-linked tetrasaccharide conjugates elicited higher antibody titers than those prepared with a squarate spacer. The lower anti-Pn14PS antibody response of the octasaccharide mimic conjugate indicates the importance of the backbone galactose residue for an appropriate antibody response. The OS-CRM197 conjugate prepared from a single repeat unit of the Pn14PS is a potential vaccine candidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号