首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Structure-activity analysis of 21 aporphine derivatives was performed by examining their affinities for cloned human alpha (1A), alpha (1B) and alpha (1D) adrenoceptors (AR) using membranes prepared from rat-1 fibroblasts stably expressing each alpha (1)-AR subtype. All the compounds tested competed for [ (125)I]-HEAT binding with steep and monophasic curves. The most interesting compound was 8-NH (2)-boldine, which retains the selective affinity for alpha(1A)-AR (pKi = 6.37 +/- 0.21) vs. alpha(1B)-AR (pKi = 5.53 +/- 0.11) exhibited by 1,2,9,10-tetraoxygenated aporphines, but shows low affinity for alpha(1D)-AR (pKi < 2.5). Binding studies on native adrenoceptors present in rat cerebral cortex confirms the results obtained for human cloned alpha (1)-AR subtypes. The compounds selective for the alpha (1A) subtype discriminate two binding sites in rat cerebral cortex confirming a mixed population of alpha (1A)- and alpha (1B)-AR in this tissue. All compounds are more selective as inhibitors of [ (3)H]-prazosin binding than of [ (3)H]-diltiazem binding to rat cerebral cortical membranes. A close relationship was found between affinities obtained for cloned alpha (1A)-AR and inhibitory potencies on noradrenaline-induced contraction or inositol phosphate accumulation in tail artery, confirming that there is a homogeneous functional population of alpha(1A)-AR in this vessel. On the contrary, a poor correlation seems to exist between the affinity of 8-NH (2)-boldine for cloned alpha (1D)-AR and its potency as an inhibitor of noradrenaline-induced contraction or inositol phosphate accumulation in rat aorta, which confirms that a heterogeneous population of alpha (1)-AR mediates the adrenergic response in this vessel.  相似文献   

2.
1. The selectivity of action of boldine and the related aporphine alkaloids, predicentrine (9-O-methylboldine) and glaucine (2,9-O-dimethylboldine) and alpha 1-adrenoceptor subtypes was studied by examining [3H]-prazosin competition binding in rat cerebral cortex. WB 4101 and benoxathian were used as selective alpha 1A-adrenoceptor antagonists. 2. In the competition experiments [3H]-prazosin (0.2 nM) binding was inhibited by WB 4101 and benoxathian. The inhibition curves displayed shallow slopes which could be subdivided into high and low affinity components (pKi = 9.92 and 8.29 for WB 4101, 9.35 and 7.94 for benoxathian). The two antagonists recognized approximately 37% of the sites with high affinity from among the total [3H]-prazosin specific binding sites. 3. Boldine, predicentrine and glaucine also competed for [3H]-prazosin (0.2 nM) binding with shallow and biphasic curves recognizing 30-40% of the sites with high affinity. Drug affinities (pKi) at the high and low affinity sites were, 8.31 and 6.50, respectively, for boldine, 8.13 and 6.39 for predicentrine, and 7.12 and 5.92 for glaucine. The relative order of selectivity for alpha 1A-adrenoceptors was boldine (70 fold alpha 1A-selective) = predicentrine (60 fold, alpha 1A-selective) > glaucine (15 fold, alpha 1A-selective). 4. Pretreatment of rat cerebral cortex membranes with chloroethylclonidine (CEC, 10 microM) for 30 min at 37 degrees C followed by thorough washing out reduced specific [3H]-prazosin binding by approximately 70%. The CEC-insensitive [3H]-prazosin binding was inhibited by boldine monophasically (Hill slope = 0.93) with a single pKi value (7.76). 5. These results suggest that whereas the aporphine structure shared by these alkaloids is responsible for their selectively of action for the alpha 1A-adrenoceptor subtype in rat cerebral cortex, defined functional groups, namely the 2-hydroxy function, induces a significant increase in alpha 1A-subtype selectivity and affinity.  相似文献   

3.
A new series of compounds were designed as structural analogues of the alpha(1)-AR ligand RN5 (4), characterized by a tricyclic 5H-pyrimido[5,4-b]indole-(1H,3H)2,4-dione system connected through an alkyl chain to a phenylpiperazine (PP) moiety. These compounds were synthesized and tested in binding assays on human alpha(1A)-AR, alpha(1B)-AR, and alpha(1D)-AR subtypes expressed in HEK293 cells. Several structural modifications were performed on the PP moiety, the tricyclic system, and the connecting alkyl chain. Many of the new molecules showed a preferential affinity for the alpha(1D)-AR subtype. Some compounds, including 39 and 40, displayed substantial alpha(1D)-AR selectivity with respect to alpha(1A)-AR, alpha(1B)-AR, serotonergic 5-HT(1A), 5-HT(1B), 5-HT(2A), and dopaminergic D(1) and D(2) receptors. Two conformationally rigid analogues of 4, useful for studying the architecture of the receptor/ligand complex, were also prepared and tested. A subset of the new compounds was then used to evolve a preliminary pharmacophore model for alpha(1D)-AR antagonists, based on a more generalized model we had developed for alpha(1)-AR antagonists. This new model rationalized the relationships between structural properties and biological data of the pyrimido[5,4-b]indole compounds, as well as other compounds.  相似文献   

4.
The pharmacological profile of (+/-)-domesticine, a novel alpha(1)-adrenoceptor antagonist, was examined in animal tissues and Chinese hamster ovary (CHO) cells expressing cloned human alpha(1)-adrenoceptor subtypes and compared with the properties of BMY-7378 ([8-(2-[4-(2-methoxy-phenyl)-1-piperazinyl]ethyl)-8-azaspirol [4.5]decane-7,9-dione dihydrochloride], the prototypical alpha(1D)-adrenoceptor antagonist. Both (+/-)-domesticine and BMY-7378 were more potent in inhibiting the phenylephrine-induced contraction in rat thoracic aorta than tail artery or spleen. The selectivity of (+/-)-domesticine to inhibit phenylephrine-induced contraction in rat thoracic aorta was 32- and 17-fold higher than that in tail artery and spleen, respectively, while that of BMY-7378 it was 125- and 11-fold, respectively. The functional affinity profiles of these compounds for the alpha(1)-adrenoceptor subtypes in animal tissues were consistent with the respective binding affinity profiles in cloned human alpha(1)-adrenoceptor subtypes. (+/-)-Domesticine displayed a 34- and 9-fold higher selectivity for alpha(1d)-adrenoceptor than for alpha(1a)- and alpha(1b)-adrenoceptor, respectively, while BMY-7378 showed a selectivity for alpha(1d)-adrenoceptor of 102-fold higher than that of alpha(1a)-adrenoceptor and 21-fold higher than that of alpha(1b)-adrenoceptor. Interestingly, in [3H]8-OH-DPAT (8-hidroxy-2-(di-n-propyl-amino)tetraline hidrobromide) binding to 5-HT(1A) receptors of rat cerebral cortex, (+/-)-domesticine showed a 183-fold higher selectivity for alpha(1D)-adrenoceptor relative to 5-HT(1A) receptor, whereas BMY-7378 displayed a similar affinity at this receptor with respect to the alpha(1D)-adrenoceptor (0.89-fold). Both compounds, however, showed a weak affinity for 5-HT(2A)/5-HT(2C) receptors in rat frontal cortex. These results suggest that (+/-)-domesticine is more potent for alpha(1D)-adrenoceptor than for alpha(1A)- or alpha(1B)-adrenoceptor subtypes and it is highly selective compared to 5-HT(1A) and other receptors.  相似文献   

5.
A series of 2-(tetrahydroisoquinolin-2-ylmethyl)- and 2-(isoindolin-2-ylmethyl)imidazolines were prepared and tested for alpha 1- and alpha 2-adrenoceptor affinity with radioligand binding. Several compounds, 5-fluoro-(5h), 5-chloro-(5j), 5,8-dimethoxy- (5r), and 5,8-dimethoxy- (5r),1-methyl- (5s) 2-(tetrahydroisoquinolin-2- ylmethyl)imidazoline, were found to be selective alpha 2-adrenoceptor ligands on the basis of displacement of [3H]yohimbine from rat cerebral cortical membranes. One compound, 2-[(8-chloro tetrahydroisoquinolin-2-yl)methyl]imidazoline (5m), showed a 36-fold difference in affinity for the [3H]idazoxan-labeled alpha 2-adrenoceptor relative to the [3H]yohimbine-labeled site, which may be evidence for alpha 2-adrenoceptor subtypes.  相似文献   

6.
1. RS-15385-197 is the most potent and selective alpha 2-adrenoceptor antagonist available. We have used [3H]-RS-15385-197 to define alpha 2-adrenoceptor subtypes. The binding of [3H]-RS-15385-197 to membranes of rat cerebral cortex, rat neonatal lung and human platelets was reversible, saturable and of high affinity. Saturation experiments indicated that [3H]-RS-15385-197 bound to a single population of sites in all 3 tissues with high affinity (0.08-0.14 nM). The density of sites labelled by [3H]-RS-15385-197 was greater in the cortex (275 fmol mg-1 protein) than in the neonate lung (174 fmol mg-1 protein) and human platelet (170 fmol mg-1 protein). The density of sites labelled with [3H]-RS-15385-197 in the cortex was significantly greater than that labelled with [3H]-yohimbine (121 fmol mg-1 protein). 2. The selective alpha 2-adrenoceptor antagonists, idazoxan, yohimbine, rauwolscine and WY 26703 displaced [3H]-RS-15385-197 binding to rat cerebral cortex in a simple manner with Hill slopes close to unity. The affinities derived for these antagonists against [3H]-RS-15385-197 were similar to the values obtained for the displacement of [3H]-yohimbine indicating the alpha 2-adrenoceptor nature of the binding site. 3. alpha 2A-Adrenoceptor selective compounds, oxymetazoline and BRL 44409, showed high affinity for [3H]-RS-15385-197 binding in the human platelet and lower affinity in the neonate lung, while the alpha 2B-selective compounds, prazosin and imiloxan, showed high affinity for [3H]-RS-15385-197 binding in the neonate lung.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Structure-activity studies were performed on the alpha(1A)-adrenoceptor (AR) selective agonist N-[5-(1H-imidazol-4-yl)-5,6,7,8-tetrahydro-1-naphthalenyl]methanesulfonamide (4). Compounds were evaluated for binding activity at the alpha(1A), alpha(1b), alpha(1d), alpha(2a), and alpha(2B) subtypes. Functional activity in tissues containing the alpha(1A) (rabbit urethra), alpha(1B) (rat spleen), alpha(1D) (rat aorta), and alpha(2A) (rat prostatic vas deferens) was also evaluated. A dog in vivo model simultaneously measuring intraurethral pressure (IUP) and mean arterial pressure (MAP) was used to assess the uroselectivity of the compounds. Many of the compounds that were highly selective in vitro for the alpha(1A)-AR subtype were also more uroselective in vivo for increasing IUP over MAP than the nonselective alpha(1)-agonists phenylpropanolamine (PPA) (1) and ST-1059 (2, the active metabolite of midodrine), supporting the hypothesis that greater alpha(1A) selectivity would reduce cardiovascular side effects. However, the data also support a prominent role of the alpha(1A)-AR subtype in the control of MAP.  相似文献   

8.
As part of an effort to develop a new class of subtype selective nicotine agonists, we have synthesized and tested a group of 12 hydroxylated 2-(2-piperidyl)- and 2-(2-pyrrolidyl)chromans. In rat brain membranes, all 12 compounds displayed poor affinity for [(125)I]-alpha-bunagarotoxin binding sites. In contrast, three compounds, 17c, 24, and 26, displayed moderate to high affinity for [(3)H]cytisine binding sites, while three (17b, 18b,c) and six (17a,d,e and 18a,d,e) compounds showed weak and poor affinity, respectively, for these same sites. In subsequent studies, compounds 17a and 17c were found to stimulate the efflux of (86)Rb(+) from rat cortical synaptosomes, an indication of agonist activity. Further, both 17c and 26 displayed high intrinsic activity in stimulating the release of [(3)H]dopamine from striatal synaptosomes; however, only 17c was effective at stimulating the release of [(3)H]acetylcholine from cortical synaptosomes, suggesting differential selectivity. In cloned human nicotinic acetylcholine receptors (nAChR) expressed in Xenopus oocytes, both 17c and 26 activated alpha7 and alpha3beta2 receptor subtypes in a dose-dependent manner, but 26 was clearly the more potent agonist. Last, neither compound displayed dose-dependent activation of alpha4beta2 nAChRs. We conclude that 2-(2-azacyclic)chromans appear to be a promising new class of nicotine agonists.  相似文献   

9.
Co-dergocrine (Hydergine), composed of four dihydrogenated peptide ergot alkaloids (dihydroergocornine, dihydroergocristine, dihydro-alpha-ergokryptine and dihydro-beta-ergokryptine), has been reported to interact with alpha-adrenoceptors. The effect of the combination and its individual components on alpha-adrenoceptors subtypes in the rat brain was investigated in the present study. All five ergot drugs displaced [3H]rauwolscine, [3H]clonidine and [3H]WB 4101 from specific binding sites in membrane preparations from rat and bovine brain at nanomolar concentrations. In rat cerebral occipital cortex slices, the ergot drugs inhibited 1-noradrenaline-stimulated cyclic AMP formation (alpha 1-adrenoceptor test) and facilitated electrically evoked noradrenaline release (alpha 2-adrenoceptor test) at nanomolar concentrations. The results from the functional tests suggest that the ergot drugs have a slightly higher affinity to alpha 2-adrenoceptors which are antagonised in a competitive manner. The alpha 1-adrenoceptors are antagonised by the ergot drugs in a non-competitive manner. The relative order of potency at both receptor types was similar in that dihydroergocornine, dihydro-alpha-ergokryptine and dihydro-beta-ergokryptine were equipotent, whereas dihydroergocristine was less potent. The effect of the combination of the ergot alkaloids at both alpha-adrenoceptors appears to reflect the summation of the contributions of its components. The differences seen in the functional tests were less pronounced in the binding tests.  相似文献   

10.
11.
1. The pharmacological characteristics of cloned mammalian alpha 1A/D-, alpha 1B- and alpha 1C-adrenoceptor subtypes expressed in rat 1 fibroblasts were determined in comparison to the binding and functional properties of these subtypes in rat tissues. 2. Analysis of [3H]-prazosin binding to membrane homogenates from rat 1 fibroblast cells expressing each of the alpha 1-subtypes indicated high affinity binding to a single population of binding sites. Binding affinities were similar for alpha 1A/D-, alpha 1B- and alpha 1C-subtypes (Kds: 0.13, 0.10 and 0.15 nM respectively) although a higher density of alpha 1B- and alpha 1C-receptors (Bmax: 4068 and 10,323 fmol mg-1 protein respectively) were expressed in comparison to alpha 1A/D (838 fmol mg-1). 3. Displacement of [3H]-prazosin from membranes expressing cloned alpha 1-adrenoceptor subtypes revealed that 5-methyl-urapidil, WB 4101, benoxathian and phentolamine displayed high affinity and selectivity for alpha 1A/D- over alpha 1B-subtypes. These compounds also had high affinity and selectivity for alpha 1C- over alpha 1B-subtypes. 5-Methyl-urapidil showed selectivity for alpha 1C (Ki 0.60 +/- 0.16 nM) over both alpha 1A/D (Ki, 9.8 +/- 2.8 nM) and alpha 1B (Ki 57.2 +/- 12 nM) subtypes. Prazosin and doxazosin were not subtype selective. 4. In comparison to [3H]-prazosin a similar pharmacological profile was obtained with [125I]-HEAT using cloned alpha 1A/D-, alpha 1B- and alpha 1C-adrenoceptors expressed in rat 1 fibroblasts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
1. In the present study, the properties of glaucine (an aporphine structurally related to papaverine) were compared with those of papaverine, diltiazem, nifedipine and prazosin. The work includes functional studies on rat isolated aorta contracted with noradrenaline, caffeine or KCl, and a determination of the affinity of glaucine at calcium channel binding sites of alpha-adrenoceptors, by use of [3H]-(+)-cis-diltiazem, [3H]-nitrendipine and [3H]-prazosin binding to cerebral cortical membranes. The effects of glaucine on the different molecular forms of cyclic nucleotide phosphodiesterases (PDE) isolated from bovine aorta were also determined. 2. Contraction evoked by noradrenaline (1 microM) or depolarizing solution (60 mM KCl) were inhibited in a concentration-dependent manner by all the compounds tested. As expected, prazosin showed a greater selectivity of action on NA-induced contraction, whereas nifedipine and diltiazem appeared more potent on KCl-induced contraction. Glaucine had a greater potency on the contraction elicited by noradrenaline whereas papaverine acted non specifically. 3. In Ca(2+)-free solution, prazosin (0.1 microM) and glaucine (0.1 mM) inhibited the contraction evoked by NA; diltiazem (0.1 mM) diminished this contraction whereas nifedipine (1 microM) had no effect. Preincubation of tissues with glaucine, diltiazem, nifedipine and prazosin did not modify the contractile response induced by caffeine. In contrast, papaverine (0.1 mM) significantly inhibited the contractions evoked by NA or caffeine in Ca(2+)-free medium. 4. Glaucine and papaverine show affinity at the [3H]-prazosin binding site and at the benzothiazepine binding site of the Ca(2+)-channel receptor complex, but have no effect at the dihydropyridine binding site in rat cerebral cortex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
一种新的α1A肾上腺素受体选择性拮抗剂—Sertindole   总被引:2,自引:0,他引:2  
本工作分别在稳定表达α1A1B和α1D肾上腺素受体(adrenoceptor,AR)的人胚胎肾脏细胞( human embryonic kidney 293,HEK 293)和大鼠离体血管上,用放射配体结合实验和离体血管收缩功能实验方法以确定sertindole对α1-AR亚型的选择性拮抗作用。结果显示sertindole与克隆α1A-AR的亲和性分别是与克隆α1B-AR和克隆α1D-AR的69倍和132倍。Sertindole拮抗去甲肾上腺素引起的主动脉和肾动脉收缩反应的pA2值分别与其对α1D和α1A亚型的pKI值相符。分别稳定表达3种亚型受体的HEK293细胞膜标本经与sertindole预温育30min后,受体与125IBE2254结合的Bmax值显著降低,KD值无显著变化;而在 sertindole 存在条件下,α1-AR3种亚型与125IBE2254 结合的KD值显著增大,但Bmax值无显著改变。上述结果表明sertindole为不可逆性竞争性α1-AR拮抗剂,并有α1A亚型选择性。  相似文献   

14.
AIM:To investigate the characterization of cAMP response mediated by α1-adrenoceptor (α1-AR) subtypes in HEK293 cells. METHODS:(1) Full-length cDNA encoding three α1-AR subtypes were transfected into HEK293 cells by the calcium phosphate precipitation method, respectively. (2) The densities of α1-AR subtypes expressed in HEK293 cells were measured by radioligand binding assay. (3)cAMP accumulation was measured by [^3H] adenine prelabeling method. RESULTS: (1)Activation of each of three subtypes resulted in an increase of cAMP accumulation in HEK293 cells in a dose-dependent manner, which was inhibited by selective α1-AR antagonist prazosin. (2) Comparing the pharmacological property, the maximal responses of α1A-AR to agonists were the most potent, while the sensitivity of α1-AR subtypes to norepinephrine(NE) was the highest. CONCLUSION: Each of three α1-AR subtypes can mediate cAMP accumulation in HEK293 cell line, and there are differences in pharmacological property.  相似文献   

15.
We have characterized the pharmacological antagonism, i.e., neutral antagonism or inverse agonism, displayed by a number of alpha-blockers at two alpha1-adrenergic receptor (AR) subtypes, alpha(1a)- and alpha(1b)-AR. Constitutively activating mutations were introduced into the alpha(1a)-AR at the position homologous to A293 of the alpha(1b)-AR where activating mutations were previously described. Twenty-four alpha-blockers differing in their chemical structures were initially tested for their effect on the agonist-independent inositol phosphate response mediated by the constitutively active A271E and A293E mutants expressed in COS-7 cells. A selected number of drugs also were tested for their effect on the small, but measurable spontaneous activity of the wild-type alpha(1a)- and alpha(1b)-AR expressed in COS-7 cells. The results of our study demonstrate that a large number of structurally different alpha-blockers display profound negative efficacy at both the alpha(1a)- and alpha(1b)-AR subtypes. For other drugs, the negative efficacy varied at the different constitutively active mutants. The most striking difference concerns a group of N-arylpiperazines, including 8-[2-[4-(5-chloro-2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro [4, 5] decane-7,9-dione (REC 15/3039), REC 15/2739, and REC 15/3011, which are inverse agonists with profound negative efficacy at the wild-type alpha(1b)-AR, but not at the alpha(1a)-AR.  相似文献   

16.
BACKGROUND AND PURPOSE: In addition to alpha1A, alpha1B and alpha1D-adrenoceptors (ARs), putative alpha1L-ARs with a low affinity for prazosin have been proposed. The purpose of the present study was to identify the alpha1A-AR and clarify its pharmacological profile using a radioligand binding assay. EXPERIMENTAL APPROACH: Binding experiments with [3H]-silodosin and [3H]-prazosin were performed in intact tissue segments and crude membrane preparations of rat cerebral cortex. Intact tissue binding assays were also conducted in rat tail artery. KEY RESULTS: [3H]-silodosin at subnanomolar concentrations specifically bound to intact tissue segments and membrane preparations of rat cerebral cortex at the same density (approximately 150 fmol mg(-1) total tissue protein). The binding sites in intact segments consisted of alpha1A and alpha1L-ARs that had different affinities for prazosin, while the binding sites in membranes showed an alpha1A-AR-like profile having single high affinity for prazosin. [3H]-prazosin also bound at subnanomolar concentrations to alpha1A and alpha1B-ARs but not alpha1L-ARs in cerebral cortex; the binding densities being approximately 200 and 290 fmol mg(-1) protein in the segments and the membranes, respectively. In the segments of tail artery, [3H]-silodosin only recognized alpha1A-ARs, whereas [3H]-prazosin bound to alpha1A and alpha1B-ARs. CONCLUSIONS AND IMPLICATIONS: The present study clearly reveals the presence of alpha1L-ARs as a pharmacologically distinct entity from alpha1A and alpha1B-ARs in intact tissue segments of rat cerebral cortex but not tail artery. However, the alpha1L-ARs disappeared after tissue homogenization, suggesting their decomposition and/or their pharmacological profile changes to that of alpha1A-ARs.  相似文献   

17.
alpha(2)-adrenoceptor agonists like clonidine or dexmedetomidine increase the sedative and analgesic actions of opioids. Furthermore opioids like meperidine show potent anti-shivering effects like alpha(2)-adrenoceptor agonists. The underlying molecular mechanisms of these effects are still poorly defined. The authors therefore studied the ability of four different opioids (meperidine, remifentanil, sufentanil and tramadol) to interact with different alpha(2)-adrenoceptor subtypes in mice lacking individual alpha(2A)-, alpha(2B)- or alpha(2C)-adrenoceptors (alpha(2)-adrenoceptor knock out (alpha(2)-AR KO) mice)). The interaction of opioids with alpha(2)-adrenoceptors was investigated by quantitative receptor autoradiography in brain slices of alpha(2A)-, alpha(2B)- or alpha(2C)-adrenoceptor deficient mice. Displacement of the radiolabelled alpha(2)-adrenoceptor agonist [(125)I]-paraiodoclonidine ([(125)I]-PIC) from alpha(2)-adrenoceptors in different brain regions by increasing opioid concentrations was measured, and binding affinity of the analysed opioids to alpha(2)-adrenoceptor subtypes in different brain regions was quantified. Meperidine, remifentanil and tramadol but not sufentanil provoked dose dependent displacement of specifically bound [(125)I]-PIC from all alpha(2)-adrenoceptor subtypes in cortex, cerebellum, medulla oblongata, thalamus, hippocampus and pons. Required concentrations of meperidine and remifentanil for [(125)I]-PIC displacement from alpha(2B)- and alpha(2C)-adrenoceptors were lower than from alpha(2A)-adrenoceptors, indicating higher binding affinity for alpha(2B)- and alpha(2C)-adrenoceptors. In contrast, [(125)I]-PIC displacement by tramadol indicated higher binding affinity to alpha(2A)-adrenoceptors than to alpha(2B)- and alpha(2C)-adrenoceptors. Our results indicate that meperidine, remifentanil and tramadol interact with alpha(2)-adrenoceptors in mouse brain showing different affinity for alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptors. In contrast, the micro-agonist sufentanil did not show any alpha(2)-adrenoceptor interaction. These effects may have an impact on the pharmacologic actions of these opioids.  相似文献   

18.
alpha 2-Adrenergic receptor (alpha 2-AR) responses are mediated by the pertussis toxin-sensitive guanine nucleotide-binding protein (G protein) Gi. Because all three known Gi subtypes are inactivated by pertussis toxin, it has been difficult to determine which of the subtypes are involved in alpha 2-AR responses. In order to investigate alpha 2-AR/Gi coupling, we performed binding and adenylyl cyclase experiments in membranes from CHO-K1 cells transfected with the human alpha 2A-AR. Antisera directed against the carboxyl-terminal region of the Gi1/Gi2 or the Gi3 proteins were used to determine which subtypes were important for high affinity agonist binding and inhibition of adenylyl cyclase. The CHO-K1 cell membranes exhibited immunoreactivity at an apparent molecular mass of 40-41 kDa for both Gi1/Gi2 and Gi3 antisera. Western blot analysis, using purified bovine brain G proteins for comparison, demonstrated that the transfected CHO-K1 cells possess Gi2 and Gi3. High affinity guanosine 5'-(beta,gamma-imido) triphosphate-sensitive binding of the alpha 2-AR agonists [3H]bromoxidine and p-[125I]iodoclonidine ([125I]PIC) was reduced by 30-50% by either the Gi1/Gi2 or Gi3 antiserum. Bromoxidine (1 microM) and PIC (1 microM) inhibited membrane adenylyl cyclase by 34 and 27%, respectively. Gi3 antiserum reduced the inhibition by 26% and 67% for bromoxidine and PIC, respectively. The Gi1/Gi2 antiserum reduced the inhibition by 56% and 63% for bromoxidine and PIC, respectively. Furthermore, when both antisera were used together, there was a complete reversal of alpha 2-AR-mediated inhibition. These observations provide evidence of alpha 2A-AR coupling to at least two subtypes of Gi proteins and the first evidence of functional involvement of Gi3 in the inhibition of adenylyl cyclase.  相似文献   

19.
1. To elucidate a possible role of species differences in the classification of alpha 1-adrenoceptor subtypes, we have characterized the alpha 1-adrenoceptors in guinea-pig spleen, kidney and cerebral cortex and in bovine cerebral cortex using concentration-dependent alkylation by chloroethylclonidine and competitive binding with 5-methlurapidil, methoxamine, (+)-niguldipine, noradrenaline, oxymetazoline, phentolamine, SDZ NVI-085, tamsulosin and (+)-tamsulosin. Rat liver alpha 1B-adrenoceptors were studied for comparison. Chloroethylclonidine-sensitivity and (+)-niguldipine affinity were also compared at cloned rat and bovine alpha 1a-adrenoceptors. 2. Chloroethylclonidine concentration-dependently inactivated alpha 1-adrenoceptors in all five tissues. While chloroethylclonidine inactivated almost all alpha 1-adrenoceptors in rat liver and guinea-pig kidney and brain, 20-30% of alpha 1-adrenoceptors in guinea-pig spleen and bovine brain were resistant to alkylation by 10 microM chloroethylclonidine. With regard to concentration-dependency guinea-pig kidney and brain were approximately 10 fold less sensitive than guinea-pig spleen or rat liver. 3. In rat liver, all drugs tested competed for [3H]-prazosin binding with steep and monophasic curves. Drug affinities were relatively low and resembled most closely those of cloned rat alpha 1b-adrenoceptors. 4. In guinea-pig spleen, all drugs tested competed for [3H]-prazosin binding with steep and monophasic curves. Drug affinities were relatively low and resembled most closely those of cloned rat alpha 1b-adrenoceptors. 5. In guinea-pig kidney most drugs tested competed for [3H]-prazosin binding with steep and monophasic curves and had relatively low drug affinities close to those of cloned rat alpha 1b- and alpha 1d-adrenoceptors. However, noradrenaline and tamsulosin had consistently biphasic competition curves recognizing 36-39% high and 61-64% low affinity sites. 6. In guinea-pig cerebral cortex, all drugs tested competed for [3H]-prazosin binding with shallow and biphasic curves. While most drugs recognized approximately 25% high affinity sites, tamsulosin and noradrenaline recognized approximately 50% high affinity sites. Drug affinities at the high and low affinity sites except those for tamsulosin and noradrenaline resembled those at cloned alpha 1a- and alpha 1b-adrenoceptors, respectively. 7. In bovine cerebral cortex all drugs tested except for noradrenaline competed for [3H]-prazosin binding with shallow and biphasic curves. All drugs recognized approximately 70% high affinity sites. Drug affinities at the high and low affinity sites resembled those at cloned alpha 1a- and alpha 1b-adrenoceptors, respectively. Noradrenaline competition curves in bovine cerebral cortex were steep and monophasic. 8. When cloned rat and bovine alpha 1a-adrenoceptors transiently expressed in COS cells were studied in a direct side-by-side comparison, both species homologues had similar chloroethylclonidine-sensitivity and (+)-niguldipine affinity. 9. We conclude that properties of bovine alpha 1A- and alpha 1B-adrenoceptors are very similar to those of other species such as rat. alpha 1-Adrenoceptor subtypes in guinea-pigs resemble alpha 1A- and alpha 1B-adrenoceptors in other species but chloroethylclonidine sensitivity and competition binding profiles of noradrenaline and tamsulosin are not compatible with previously established alpha 1-adrenoceptor subtype classification.  相似文献   

20.
The present paper concerns the influence of conformational parameters on the recognition by rat 5-HT1A receptors of derivatives 4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]-1-(2-pyridinyl)piperazine (1a) and 3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-N-[2-(2-pyridyloxy)ethyl]propanamine (3b), two highly potent and selective 5-HT1A receptor ligands. Fifteen corresponding flexible and rigid analogues were prepared following several synthetic routes and were tested in binding assays with radioligands at 5-HT1A, D2, and alpha1 receptors from rat brain membranes. Among the new derivatives emerged trans-4-[4-(3-methoxyphenyl)cyclohexyl]-1-(2-pyridinyl)piperazine (trans-8a) and trans-N-[4-(3-methoxyphenyl)cyclohexyl]-2-(2-pyridyloxy)ethylamine (trans-8b). These compounds can be considered as conformationally constrained analogues of compounds 1a and 3a, respectively. In fact, compounds trans-8a and trans-8b showed a marked enhancement in 5-HT1A receptor affinity when compared to the corresponding cis isomers. Because compound trans-8a was a potent and selective 5-HT1A ligand (K(i), nM: 5-HT1A = 0.028, D2 = 2194, alpha1 = 767), it was chosen as a lead to prepare other analogues that were tested at 5-HT1A, D2, and alpha1 receptors from rat brain membranes, showing high affinity at the 5-HT1A and selectivity vs D2 and alpha1 receptors. Selected compounds were tested for their affinity at the human cloned 5-HT1A, alpha1a, alpha1b, alpha1d receptor subtypes. They were also submitted to the [35S]GTPgammaS binding assay stimulating the 5-HT1A receptor-mediated G-protein activation, therefore behaving as full or as partial agonists. Finally, the ability of iv administration of trans-8a to induce fore-paw treading in rats was evaluated in comparison with 8-OH-DPAT. Although the affinity (K(i)) and in vitro activity (pD'2) of trans-8a at the 5-HT1A receptor were higher than those of 8-OH-DPAT, the compound was less potent than the reference standard in inducing the symptom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号