首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies suggest that, in female monkeys and rats, estrogens elicit dendritic spine synapse formation in the prefrontal cortex, an area that, similar to the hippocampus, plays a critical role in cognition. However, whether gonadal hormones induce synaptic remodeling in the male prefrontal cortex remains unknown. Here we report that gonadectomy reduced, whereas administration of 5alpha-dihydrotestosterone or estradiol-benzoate to castrated male rats increased, the number of medial prefrontal cortical (mPFC) spine synapses, with estradiol-benzoate being less effective than 5alpha-dihydrotestosterone. To investigate whether the androgen receptor contributes to the mediation of these changes, we compared the response of testicular feminization mutant (Tfm) male rats to that of wild-type animals. The number of mPFC spine synapses in gonadally intact Tfm rats and 5alpha-dihydrotestosterone-treated castrated Tfm males was considerably reduced compared to intact wild-type animals, whereas the synaptogenic effect of estradiol-benzoate was surprisingly enhanced in Tfm rats. These data are consistent with the hypothesis that remodeling of spine synapses in the prefrontal cortex may contribute to the cognitive effect of gonadal steroids. Our findings in Tfm animals indicate that androgen receptors may mediate a large part of the synaptogenic action of androgens in the mPFC of adult males. However, because this effect of 5alpha-dihydrotestosterone is not completely lost in Tfm rats, additional mechanisms may also be involved.  相似文献   

2.
MacLusky NJ  Hajszan T  Leranth C 《Endocrinology》2004,145(9):4154-4161
The effects of androgens and the androgen antagonist, flutamide, on the density of dendritic spine synapses in the CA1 subfield of the hippocampus were studied in gonadectomized male and female rats. Treatment of orchidectomized male rats with dehydroepiandrosterone (DHEA; 2 d, 1 mg/d sc) increased the density of CA1 spine synapses observed 2 d later, by 106%, without significantly affecting ventral prostate weight. The hippocampal response to DHEA was unaffected by blockade of intracerebral estrogen biosynthesis using the aromatase inhibitor, letrozole. By contrast, flutamide alone (2 d; 5 mg/d, sc) increased CA1 spine synapse density by 66%, whereas in combination the effects of flutamide and DHEA were additive rather than inhibitory. Additive effects on CA1 synapse density were also observed in males using combinations of flutamide with 5alpha-dihydrotestosterone (2 d, 500 microg/d, sc). At the same doses, flutamide had no effect on prostate weight and completely blocked the effects on the prostate of treatment with 5alpha-dihydrotestosterone. Treatment of ovariectomized females with DHEA increased CA1 spine synapse density to a level similar to that observed in the male. As in males, flutamide in females increased CA1 spine synapse formation and further augmented the response to DHEA. These results demonstrate that flutamide and DHEA have positive effects on hippocampal CA1 spine synapse density in both sexes. They also suggest that conventional measures of androgen agonist or antagonist activity, exemplified by ventral prostate growth, may not be indicative of effects on hippocampal CA1 synaptogenesis.  相似文献   

3.
Androgens interact with catecholamines in the central nervous system (CNS) to regulate many physiological processes including blood pressure (BP). To test the hypothesis that testosterone (T) and 5a-dihydrotestosterone (DHT) modulate CNS catecholamines and BP through androgen receptor (AR)-dependent and independent mechanisms, we used the testicular feminized male (Tfm) rat. Females that carry the AR mutation (Tfm mutation) on the X chromosome were bred with spontaneously hypertensive rat (SHR) males. The normal AR male and Tfm offspring were divided into groups: control, castrated, castrated, and T or (DHT) replacement. In both AR normal and Tfm males, BP was reduced by castration, but T restored BP in both groups. In the amygdale, castration decreased dopamine (DA) in both strains and both T and DHT restored it. In the bed nucleus of the stria terminalis castration increased DA which was further increased by DHT and reduced to normal by T in both strains. In the frontal cortex, castration reduced DA content in both strains but only T restored it to normal in SHR but not in Tfm. Brain norepinephrine (NE) content showed a significant strain effect for the preoptic area (POA), but no treatment effect. Although castration did not change NE in the amygdala or POA in either strain, both T and DHT increased NE in the Tfm castrates. Blood pressure was influenced by T manipulation and correlated most significantly with DA content in the amygdala, frontal cortex, and stria terminalis. These data demonstrate an action of androgen on brain catecholamines and BP, which is independent of the classic androgen receptor.  相似文献   

4.
5.
Hajszan T  MacLusky NJ  Leranth C 《Endocrinology》2004,145(3):1042-1045
This study tests the hypothesis that dehydroepiandrosterone (DHEA) stimulates formation of hippocampal CA1 spine synapses in ovariectomized rats. Subcutaneous injections of DHEA (1 mg/d for 2 d) increased CA1 spine synapse density by more than 50% compared with vehicle-injected animals. The effect of DHEA on CA1 synapse density was abolished by pretreatment with the nonsteroidal aromatase inhibitor, letrozole. DHEA treatment, with or without letrozole, had no detectable uterotrophic effect. These observations are consistent with the hypothesis that DHEA treatment may be capable of reversing the decline in hippocampal spine synapse density observed after loss of ovarian steroid hormone secretion. The blockade of the synaptic response to DHEA by letrozole, despite the lack of a uterotrophic response to this steroid, suggests that the hippocampal response to DHEA may be mediated via aromatization in the brain.  相似文献   

6.
Perinatal exposure to testosterone (T), which can act upon both the androgen receptor (AR) and, via aromatization of T into estrogens, upon estrogen receptors, organizes many adult behaviors in rodents. We compared behaviors in wild-type (WT) male rats and AR-deficient rats with the testicular feminization mutation (Tfm), which on the day of birth were either gonadectomized (Neo-Gdx) or sham operated. In adulthood, all rats were either gonadectomized or sham operated and implanted with T capsules to equilibrate circulating androgens. In each of four tests of behavior related to anxiety (open field, novel object exposure, light/dark box, and elevated plus maze), Neo-Gdx rats showed decreased indices of anxiety and increased activity compared with rats sham operated on the day of birth, with no differences between WT or Tfm males within treatment groups. These results indicate that testicular hormones act in development to increase adult indices of anxiety and decrease activity in males and that functional ARs are not required for this effect. Acoustic startle response was also reduced by Neo-Gdx, suggesting that postnatal testicular secretions potentiate this behavior as well. Adult corticosterone levels and sensorimotor gating, as measured by prepulse inhibition of the acoustic startle response, were increased by neonatal castration in both WT and Tfm rats. These findings indicate a role of T before adulthood in the organization of anxiety-related behaviors, activity, the hypothalamic-pituitary-adrenal axis, and sensorimotor gating in rats, all of which appears to be AR independent.  相似文献   

7.
Testosterone, acting through its androgenic metabolite 5alpha-dihydrotestosterone (DHT), can increase dendritic spine density in the CA1 region of the male rat hippocampus. The mechanisms mediating this increase in spines are presently unknown. In female rats, estrogen (E) has been shown to increase spine density, which is in part mediated by increases in N-methyl-d-aspartate (NMDA) receptors in the CA1 region and cholinergic forebrain inputs to the hippocampus. Whether similar mechanisms are responsible for the DHT-induced increase in spines in the male remains to be determined. In the first experiment, we used [(3)H]glutamate NMDA receptor binding autoradiography to assess whether DHT-treated males had higher NMDA receptor levels in the CA1 region of the hippocampus, compared with oil-treated males. In the second set of experiments, we used choline acetyltransferase (ChAT) in situ hybridization and immunohistochemistry to assess whether DHT could affect ChAT cell number in the forebrain. We also investigated the effect of DHT on hemicholinium-3-sensitive choline transporter levels in the CA1 region of the male hippocampus. We found that DHT significantly increased NMDA receptor binding in the CA1 region of males but had no effect on ChAT cell number in the forebrain or hemicholinium-3-sensitive choline transporter protein levels in the CA1 region. These data indicate that, similar to E-induced spinogenesis in females, DHT-induced increases in spine formation in males may require increases in NMDA receptors. However, unlike E-treated females, these data suggest that DHT does not influence cholinergic inputs to the hippocampus.  相似文献   

8.
Dendritic spines are sites of the vast majority of excitatory synaptic input to hippocampal CA1 pyramidal cells. Estrogen has been shown to increase the density of dendritic spines on CA1 pyramidal cell dendrites in adult female rats. In parallel with increased spine density, estrogen has been shown also to increase the number of spine synapses formed with multiple synapse boutons (MSBs). These findings suggest that estrogen-induced dendritic spines form synaptic contacts with preexisting presynaptic boutons, transforming some previously single synapse boutons (SSBs) into MSBs. The goal of the current study was to determine whether estrogen-induced MSBs form multiple synapses with the same or different postsynaptic cells. To quantify same-cell vs. different-cell MSBs, we filled individual CA1 pyramidal cells with biocytin and serially reconstructed dendrites and dendritic spines of the labeled cells, as well as presynaptic boutons in synaptic contact with labeled and unlabeled (i.e., different-cell) spines. We found that the overwhelming majority of MSBs in estrogen-treated animals form synapses with more than one postsynaptic cell. Thus, in addition to increasing the density of excitatory synaptic input to individual CA1 pyramidal cells, estrogen also increases the divergence of input from individual presynaptic boutons to multiple postsynaptic CA1 pyramidal cells. These findings suggest the formation of new synaptic connections between previously unconnected hippocampal neurons.  相似文献   

9.
Tfm (testicular feminization) mutant mice lack functional androgen receptors. By studying liver tumor development in Tfm mice, we have shown that the greater susceptibility of male mice relative to female mice for liver tumor induction by N,N-diethylnitrosamine is androgen receptor-dependent. C57BL/6J normal and Tfm mutant mice were injected at 12 days of age with N,N-diethylnitrosamine (0.2 mumol/g, i.p.), and liver tumors were enumerated in 50-week-old animals. Normal males averaged 20 liver tumors per animal; Tfm males, 0.7; normal females, 0.6; and Tfm/+ heterozygous females, 1.5. The androgen receptor gene and the Tfm mutation are X chromosome linked. Because of random X chromosome inactivation, hepatocytes from Tfm/+ heterozygous female mice are mosaic with respect to the expression of mutant or wild-type receptors. To determine if testosterone acts directly as a liver tumor promoter, through the androgen receptor in preneoplastic hepatocytes, or by an indirect mechanism, we chronically treated these mosaic female mice with testosterone and measured the androgen receptor content of the resulting tumors. B6C3F1 Tfm/+ mosaic and +/+ wild-type female mice were injected i.p. at 12 days of age with N,N-diethylnitrosamine (0.1 mumol/g) and ovariectomized at 8 weeks of age. Half of the mice of each group subsequently received biweekly s.c. injections of testosterone (0.15 mg per mouse) for 30 weeks. Tumor multiplicity was the same for wild-type and Tfm/+ mosaic females treated with testosterone (31-32 tumors per animal at 38 weeks of age) and was increased relative to females not treated with testosterone (13-17 tumors per animal at 50 weeks of age). Testosterone treatment did not significantly increase the percentage of androgen receptor-positive tumors in Tfm/+ mosaic females: 58% of the tumors from Tfm/+ mosaic females treated with testosterone were receptor positive compared to 48% in Tfm/+ females not treated with testosterone and 92% in wild-type females treated with testosterone. Finally, the number of androgen receptors in the majority of liver tumors examined was greatly decreased relative to the surrounding normal liver tissue. We conclude that liver tumor promotion by testosterone requires a functional androgen receptor in the intact animal. However, this promotion is not cell autonomous; that is, the response of the preneoplastic hepatocyte is not dependent on the expression of functional receptor in the target cell.  相似文献   

10.
Using a charcoal technique, we determined the relative binding affinity of some anabolic compounds for the androgen and glucocorticoid receptors in cytosol from rat skeletal muscle. Only a few of the compounds analyzed competed for the receptor-binding sites. The androgen and glucocorticoid receptors were analyzed in rat and mouse skeletal muscle cytosols by Scatchard analysis. In rats grouped according to sex and age, the cytosolic protein content was about the same in all groups, but the DNA content decreased with increased weight of the animal regardless of sex (male, female, or castrated male). The glucocorticoid receptor did not differ in concentration (2-3 pmol/g tissue) or ligand affinity (Kd, 10-40 nM) among the groups, but the androgen receptor concentration decreased with increased weight and age of the animals, more in the case of males than in the case of females or castrates. The Kd for the androgen receptor increased with age in males but was constantly about 0.2 nM for castrates or females. In adult intact rats, the androgen and glucocorticoid receptor concentrations in muscle cytosol from females were about 100 and 3000 fmol/g tissue, respectively, the corresponding values for males being about 50 and 2000 fmol/g tissue, respectively. Short term castration or adrenalectomy increased the concentration of and ligand affinity for the androgen and glucocorticoid receptors, respectively. After long term castration of male rats, the concentration of both receptors increased during 5 weeks to about the female level, only to decrease later. Neonatally castrated male rats had about the same androgen receptor concentrations and Kd values as female rats. Female mice had higher androgen receptor concentrations (approximately 700 fmol/g tissue) than rats. Intact male mice had about 200 fmol androgen receptor-binding sites/g tissue, and the same amount was found in mice bearing the testicular feminization (Tfm) mutant gene. In summary, the concentrations of androgen and glucocorticoid receptors in rat skeletal muscle are regulated at least by the testes. The presence of androgen receptors in skeletal muscle from Tfm mice is surprising and may motivate a reinvestigation of the regulation of androgen receptors in Tfm animals.  相似文献   

11.
Learning and memory have been closely linked to strengthening of synaptic connections between neurons (i.e., synaptic plasticity) within the dentate gyrus (DG)–CA3–CA1 trisynaptic circuit of the hippocampus. Conspicuously absent from this circuit is area CA2, an intervening hippocampal region that is poorly understood. Schaffer collateral synapses on CA2 neurons are distinct from those on other hippocampal neurons in that they exhibit a perplexing lack of synaptic long-term potentiation (LTP). Here we demonstrate that the signaling protein RGS14 is highly enriched in CA2 pyramidal neurons and plays a role in suppression of both synaptic plasticity at these synapses and hippocampal-based learning and memory. RGS14 is a scaffolding protein that integrates G protein and H-Ras/ERK/MAP kinase signaling pathways, thereby making it well positioned to suppress plasticity in CA2 neurons. Supporting this idea, deletion of exons 2–7 of the RGS14 gene yields mice that lack RGS14 (RGS14-KO) and now express robust LTP at glutamatergic synapses in CA2 neurons with no impact on synaptic plasticity in CA1 neurons. Treatment of RGS14-deficient CA2 neurons with a specific MEK inhibitor blocked this LTP, suggesting a role for ERK/MAP kinase signaling pathways in this process. When tested behaviorally, RGS14-KO mice exhibited marked enhancement in spatial learning and in object recognition memory compared with their wild-type littermates, but showed no differences in their performance on tests of nonhippocampal-dependent behaviors. These results demonstrate that RGS14 is a key regulator of signaling pathways linking synaptic plasticity in CA2 pyramidal neurons to hippocampal-based learning and memory but distinct from the canonical DG–CA3–CA1 circuit.  相似文献   

12.
G R Cunha  P Young 《Endocrinology》1991,128(6):3293-3298
To assess the role of androgen receptors (ARs) in the expression of androgen-dependent seminal vesicle (SV) secretory proteins, tissue recombinants were prepared with rat seminal vesicle mesenchyme plus ureter epithelium of wild-type or Tfm mice (rat SVM plus wild-type mouse URE and rat SVM plus Tfm mouse URE, respectively). After growth in male hosts, both the wild-type and Tfm ureter epithelia were induced by SVM to differentiate into a simple columnar epithelium exhibiting the complex folded morphology characteristic of the SV. In SVM plus wild-type mouse URE recombinants, epithelial ARs were induced, and the epithelium expressed the full spectrum of SV secretory proteins. By contrast, in SVM plus Tfm mouse URE recombinants, the Tfm epithelium was genetically incapable of producing functional ARs and failed to produce SV secretory proteins. These data demonstrate in vivo that the induction of SV secretory proteins by androgens is an event requiring intraepithelial ARs. In contrast, androgen-dependent epithelial morphogenesis, columnar cytodifferentiation, and probably also proliferation can be expressed in Tfm epithelium grown in association with wild-type mesenchyme, strongly suggesting that these events are indirect effects on the epithelium mediated by mesenchymal ARs.  相似文献   

13.
Non-aromatizable androgens have significant beneficial effects on skeletal homeostasis independently of conversion to estradiol, but the effects of androgens on bone cell metabolism and cell proliferation are still poorly understood. Using an osteoblastic model with enhanced androgen responsiveness, MC3T3-E1 cells stably transfected with androgen receptor (AR) under the control of the type I collagen promoter (colAR-MC3T3), the effects of androgens on mitogenic signaling were characterized. Cultures were treated with the non-aromatizable androgen 5alpha-dihydrotestosterone (DHT) and the effects on osteoblast viability were determined as measured by an MTT assay. A complex response was observed in that continuous short-term DHT treatment enhanced osteoblast viability, but with longer-term DHT treatment inhibition was observed. The inhibition by DHT was prevented by the specific AR antagonist hydroxyflutamide, and was also observed in primary cultures of normal rat calvarial osteoblasts. In order to identify potential mediators of this effect, mitogenic pathway-specific cDNA microarrays were interrogated. Reduced hybridization of several genes important in MAP kinase-mediated signaling was observed, with the most dramatic effect on Elk-1 expression. Analysis of phosphorylation cascades demonstrated that DHT treatment inhibited phosphoERK1/2 levels, MAP kinase activation of Elk-1, Elk-1 protein and phosphoElk-1 levels, and downstream AP-1/luciferase reporter activity. Together, these data provide the first evidence that androgen inhibition of the MAP kinase signaling pathway is a potential mediator of osteoblast growth, and are consistent with the hypothesis that the MAP cascade may be a specific downstream target of DHT.  相似文献   

14.
Estrogen and androgen are synthesized from cholesterol locally in hippocampal neurons of adult animals. These neurosteroids are synthesized by cytochrome P450s and hydroxysteroid dehydrogenases (HSDs) and 5alpha-reductase. The expression levels of enzymes are as low as 1/200–1/50,000 of those in endocrine organs, however these numbers are high enough for local synthesis. Localization of P450(17alpha), P450arom, 17beta-HSD and 5alpha-reductase is observed in principal glutamatergic neurons in CA1, CA3 and the dendate gyrus. Several nanomolar levels of estrogen and androgen are observed in the hippocampus.Estrogen modulates memory-related synaptic plasticity not only slowly but also rapidly in the hippocampus. Rapid action of 17beta-estradiol via membrane receptors is demonstrated for spinogenesis and long-term depression (LTD). The enhancement of LTD by 1–10 nM estradiol occurs within 1 h. The density of spine is increased in CA1 pyramidal neurons within 2 h after application of estradiol. The density of spine-like structure is, however, decreased by estradiol in CA3 pyramidal neurons. ERalpha, but not ERbeta, induces the same enhancement/suppression effects on both spinogenesis and LTD.  相似文献   

15.
To investigate the role of androgen receptors in the regulation of brain aromatase activity (AA) in adult rats, the levels of AA in discrete brain areas of androgen-insensitive testicular feminized (Tfm) rats were compared with those in their normal male littermates (NL). AA was measured in homogenates of brain tissue by using a radiometric assay that quantifies the production of 3H2O from [1 beta-3H]androstenedione as an index of estrogen formation. Initially, we assessed the capability of block-dissected tissues to aromatize androgens. We found that the AA in the amygdala and hypothalamus-preoptic area of Tfm rats was significantly lower (P less than 0.001) than the AA in NL despite the fact that circulating androgen concentrations in the Tfm were significantly higher. Kinetics studies demonstrated that the apparent Michaelis constant was equivalent for both groups (0.02-0.03 microM). Administration of testosterone propionate to castrated males produced 3 to 4-fold elevations of AA in NL, but did not affect brain AA in Tfm rats. To pinpoint specific sites where AA is affected in Tfm rats, we measured AA in 10 hypothalamic and limbic nuclei that were dissected from 300-micron frozen brain sections. Compared to NL, Tfm rats exhibited significantly lower levels of AA in all micro-dissected brain regions studied, except for the medial and cortical amygdala. These data provide genetic evidence for both androgen-dependent and independent regulation of AA in the rat brain.  相似文献   

16.
To investigate the cellular mechanisms underlying the unique GH secretory apparatus of the androgen-resistant testicular feminized (Tfm) rat we employed a reverse hemolytic plaque assay to assess GH secretion by individual cells from normal male, normal female, and Tfm rats. Acutely dispersed pituitary cells were incubated for 90 min with GH anti-serum in the presence of medium alone, 0.01, 0.1, 1, 10, or 100 nM GHRH, or 3 microM forskolin after which hemolytic plaques were developed over an additional 30 min. Body weights of the Tfm rats [318 +/- 7 g (mean +/- SEM)] were intermediate between intact males (372 +/- 18 g) and females (218 +/- 7 g). The total number of cells recovered from dispersion of Tfm rat pituitaries [3.20 +/- 0.42 X 10(6) (mean +/- SEM)] was greater than that from males (1.43 +/- 0.12 X 10(6); P = 0.001), but not distinguishable from that from females (2.31 +/- 0.30 X 10(6); P = 0.06). However, the absolute population of recovered somatotropes from the Tfm animals (1.24 +/- 0.22 X 10(6) exceeded both male (0.56 +/- 0.10 X 10(6); P = 0.002) and female (0.80 +/- 0.14 X 10(6); P = 0.046) values. Mean basal and maximal GH plaque areas were greater for cells from male rats than for those from either female or Tfm rats (P less than 0.05) regardless of whether GHRH or forskolin was used as the secretagogue. Plaque areas from female and Tfm cells were indistinguishable under all study conditions. These data suggest that a deficiency of androgen receptors prevents establishment of the greater GH secretory capacity of individual somatotropes characteristic of the adult male rat. This androgen receptor-dependent modulation of GH secretory capacity appears to occur at a step distal to the GHRH receptor. The data also suggest that an increase in the absolute population of somatotropes is an additional consequence of androgen receptor deficiency. This combination of individual somatotropes, each possessing a GH secretory capacity similar to that of cells from normal females, but present in greater absolute numbers, may explain the intermediate values found during previous studies of the Tfm rat GH axis which were based on assessment of large mixed populations of pituitary cells.  相似文献   

17.
Structural studies have shown that estrogens increase dendritic spine number in the dorsal CA1 field of rat hippocampus using Golgi impregnation as well as the number of dorsal CA1 synapses visualized via electron microscopy. The present study was carried out to further these findings by examining changes in the levels of pre- and postsynaptic proteins using radioimmunocytochemistry (RICC). In this study, 2 days of estradiol-benzoate treatment produced significant and comparable increases in synaptophysin, syntaxin, and spinophilin immunoreactivity (IR) in the CA1 region of the dorsal hippocampus of ovariectomized female rats. For spinophilin, IR was also increased in the hilar region of the dentate gyrus as well as CA3. In all cases, the nonsteroidal estrogen antagonist CI628, which has been previously shown to block spine formation, inhibited the effects of estrogen. However, these protein differences were not detected in whole hippocampus using Western blots. These findings add to a growing body of evidence that estrogens increase synapses in the CA1 region of hippocampus along with changes in previously unidentified sites. These results also suggest that RICC is a rapid and sensitive method for examining molecular changes in synaptic profiles in anatomically distinct brain regions.  相似文献   

18.
The search for cellular correlates of learning is a major challenge in neurobiology. The hippocampal formation is important for learning spatial relations. A possible long-lasting consequence of such spatial learning is alteration of the size, shape, or number of excitatory synapses. The dendritic spine density is a good index for the number of hippocampal excitatory synapses. By using laser-scanning confocal microscopy, we observed a significantly increased spine density in CA1 basal dendrites of spatially trained rats when compared to nontrained controls. With unchanged dendritic length, the higher spine density reflects an increased number of excitatory synapses per neuron associated with spatial learning.  相似文献   

19.
To determine whether a normal complement of androgen receptors is required to permit full expression of sex-related differences in pituitary GH secretion, we compared the GHRH-stimulated GH secretory responses of continuously perifused anterior pituitary cells from normal male, normal female, and androgen-resistant testicular feminized (Tfm) rats. In each experimental replicate, acutely dispersed pituitary cells were exposed to GHRH (0.03-100 nM) administered as 2.5-min pulses in random order at 30-min intervals. The eluate was collected in 5-min fractions for GH determination by RIA. Basal unstimulated secretion of GH by cells from male rats was greater than that by cells from female (P = 0.007) and Tfm (P = 0.03) rats; basal secretion by the other two groups was similar (P = 0.55). Linear concentration-response relationships between GHRH and GH release were defined for cells from male (P = 0.0002), female (P = 0.0001), and Tfm (P = 0.0002) rats. Overall GHRH-stimulated GH secretion by cells from male rats was greater (P less than 0.0001) than that by cells from female rats. Overall secretion by cells from Tfm rats was less (P less than 0.001) than that by cells from male rats but greater (P less than 0.001) than that by cells from female rats. For all experimental groups, body weight was strongly correlated with both basal (r2 = 0.42; P = 0.001) and GHRH-stimulated (r2 = 0.53; P = 0.0001) GH secretion by the dispersed pituitary cells. These data suggest that a deficiency of androgen receptors results in a diminution of the in vitro GH secretory capability of anterior pituitary cells to a level below that by cells from normal males, but not to the level in normal females. The intermediate position of cells from the Tfm rat may represent a partial masculinization or defeminization within this generally female phenotype.  相似文献   

20.
CaMKII is an abundant synaptic protein strongly implicated in plasticity. Overexpression of autonomous (T286D) CaMKII in CA1 hippocampal cells enhances synaptic strength if T305/T306 sites are not phosphorylated, but decreases synaptic strength if they are phosphorylated. It has generally been thought that spine size and synaptic strength covary; however, the ability of CaMKII and its various phosphorylation states to control spine size has not been previously examined. Using a unique method that allows the effects of overexpressed protein to be monitored over time, we found that all autonomous forms of CaMKII increase spine size. Thus, for instance, the T286D/T305D/T306D form increases spine size but decreases synaptic strength. Further evidence for such dissociation is provided by experiments with the T286D form that has been made catalytically dead. This form fails to enhance synaptic strength but increases spine size, presumably by a structural process. Thus very different mechanisms govern how CaMKII affects spine structure and synaptic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号