首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neuropeptide content of neurons of the nucleus of the solitary tract (NTS), which have local and commissural projections to the dorsal motor nucleus of the vagus (DMNX) and to NTS, were demonstrated in the pigeon (Columba livia) by using a combined fluorescein-bead retrograde-transport-immunofluorescence technique. The specific peptides studied were bombesin, cholecystokinin, enkephalin, galanin, neuropeptide Y, neurotensin, and substance P. Perikarya immunoreactive for bombesin were located in the Medial tier subnuclei of NTS and the caudal NTS. Most galanin- and substance P-immunoreactive cells were found in subnucleus medialis ventralis. Cells immunoreactive for neuropeptide Y were found in the medial tier of NTS and in the lateral tier, especially in subnucleus lateralis dorsalis intermedius. The majority of enkephalin- and neurotensin-immunoreactive cells were found centrally in subnuclei medialis dorsalis and medialis intermedius. Cells immunoreactive for cholecystokinin were located in subnuclei laterolis dorsalis pars anterior, medialis superficialis, and the caudal NTS. Based on the presence of retrogradely labeled cells, numerous neurons of the medial tier of NTS, but extremely few lateral tier NTS neurons, had projections to the ipsilateral and contralateral DMNX and NTS. The number of retrogradely labeled NTS cells was always greater ipsilateral than contralaterally. The percentages of peptide-immunoreactive NTS cells that projected to the ipsilateral and contralateral DMNX were in the ranges of 29–61% and 10–48%, respectively. The percentages of peptide-immunoreactive NTS cells that projected to the contralateral NTS ranged from 13 to 60%. Peptide-immunoreactive NTS cells that have local and commissural projections to DMNX and NTS may act as interneurons in vagovagal reflex pathways and in the integration of visceral sensory and forebrain input to NTS and DMNX. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The distribution and ascending projections to the hypothalamic paraventricular nucleus of phenylethanolamine N-methyltransferase (PNMT)-immunoreactive perikaria were studied in adult pigeons using a combination of retrograde transport of Fluorogold injected into the paraventricular nucleus, and double immunohistochemical procedures for PNMT, tyrosine hydroxylase and neuropeptide Y. PNMT-immunoreactive cell bodies were found in the subtrigeminal reticular nucleus of the ventrolateral medulla and in the nucleus of the solitary tract, mainly in the subnuclei: medialis superficialis, pars posterior, and medialis ventralis, pars posterior. PNMT-immunoreactive perikaria were also tyrosine hydroxylase immunoreactive, and are located within the rostral tyrosine hydroxylase immunoreactive cell groups of these areas. No perikaria double-labeled for neuropeptide Y and PNMT were found. Retrograde labeled cell bodies were observed in the subtrigeminal reticular nucleus and in the nucleus of the solitary tract. PNMT-immunoreactive retrogradely labeled cells were mainly observed in the subtrigeminal reticular nucleus. These data suggest the presence in the pigeon of medullary adrenergic cell groups partially comparable to mammalian C1 and C2 groups. Comparison of these results with data previously obtained in amphibians and reptiles suggests that the presence of a hypothalamically-projecting C1-like group might be a plesiomorphic medullary attribute in amniotes, whereas the variable presence of C2 and C3-like groups, as well as the content of NPY in the putative adrenergic perikaria, seem to be species-specific.  相似文献   

3.
We examined the afferent projections to the subnuclei of the interpeduncular nucleus (IPN) in the rat by means of retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). We observed locations of retrogradely labeled cells following injections of WGA-HRP into the IPN, and distributions of anterogradely labeled fibers and terminals within the IPN following injections into the areas that contain cells of origin of afferents. Results of the retrograde and anterograde experiments have clarified the detailed organization of the IPN afferents. A part of the nucleus incertus, located dorsomedial to the dorsal tegmental nucleus, projects to the contralateral half of the rostral subnucleus of the IPN; the pars caudalis of the dorsal tegmental nucleus projects sparsely to the rostral lateral, dorsal lateral, lateral, caudal, and apical subnuclei predominantly contralaterally; the laterodorsal tegmental nucleus, to most of the subnuclei predominantly contralaterally; the ventromedial central gray rostral to the dorsal tegmental nucleus and lateral to the dorsal raphe nucleus projects to the rostral lateral and dorsal lateral subnuclei predominantly contralaterally; the median raphe nucleus, substantially to all subnuclei; the medial habenular nucleus, in a topographic manner, to the rostral, central, and intermediate subnuclei, to the rostral lateral and lateral subnuclei predominantly ipsilaterally, and to the dorsal lateral subnucleus predominantly contralaterally; the supramammillary nucleus and areas around the origin of the mammillothalamic tract and near the third ventricle project sparsely to the ventral part of the rostral subnucleus and to the central, lateral, caudal and apical subnuclei; the nucleus of the diagonal band, sparsely to the rostral, central, dorsal lateral, caudal, and apical subnuclei. These differential projections of the afferents to the subnuclei of the IPN may reflect its complex functions within the limbic midbrain circuit.  相似文献   

4.
The caudal human nucleus of the solitary tract (NTS) is composed of 10 subnuclei. The commissural subnucleus spans the midline below the obex, merging rostrally into the medial subnucleus. The other subnuclei of the NTS are best seen just above the obex. The ventrolateral subnucleus contains large, darkly staining neurons. The interstitial subnucleus consists of neurons lying in groups intermingled with the fibers of the tract. The lateral subnucleus is small at caudal levels, merging with the interstitial subnucleus more rostrally. The dorsal subnucleus contains large melanotic neurons and encircles the substantia gelatinosus, a round, cell-poor subnucleus. The ventromedial subnucleus curls around the medial and ventral edge of the tract. The intermediate subnucleus, laying ventrolateral to the dorsal motor nucleus of the vagus, also contains melanotic neurons. The subpostremal subnucleus separates the area postrema from the NTS proper. The medial subnucleus is the largest subnucleus in the caudal NTS, containing medium-sized fusiform neurons. Adoption of a uniform cytoarchitectural map of the caudal NTS will permit more accurate comparisons between human and nonhuman studies.  相似文献   

5.
The dorsal vagal complex is composed of the nucleus tractus solitarii (Nts) and the dorsal motor nucleus of the vagus (DMN X). In the pigeon, these nuclei are composed of cytoarchitectonically well-defined subnuclear groups, which have connections that are partially segregated to specific organs (Katz and Karten: J. Comp. Neurol. 218:42-73, '83b, J. Comp. Neurol. 242:397-414, '85). The present study sought to determine whether forebrain afferents to Nts-DMN X are differentially distributed to specific subnuclei and thereby modulate the functions of specific organs. Forebrain afferents to the dorsal vagal complex were determined by retrograde tracing techniques. Labeled perikarya were found in the bed nucleus of the stria terminalis (BNST), ventral paleostriatum, and stratum cellulare externum (SCE) of the lateral hypothalamus, and in the medial hypothalamus, nucleus periventricularis magnocellularis (PVM), which is the avian homologue to a portion of the mammalian paraventricular nucleus. The pattern of axonal distribution to Nts-DMN X subnuclei from the BNST-ventral paleostriatum and SCE were investigated by anterograde tracing techniques. These experiments revealed axonal projections distributed to specific Nts-DMN X subnuclei. However, there is a high degree of overlap of the axonal projections to Nts-DMN X subnuclei from BNST-ventral paleostriatum and SCE, as well as from PVM (Berk and Finkelstein: J. Comp. Neurol. 220:127-136, '83). Labeled fibers from BNST-ventral paleostriatum and SCE project heavily to Nts subnuclei medialis superficialis, lateralis dorsalis, and medialis ventralis and to DMN X subnucleus ventralis parvicellularis. Fewer labeled fibers were found in Nts subnucleus medialis intermedius and extremely sparse labeling was found in Nts subnucleus medialis dorsalis. The Nts and DMN X subnuclei that receive forebrain projections also have peripheral connections with the aortic nerve, crop, esophagus, glandular stomach, and caudal abdominal organs. Thus, the forebrain could modulate the functions of these segments of the cardiovascular and digestive systems.  相似文献   

6.
The cells of origin for the hypoglossal afferent nerves of the cat and their central projections were examined using the transganglionic and somatopetal transport of horseradish peroxidase (HRP). Primary afferent neurons from the hypoglossal nerve were located in the trigeminal ganglion, the superior ganglion of glossopharyngeal and vagal nerves, and the first 3 cervical ganglia. The central projections of hypoglossal afferents were organized in a selective manner according to their cells of origin. The primary afferent nerves originating from the trigeminal ganglion terminated in the subnucleus dorsalis (Vpd) of the principal nucleus (Vp), lateral margin of the caudal pars interpolaris (Vi), interstitial nucleus and laminae I and V of the pars caudalis (Vc). The projection of the afferent nerves for glossopharyngeal and vagal origins are similarly organized in the Vi and Vc to those of trigeminal origin, but differed in that they terminated ipsilaterally in the caudal half of the solitary nucleus and bilaterally in the commissural nucleus. The primary afferents arising from the first 3 cervical ganglia terminated in laminae I and V of the corresponding cervical cord segments.  相似文献   

7.
Bombesin is a peptide neurotransmitter/neuromodulator with important autonomic and behavioral effects that are mediated, at least in part, by bombesin-containing neurons and nerve terminals in the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus (DMV). The distribution of bombesin-like immunoreactive nerve terminals/fibers and cell bodies in relation to a viscerotopically relevant subnuclear map of this region was studied by using an immunoperoxidase technique. In the rat, bombesin fiber/terminal staining was heavy in an area that included the medial subnucleus of the NTS and the DMV over their full rostral-caudal extent. Distinctly void of staining were the gelatinous, central, and rostral commissural subnuclei and the periventricular area of the NTS, regions to which gastric, esophageal, cecal, and colonic primary afferents preferentially project. The caudal commissural and dorsal subnuclei had light bombesin fiber/terminal staining, as did the intermediate, interstitial, ventral, and ventrolateral subnuclei. With colchicine pretreatment, numerous cell bodies were stained in the medial and dorsal subnuclei, with fewer neurons in the caudal commissural, intermediate, interstitial, ventral, and ventrolateral subnuclei. Bombesin-like immunoreactive neurons were found in numerous other areas of the brain, including the ventrolateral medulla, the parabrachial nucleus, and the medial geniculate body. In the human NTS/DMV complex, the distribution of bombesin fiber/terminal staining was very similar to the rat. In addition, occasional bombesin-like immunoreactive neurons were labeled in a number of subnuclei, with clusters of neurons labeled in the dorsal and ventrolateral subnuclei. Double immunofluorescence studies in rat demonstrated that bombesin colocalizes with tyrosine hydroxylase in neurons in the dorsal subnucleus of the NTS. Bombesin does not colocalize with tyrosine hydroxylase in any other location in the brain. In conclusion, the distribution of bombesin in the NTS adheres to a viscerotopically relevant map. This is the anatomical substrate for the effects of bombesin on gastrointestinal function and satiety and its likely role in concluding a meal. The anatomic similarities between human and rat suggest that bombesin has similar functions in the visceral neuraxis of these two species. Bombesin coexists with catecholamines in neurons in the dorsal subnucleus, which likely mediate, in part, the cardiovascular effects of bombesin. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Anterior thalamic afferents from the mamillary body and the limbic cortex were studied by using single and double retrograde transport methods in the rat. The medial mamillary nucleus was divided on the basis of the cytoarchitecture into four subnuclei: the pars medialis centralis, pars medialis dorsalis, pars lateralis, and pars basalis. Extensive connections were seen between each of these subdivisions of the mamillary body and the anterior thalamic nuclei, topographically organized so that the anteromedial thalamic nucleus receives projections exclusively from the pars medialis centralis, while the anteroventral thalamic nucleus receives projections from the pars medialis dorsalis and pars lateralis. Nuclei in the dorsal half of these two mamillary subdivisions project predominantly to the medial half of the anteroventral thalamic nucleus, and those in the ventral half to the lateral half of the nucleus. The pars basalis was found to have numerous projections to the magnocellular part of the anteroventral nucleus. All limbic cortical areas send projections bilaterally to all regions of the anteromedial nucleus as well as to the parvicellular parts of the anteroventral thalamic nucleus, while the anterodorsal nucleus receives ipsilateral projections originating exclusively from the preagranular, anterior limbic, and cingular regions. The magnocellular part of the anteroventral nucleus, however, receives only ipsilateral projections from all of the limbic cortex. Some neurons in the infralimbic region also project bilaterally to all of the anterior thalamic nuclei except the anterodorsal nucleus. All of these cortical projections to the anterior thalamus originate in layers V and VI of the limbic cortex.  相似文献   

9.
The central projections of the ethmoidal, glossopharyngeal, and superior laryngeal nerves were determined in the muskrat by use of the transganglionic transport of a mixture of horseradish peroxidase (HRP) and wheat germ agglutinin (WGA)-HRP. The ethmoidal nerve projected to discrete areas in all subdivisions of the ipsilateral trigeminal sensory complex. Reaction product was focused in ventromedial portions of the principal nucleus, subnucleus oralis, and subnucleus interpolaris. The subnucleus oralis also contained sparse reaction product in its dorsomedial part. Projections were dense to ventrolateral parts of laminae I and II of the rostral medullary dorsal horn, with sparser projections to lamina V. Label in laminae I and V extended into the cervical dorsal horn. A few labeled fibers were followed to the contralateral dorsal horn. The interstitial neuropil of the ventral paratrigeminal nucleus was densely labeled. Extratrigeminal primary afferent projections in ethmoidal nerve cases involved the K?lliker-Fuse nucleus and ventrolateral part of the parabrachial nucleus, the reticular formation surrounding the rostral ambiguous complex, and the dorsal reticular formation of the closed medulla. Retrograde labeling in the brain was observed in only the mesencephalic trigeminal nucleus in these cases. The cervical trunk of the glossopharyngeal and superior laryngeal nerves also projected to the trigeminal sensory complex, but almost exclusively to its caudal parts. These nerves terminated in the dorsal and ventral paratrigeminal nuclei as well as lamina I of the medullary and cervical dorsal horns. Lamina V received sparse projections. The glossopharyngeal and superior laryngeal nerves projected to the ipsilateral solitary complex at all levels extending from the caudal facial nucleus to the cervical spinal cord. At the level of the obex, these nerves projected densely to ipsilateral areas ventral and ventromedial to the solitary tract. Additional ipsilateral projections were observed along the dorsolateral border of the solitary complex. Near the obex and caudally, the commissural area was labeled bilaterally. Labeled fibers from the solitary tract projected into the caudal reticular formation bilaterally, especially when the cervical trunk of the glossopharyngeal nerve received tracer. Labeled fibers descending further in the solitary tract gradually shifted toward the base of the cervical dorsal horn. The labeled fibers left the solitary tract and entered the spinal trigeminal tract at these levels. Retrogradely labeled cells were observed in the ambiguous complex, especially rostrally, and in the rostral dorsal vagal nucleus after application of HRP and WGA-HRP to either the glossopharyngeal or superior laryngeal nerves. In glossopharyngeal nerve cases, retrogradely labeled neurons also were seen in the inferior salivatory nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The aim of the present study was to determine the brainstem afferents and the location of neurons giving rise to monoaminergic, cholinergic, and peptidergic inputs to the cat trigeminal motor nucleus (TMN). This was done in colchicine treated animals by using a very sensitive double immunostaining technique with unconjugated cholera-toxin B subunit (CT) as a retrograde tracer. After CT injections in the TMN, retrogradely labeled neurons were most frequently seen bilaterally in the nuclei reticularis parvicellularis and dorsalis of the medulla oblongata, the alaminar spinal trigeminal nucleus (magnocellular division), and the adjacent pontine juxtatrigeminal region and in the ipsilateral mesencephalic trigeminal nucleus. We further observed that inputs to the TMN arise from the medial medullary reticular formation (the nuclei retricularis magnocellularis and gigantocellularis), the principal bilateral sensory trigeminal nucleus, and the dorsolateral pontine tegmentum. In addition, the present study demonstrated that the TMN received 1) serotonergic afferents, mainly from the nuclei raphe obscurus, pallidus, and dorsalis; 2) catecholaminergic afferent projections originating exclusively in the dorsolateral pontine tegmentum, including the K?lliker-Fuse, parabrachialis lateralis, and locus subcoeruleus nuclei; further, that 3) methionin-enkephalin-like inputs were located principally in the medial medullary reticular formation (nuclei reticularis magnocellularis and gigantocellularis and nucleus paragigantocellularis lateralis), in the caudal raphe nuclei (Rpa and Rob) and the dorsolateral pontine tegmentum; 4) substance P-like immunoreactive neurons projecting to the TMN were present in the caudal raphe and Edinger-Westphal nuclei; and 5) cholinergic afferents originated in the whole extent of the nuclei reticularis parvicellularis and dorsalis including an area located ventral to the nucleus of the solitary tract at the level of the obex. In the light of these anatomical data, the present report discusses the possible physiological involvement of TMN inputs in the generation of the trigeminal jaw-closer muscular atonia occurring during the periods of paradoxical sleep in the cat.  相似文献   

11.
Recent studies have demonstrated that a large number of spinal cord neurons convey somatosensory and visceral nociceptive information directly from cervical, lumbar, and sacral spinal cord segments to the hypothalamus. Because sensory information from head and orofacial structures is processed by all subnuclei of the trigeminal brainstem nuclear complex (TBNC) we hypothesized that all of them contain neurons that project directly to the hypothalamus. In the present study, we used the retrograde tracer Fluoro-Gold to examine this hypothesis. Fluoro-Gold injections that filled most of the hypothalamus on one side labeled approximately 1,000 neurons (best case = 1,048, mean = 718 ± 240) bilaterally (70% contralateral) within all trigeminal subnuclei and C1–2. Of these neurons, 86% were distributed caudal to the obex (22% in C2, 22% in C1, 23% in subnucleus caudalis, and 18% in the transition zone between subnuclei caudalis and interpolaris), and 14% rostral to the obex (6% in subnucleus interpolaris, 4% in subnucleus oralis, and 4% in subnucleus principalis). Caudal to the obex, most labeled neurons were found in laminae I–II and V and the paratrigeminal nucleus, and fewer neurons in laminae III–IV and X. The distribution of retrogradely labeled neurons in TBNC gray matter areas that receive monosynaptic input from trigeminal primary afferent fibers innervating extracranial orofacial structures (such as the cornea, nose, tongue, teeth, lips, vibrissae, and skin) and intracranial structures (such as the meninges and cerebral blood vessels) suggests that sensory and nociceptive information originating in these tissues could be transferred to the hypothalamus directly by this pathway. J. Comp. Neurol. 400:125–144, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
The chemical nature of the cells of the nucleus of the solitary tract (NTS) that project to the parabrachial nucleus (PB) was investigated in the pigeon by the use of fluorescent bead retrograde tracer and immunofluorescence for the detection of substance P (SP), leucineenkephalin (LENK), cholecystokinin (CCK), neurotensin (NT), somatostatin (SS), and tyrosine hydroxylase (TH). Cells immunoreactive for CCK were located in subnuclei lateralis dorsalis pars anterior (LDa) and medialis superficialis pars posterior, and caudal NTS (cNTS); 22–26.5% of these cells were double-labeled bilaterally. Immunoreactive SP cells were found in ventral NTS subnuclei; 24–25% of these cells were double-labeled bilaterally. Cells immunoreactive for LENK and NT were concentrated in the anterior NTS; 5.5–7.5% of the LENK cells were double-labeled bilaterally, while 11% (ipsilateral) and 21% (contralateral) of the NT immunoreactive cells were double-labeled. Many SS immunoreactive cells were found in peripherally located subnuclei; 5.5–6.5% of these cells were double-labeled bilaterally. Catecholamine cells were distributed in LDa, peripheral subnuclei, and cNTS; 23% of these cells were double-labeled ipsilaterally and 8.5% contralaterally. A two-color double-labeling immunofluorescence technique revealed many cells immunoreactive for both NT and LENK, only a rare cell immunoreactive for both SS and SP, and no cells immunoreactive for both TH and SP. Cells immunoreactive for SP, CCK, NT, and TH are major contributors to NTS projections to PB. The confinement of these substances to specific NTS subnuclei, which receive visceral sensory information from specific organs, may contribute to the chemical encoding of ascending visceral information. 1993 Wiley-Liss, Inc.  相似文献   

13.
After injection of WGA-HRP-colloidal gold in the rat paraventricular nucleus (PVN), retrogradely labeled neurons were found mainly in the medial and commissural subnuclei of the nucleus tractus solitarius (NTS) around 0.5 mm caudal to the obex which is closely related to cardiovascular function. Electron microscopic immunohistochemistry in these areas demonstrated synaptic contacts between retrogradely labeled neurons and substance P-immunoreactive terminals. Innervation of NTS-PVN projection systems by substance P is suggested.  相似文献   

14.
Previous studies have focused on the role of the central nucleus of the amygdala (CeA) in cardiovascular and other amygdaloid functions. The combined retrograde tracing/immunohistochemical method was used to test for the presence of enkephalin, neurotensin, neuropeptide Y, and catecholamine neurons within the nucleus of the solitary tract that send efferents to the CeA. After injections of retrograde tracer into the CeA, retrogradely labeled neurons were observed within the caudal, medial nucleus of the solitary tract. Most CeA-projecting neurons were located ipsilaterally within the medial nucleus of the solitary tract at the level of the area postrema. Retrogradely labeled enkephalin- and neurotensin-immunoreactive neurons were found within the medial nucleus of the solitary tract at this level, while retrogradely labeled neuropeptide Y-immunoreactive neurons were found within the medial nucleus of the solitary tract rostral to the area postrema. About 60-74% of CeA-projecting cells were also immunoreactive for tyrosine hydroxylase. Approximately 9% of retrogradely neurons were phenylethanolamine-N-methyltransferase immunoreactive. The results provide evidence that within the nucleus of the solitary tract, peptidergic CeA-projecting neurons have a topographic distribution. In addition, noradrenergic neurons within the A2 group, rather than adrenergic neurons of the C2 group, provide the bulk of catecholaminergic input to the CeA from the nucleus of the solitary tract. Cell counts indicate that each of these peptides may be colocalized (to varying extents) within catecholamine-producing neurons. Also the catecholaminergic and enkephalinergic contribution to the ascending pathway from the nucleus of the solitary tract to the CeA distinguishes it neurochemically from the descending pathway. Thus, although there are afferent and efferent connections between the nucleus of the solitary tract and CeA, their peptidergic/neurotransmitter connections are not necessarily reciprocal. Input from nucleus of the solitary tract peptidergic and catecholaminergic neurons to the CeA may be important in the etiology of a number of pathophysiological conditions including hypertension, gastric ulcers, and schizophrenia.  相似文献   

15.
The goal of this study was to identify GABAergic input to the cat superior colliculus from neurons located in the caudal diencephalon, mesencephalon, pons and medulla. Cells efferent to the superior colliculus were labeled retrogradely with the tracer horseradish peroxidase, and an antibody to gamma-aminobutyric acid was used to label GABAergic neurons in the same sections. The results indicate that neurons in several distinct areas of the caudal diencephalon and brainstem are both immunocytochemically labeled for GABA and retrogradely labeled with horseradish peroxidase. These areas include zona incerta, nucleus of the posterior commissure, anterior and posterior pretectal nuclei, nucleus of the optic tract, superior colliculus, cuneiform nucleus, subcuneiform area, substantia nigra pars reticulata and pars lateralis, periparabigeminal area, external nucleus of the inferior colliculus, the area ventral to the external nucleus of the inferior colliculus, mesencephalic reticular formation, dorsal and ventral nuclei of the lateral lemniscus, and the perihypoglossal nucleus. The role that such diverse inhibitory input to the superior colliculus might play, particularly in influencing eye movements, is discussed.  相似文献   

16.
The nucleus of the solitary tract (NST) processes gustatory and related somatosensory information rostrally and general viscerosensory information caudally. To compare its connections with those of other rodents, this study in the C57BL/6J mouse provides a subnuclear cytoarchitectonic parcellation (Nissl stain) of the NST into rostral, intermediate, and caudal divisions. Subnuclei are further characterized by NADPH staining and P2X2 immunoreactivity (IR). Cholera toxin subunit B (CTb) labeling revealed those NST subnuclei receiving chorda tympani nerve (CT) afferents, those connecting with the parabrachial nucleus (PBN) and reticular formation (RF), and those interconnecting NST subnuclei. CT terminals are densest in the rostral central (RC) and medial (M) subnuclei; less dense in the rostral lateral (RL) subnucleus; and sparse in the ventral (V), ventral lateral (VL), and central lateral (CL) subnuclei. CTb injection into the PBN retrogradely labels cells in the aforementioned subnuclei; RC and M providing the largest source of PBN projection neurons. Pontine efferent axons terminate mainly in V and rostral medial (RM) subnuclei. CTb injection into the medullary RF labels cells and axonal endings predominantly in V at rostral and intermediate NST levels. Small CTb injections within the NST label extensive projections from the rostral division to caudal subnuclei. Projections from the caudal division primarily interconnect subnuclei confined to the caudal division of the NST; they also connect with the area postrema. P2X2‐IR identifies probable vagal nerve terminals in the central (Ce) subnucleus in the intermediate/caudal NST. Ce also shows intense NADPH staining and does not project to the PBN. J. Comp. Neurol. 522:1565–1596, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Brainstem afferents to the magnocellular basal forebrain were studied by using tract tracing, immunohistochemistry and extracellular recordings in the rat. WGA-HRP injections into the horizontal limb of the diagonal band (HDB) and the magnocellular preoptic area (MgPA) retrogradely labelled many neurons in the pedunculopontine and laterodorsal tegmental nuclei, dorsal raphe nucleus, and ventral tegmental area. Areas with moderate numbers of retrogradely labelled neurons included the median raphe nucleus, and area lateral to the medial longitudinal fasciculus in the pons, the locus ceruleus, and the medial parabrachial nucleus. A few labelled neurons were seen in the substantia nigra pars compacta, mesencephalic and pontine reticular formation, a midline area in the pontine central gray, lateral parabrachial nucleus, raphe magnus, prepositus hypoglossal nucleus, nucleus of the solitary tract, and ventrolateral medulla. A similar but not identical distribution of labelled neurons was seen following WGA-HRP injections into the nucleus basalis magnocellularis. The possible neurotransmitter content of some of these afferents to the HDB/MgPA was examined by combining retrograde Fluoro-Gold labelling and immunofluorescence. In the mesopontine tegmentum, many retrogradely labelled neurons were immunoreactive for choline acetyltransferase. In the dorsal raphe nucleus, some retrogradely labelled neurons were positive for serotonin and some for tyrosine hydroxylase (TH); however, the majority of retrogradely labelled neurons in this region were not immunoreactive for either marker. The ventral tegmental area, substantia nigra pars compacta, and locus ceruleus contained retrogradely labelled neurons which were also immunoreactive for TH. Of the retrogradely labelled neurons occasionally observed in the nucleus of the solitary tract, prepositus hypoglossal nucleus, and ventrolateral medulla, some were immunoreactive for either TH or phenylethanolamine-N-methyltransferase. To characterize functionally some of these brainstem afferents, extracellular recordings were made from antidromically identified cortically projecting neurons, mostly located in the HDB and MgPA. In agreement with most previous studies, about half (48%) of these neurons were spontaneously active. Electrical stimulation in the vicinity of the pedunculopontine tegmental and dorsal raphe nuclei elicited either excitatory or inhibitory responses in 21% (13/62) of the cortically projecting neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We studied afferents to the parabrachial nucleus (PB) from the spinal cord and the spinal trigeminal nucleus pars caudalis (SNVc) in the rat by using the anterograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Injections of WGA-HRP into medial PB retrogradely labeled neurons in the promontorium and in lamina I of the dorsal rostral SNVc, while injections into lateral PB and the K?lliker-Fuse nucleus retrogradely labeled neurons in these areas as well as in lamina I throughout the caudal SNVc and spinal dorsal horn. Injections of WGA-HRP into the caudal SNVc and dorsal horn of the spinal cord resulted in terminal labeling in the dorsal, central, and external lateral subnuclei of PB and the K?lliker-Fuse nucleus, all of which are known to receive cardiovascular and respiratory afferent information. Injections of WGA-HRP into the promontorium and dorsal rostral SNVc resulted in terminal labeling in the same PB subnuclei, as well as in the medial and the ventral lateral PB subnuclei, which are sites of relay for gustatory information ascending from the medulla to the forebrain. The spinal and trigeminal projection to PB may mediate the convergence of pain, chemosensory, and temperature sensibilities with gustatory and cardiorespiratory systems in PB.  相似文献   

19.
The parabrachial nucleus (PB) is the main relay for ascending visceral afferent information from the nucleus of the solitary tract (NTS) to the forebrain. We examined the chemical organization of solitary-parabrachial afferents by using combined retrograde transport of fluorescent tracers and immunohistochemistry for galanin (GAL), cholecystokinin (CCK), and corticotropin-releasing factor (CRF). Each peptide demonstrated a unique pattern of immunoreactive staining. GAL-like immunoreactive (-ir) fibers were most prominent in the "waist" area, the inner portion of external lateral PB, and the central and dorsal lateral PB subnuclei. Additional GAL-ir innervation was seen in the medial and external medial PB subnuclei. GAL-ir perikarya were observed mainly rostrally in the dorsal lateral, superior lateral, and extreme lateral PB. CCK-ir fibers and terminals were most prominent in the outer portion of the external lateral PB; some weaker labeling was also present in the central lateral PB. CCK-ir cell bodies were almost exclusively confined to the superior lateral PB and the "waist" area, although a few cells were seen in the K?lliker-Fuse nucleus. The distribution of CRF-ir terminal fibers in general resembled that of GAL, but showed considerably less terminal labeling in the lateral parts of the dorsal and central lateral PB, and the external medial and K?lliker-Fuse subnuclei. The CRF-ir cells were most numerous in the dorsal lateral PB and the outer portion of the external lateral PB; rostrally, scattered CRF-ir neurons were seen mainly in the central lateral PB. After injecting the fluorescent tracer Fast Blue into the PB, the distribution of double-labeled neurons in the NTS was mapped. GAL-ir cells were mainly located in the medial NTS subnucleus; 34% of GAL-ir cells were double-labeled ipsilaterally and 7% contralaterally. Conversely, 17% of the retrogradely labeled cells ipsilaterally and 16% contralaterally were GAL-ir. CCK-ir neurons were most numerous in the dorsomedial subnucleus of the NTS and the outer rim of the area postrema. Of the CCK-ir cells, 68% in the ipsilateral and 10% in the contralateral NTS were double-labeled, whereas 15% and 10%, respectively, of retrogradely labeled cells were CCK-ir. In the area postrema, 36% of the CCK-ir cells and 9% of the Fast Blue cells were double-labeled. CRF-ir neurons were more widely distributed in the medial, dorsomedial, and ventrolateral NTS subnuclei, but double-labeled cells were mainly seen in the medial NTS.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Immunocytochemical localization of the protein product of the proto-oncogene C-fos allows anatomical identification of physiologically activated neurons. The present study examined the subnuclear distribution of cFos protein in the rat caudal medulla following peripheral administration of cholecystokinin octapeptide, which reduces feeding and gastric motility by a vagally mediated mechanism. To begin phenotypic characterization of neurons activated to express cFos following cholecystokinin treatment, double-labeling techniques were used to identify vagal motor neurons and neurons immunoreactive for tyrosine hydroxylase, neuropeptide Y, and neurotensin. Activated cells were most prevalent in the subnucleus medialis of the nucleus of the solitary tract, less prevalent in the subnucleus commissuralis, and virtually absent in the subnuclei centralis and gelatinosus. Many activated cells occupied the caudal area postrema; some of these were catecholaminergic. In contrast, activated cells were sparse within the medial rostral area postrema. Other activated cells occupied the dorso- and ventrolateral medulla and the midline raphe nuclei. Retrograde labeling of vagal motor neurons confirmed that very few were activated. Those that were activated occupied the caudal dorsal motor nucleus. In the dorsomedial medulla, 51% of catecholaminergic neurons and 39% of neurons positive for neuropeptide Y were activated, but no neurotensin-positive neurons were activated. In the ventrolateral medulla, 25% of catecholaminergic neurons and 27% of neuropeptide Y-positive neurons were activated. By characterizing the subnuclear distribution and chemical phenotypes of neurons activated by exogenous cholecystokinin, these data contribute to elucidation of the neural circuits mediating the behavioral, physiological, and neuroendocrine effects produced by this peptide. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号